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Abstract

The results of computer simulation of random Voronoi tessellations of the plane are pre-
sented. Statistics tallied include frequencies, area, and perimeter of n-sided cells, and the
frequencies of n- and m-sided cells abutting.
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1 Introduction

If S is a set of points in a plane, and each point of the plane is associated with the nearest point
of S, then the plane is divided into convex polygons, or cells. Such a partition is called a Voronoi
tessellation, also known as a Dirichlet or Theissen tessellation. When S is generated randomly, the
result is a random Voronoi tessellation. Such patterns turn up in the crystallization of metals [1,2],
geography [10], pattern recognition [11], numerical interpolation [12], and many other subjects.

This paper reports a computer simulation of 200,000,000 random Voronoi polygons in the plane.
Extensive statistics are tabulated, normalized to a unit density Poisson point process for generating
the nuclei.

Few statistics of random Voronoi tessellations are known theoretically. The known results are
in [1 - 4]. Not even the probability that a cell has a given number of sides is known. This leaves
computer simulations as the source of information on most statistics. The largest sample previously
reported has been Crain’s [5] sample of 57,000 and Hinde & Miles [6] samples of 2,000,000. Several
authors [8,9] have sought empirical formulas to describe the data, and others [7] have used it to test
hypotheses of randomness in natural phenomena. All such endeavors ought to profit from the data
presented here.

2 Tessellation geometry

Figure 1 shows an example of a random Voronoi tessellation. Note that a point with one nearest
neighbor in S is in the interior of a cell, a point with two nearest neighbors is on the boundary
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Figure 1: An example of a 100 cell random Voronoi tessellation.

between cells, and a point with three nearest neighbors is a vertex where three cells meet. There
is zero probability that there will be any point with four or more nearest neighbors, so quadruple
vertices do not occur in random tessellations. Any seeming quadruple vertices in diagrams are really
a close pair of triple vertices.

From Euler’s formula and the fact that all vertices are triple, it follows that if there are N cells
in a torus, there are exactly 3N edges and 2N vertices.

The boundary between two cells lies on the perpendicular bisector of the two seeds. A vertex is
the center of the circle formed by the seeds of the three neighboring cells. This circle is empty of
other seeds, and will be called the void circle of the vertex.

When a new seed is generated, it will change the tessellation by introducing a new cell of all the
points closer to it than to any old seed. The old vertices that disappear are exactly those into whose
void circle the new seed falls. The new vertices appear on edges that joined disappearing vertices to
remaining old vertices. The disappearing old edges form a connected tree whose interior nodes are
the disappearing vertices and whose leaves are the vertices of the new cell. Since the new cell has
an average of six vertices, and the tessellation gains two vertices, it follows that a new seed falls in
an average of four vertex void circles. It must fall within at least one, since the fewest number of
vertices of a cell possible is three.

3 Algorithm

The basic algorithm is to update an existing tessellation by the insertion of a new random point and
its cell. The domain is a unit flat torus, that is, a unit square with its opposite edges identified. A
torus does give the problem of an ambiguity of distance between two points. When there are few
seeds, one cell may contact another along several different edges. To avoid such unpleasantness, the
starting tessellation is that generated by eight cells in a lattice, so positioned to guarantee that the
shortest distance between two points is the relevant one.
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There are three main data structures. The first is an array of cell records, each with the coor-
dinates of the cell’s seed, a pointer to one of the cell’s vertices, the number of sides, the perimeter,
and the area. The second is an array of vertex records, each with the coordinates of the vertex,
the square of the radius of the void circle of the vertex, pointers to the three neighboring vertices,
and pointers to the three neighboring cells. The third is a quadtree of seeds used to approximately
locate a new random seed in the existing tessellation. This quadtree is maintained only to a given
depth, and does not necessarily contain every seed so far generated, as it needs to supply only an
approximate location.

This record structure was chosen to use a determinate amount of memory for a given number
of seeds. The number of cells that could be generated in a batch could be accurately calculated in
terms of the memory available. Having fixed batch sizes and a starting lattice is not quite a Poisson
process, but the corrections needed to get the statistics for a Poisson process are known [4].

The algorithm for the simulation is:

Compute batch size from amount of memory available
For lots of batches

Clear data structures
Set up initial lattice tessellation
For each further cell

Generate random seed
Find a vertex whose void contains new seed:

Find a near seed in quadtree and insert the new seed in
the quadtree if the appropriate node is vacant

Get vertex associated with near seed
Repeat

If new seed not in vertex void
move to neighbor vertex nearer new seed

until in void or no nearer neighbor vertex
If not in void

Find nearest of neighbor seeds
Move clockwise around nearest seed, at each vertex

re-evaluating which neighbor seed is nearest,
until new seed in vertex void.

Modify tessellation:
Recursive tree walk:

Add current vertex to list of disposable vertices
For each neighboring vertex not yet visited

If new seed is in its void, recurse
else find new vertex on edge to neighbor

Deallocate vertices on disposal list
Tally results:

Zero out batch totals
For each vertex

Increment side count of neighboring cells
For each vertex

For edge to each neighboring vertex not yet done
Add to neighbor-side counts
Add edge length to cells’ perimeters
Add to edge statistics totals
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Add edge-seed triangle areas to cells’ areas
For each cell

Add to perimeter statistics totals
Add to area statistics totals

Multiply by Poisson corrective factors
Add batch totals to cumulative totals

This algorithm was programmed in C on an IBM PC with an 8087 mathematics coprocessor.
The floating point calculations for distances, vertex locations, and tallying were coded in assembly
language for speed. For batch sizes around 775, an average of about 88 cells per second are done,
or over three million per day. Relatively little time is spent searching for the initial vertex; about
three quarters of the time is tessellation modification, and one quarter tallying.

4 Accuracy

As noted earlier, the simulation done here is not exactly that of a Poisson process because there is an
initial lattice of points and the batch size is fixed. The correction factors needed to transform these
results into estimates for Poisson processes have been derived in [4]. For M initial lattice points and
a total batch size of N, it is necessary to divide by the asymptotic series

1− m(m− 2)
8N

−m(m− 2)M(M − 1)8N2 +
m(m− 2)(m + 2)(3m− 4)

384N2
+ · · ·

where m the number of linear dimensions of a statistic, i.e. m = 0 for counts, m = 1 for perimeter,
m = 2 for area, m = 4 for square of area, etc.. These corrections become larger than the statistical
uncertainty for the 100,000,000 total presented in this paper. As order of magnitude, the statistical
errors are about 0.001 while 1/N ≈ 0.001.

To estimate the accuracy of the results, for each statistic the sums of the squares of the batch
totals were also recorded so the variance of the cumulative totals could be calculated. Note that
it is the batches that are independent, not the cells within a batch. Hence the variances must be
calculated as the sum of batch variances, not as the sum of cell variances.

5 Results

The results of the simulation are presented in tables 1-6.

6 Conclusion
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Table 1. Relative frequencies of n-sided cells, with 95% confidence intervals, and expected values
of powers of n.

sides count relative frequency
3 2293764 0.01124564± 0.00001447
4 21790174 0.10683070± 0.00004239
5 52920322 0.25945250± 0.00006016
6 60111439 0.29470840± 0.00006257
7 40548853 0.19879889± 0.00005477
8 18880987 0.09011648± 0.00003930
9 6046442 0.02964390± 0.00002328

10 1518988 0.00744714± 0.00001180
11 301798 0.00147963± 0.00000528
12 49135 0.00024089± 0.00000213
13 6493 0.00003183± 0.00000077
14 734 0.00000360± 0.00000026
15 76 0.00000037± 0.00000008
16 5 0.00000002± 0.00000002

total 208969210

E(n) = 6.000000
E(n2) = 37.780686 ± 0.000413
E(n3) = 249.081391 ± 0.007232
E(n4) = 1715.222143 ± 0.368600
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Table 2. Expectations of powers of areas a of n-sided cells, with 95% confidence intervals.

sides a a2

3 0.34301± 0.00051 0.16149± 0.00034
4 0.55807± 0.00023 0.40131± 0.00024
5 0.77413± 0.00018 0.73684± 0.00023
6 0.99573± 0.00023 1.17943± 0.00034
7 1.22252± 0.00034 1.78529± 0.00060
8 1.45336± 0.00059 2.40756± 0.00119
9 1.68700± 0.00129 8.19718± 0.00288

10 1.92476± 0.00310 4.11419± 0.00759
11 2.16098± 0.00803 5.13566± 0.02164
12 2.40098± 0.02217 6.28991± 0.06539
13 2.63850± 0.06707 7.53154± 0.21304
14 2.93486± 0.22038 9.24059± 0.75944
15 3.00926± 0.70123 9.60019± 2.89811
16 8.57847± 8.18629 13.23524± 12.29318

sides a3 a4

3 0.09721± 0.00032 0.07151± 0.00039
4 0.35492± 0.00032 0.87385± 0.00054
5 0.83497± 0.00038 1.10019± 0.00081
6 1.62832± 0.00067 2.55013± 0.00161
7 2.80957± 0.00135 5.11663± 0.00364
8 4.48281± 0.00297 9.27651± 0.00875
9 6.73083± 0.00773 15.59474± 0.02418

10 9.67617± 0.02198 24.84511± 0.07389
11 13.32055± 0.06772 37.46047± 0.24116
12 17.86799± 0.22153 54.73558± 0.84524
13 23.13662± 0.76923 76.13792± 3.11422
14 31.03726± 2.92030 110.66421± 12.33100
15 32.26938± 8.91555 113.62299± 85.48419
16 50.47975± 49.62007 197.86113± 206.39349

E(a) = 1.000000
E(a2) = 1.280190 ± 0.000083
E(a3) = 1.993028 ± 0.000383
E(a4) = 3.649677 ± 0.001447
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Table 3. Expectations of powers of edge lengths e of n-sided cells, with 95% confidence intervals.

sides e e2

3 0.45667± 0.00060 0.47349± 0.00070
4 0.53659± 0.00020 0.53663± 0.00022
5 0.60712± 0.00013 0.59132± 0.00014
6 0.67103± 0.00014 0.63653± 0.00015
7 0.73000± 0.00019 0.67422± 0.00019
8 0.78503± 0.00031 0.70595± 0.00030
9 0.83676± 0.00061 0.73313± 0.00057

10 0.88601± 0.00138 0.75668± 0.00128
11 0.93219± 0.00335 0.77625± 0.00291
12 0.97674± 0.00872 0.79396± 0.00742
13 1.01868± 0.02514 0.80684± 0.02069
14 1.06978± 0.07836 0.83690± 0.06366
15 1.08578± 0.24817 0.80499± 0.18974
16 1.16680± 1.02613 0.81296± 0.71817

sides e3 e4

3 0.54517± 0.00094 0.68620± 0.00142
4 0.61445± 0.00030 0.77970± 0.00047
5 0.67590± 0.00020 0.86566± 0.00032
6 0.72362± 0.00019 0.93091± 0.00031
7 0.75986± 0.00025 0.97799± 0.00089
8 0.78692± 0.00038 1.01021± 0.00060
9 0.80726± 0.00071 1.03168± 0.00109

10 0.82199± 0.00149 1.04394± 0.00224
11 0.83108± 0.00345 1.04710± 0.00510
12 0.83763± 0.00866 1.04646± 0.01272
13 0.83461± 0.02341 1.02479± 0.03317
14 0.86632± 0.07286 1.07705± 0.10734
15 0.79867± 0.20426 0.95707± 0.27665
16 0.75928± 0.69340 0.86839± 0.86096

E(e) = 0.666659± 0.000010
E(e2) = 0.630052± 0.000034
E(e3) = 0.718881± 0.000078
E(e4) = 0.915614± 0.000167
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Table 4. Expectations of powers of perimeters p of n-sided cells, with 95% confidence intervals.

sides p p2

3 2.74002± 0.00363 8.16944± 0.01207
4 8.21955± 0.00118 11.04842± 0.00455
5 3.64271± 0.00079 13.96671± 0.00329
6 4.02619± 0.00086 16.91858± 0.00382
7 4.38003± 0.00114 19.90218± 0.00547
8 4.71016± 0.00184 22.91069± 0.00939
9 5.02058± 0.00368 25.93748± 0.01983

10 5.31605± 0.00825 28.99839± 0.04660
11 5.59316± 0.02008 32.02329± 0.11875
12 5.86042± 0.05234 35.08652± 0.32339
13 6.11205± 0.15084 38.08261± 0.96615
14 6.41870± 0.47017 41.93533± 3.14525
15 6.51466± 1.48903 43.07972± 10.03056
16 7.00080± 6.15677 49.36273± 43.84132

sides p3 p4

3 26.19231± 0.04497 89.50207± 0.18354
4 40.13127± 0.01919 153.43035± 0.08706
5 56.10672± 0.01487 235.24538± 0.07229
6 73.96058± 0.01822 335.42239± 0.09342
7 93.58837± 0.02798 454.48646± 0.15262
8 114.86607± 0.05093 592.61406± 0.29200
9 137.68084± 0.11250 749.90480± 0.66962

10 162.11504± 0.27586 927.79628± 1.69671
11 187.49639± 0.73191 1121.60919± 4.68639
12 214.48329± 2.07501 1836.79366± 13.78974
13 241.73133± 6.40458 1562.18011± 43.83976
14 278.66205± 21.69839 1882.12056± 154.04281
15 289.03297± 69.88689 1966.41806± 491.68632
16 350.50196± 316.16165 2505.70278± 2305.97363

E(p) = 3.999956± 0.000062
E(p2) = 16.945148± 0.000431
E(p3) = 75.518809± 0.003425
E(p4) = 352.218492± 0.001447
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Table 5. Expectations of number of sides of neighbors of n-sided cels, with 95% confidence
intervals.

sides neighbor sides
3 7.011610± 0.000954
4 6.717139± 0.000283
5 6.492202± 0.000165
6 6.315011± 0.000141
7 6.170720± 0.000157
8 6.050163± 0.000214
9 5.947389± 0.000346

10 5.858596± 0.000644
11 5.779255± 0.001354
12 5.710354± 0.008160
13 5.651897± 0.008230
14 5.583009± 0.022964
15 5.535088± 0.069903
16 5.550000± 0.225694
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Table 6. Incidence matrix for number of sides of neighbors of n-sided cells,

sides 3 4 5 6 7 8 9
3 0 40300 661509 1833064 2122192 1390715 597313
4 40300 2441928 13280040 24763364 23892250 14369072 5989334
5 661509 13280040 49672702 77020364 66599024 37206295 14650773
6 1833064 24763364 77020364 106492830 84575568 43990492 16282671
7 2122192 23892250 66599024 84575568 62344158 30316690 10543796
8 1390715 14369072 37206295 43990492 30316690 13845216 4538608
9 597313 5989334 14650773 16282671 10543796 4538608 1409594

10 183911 1845561 4311355 4526987 2768939 1130007 333141
11 43076 439510 986921 982685 569314 220489 61992
12 7948 84485 181815 172891 95594 35149 9401
13 1113 12975 26948 24429 12822 4648 1210
14 130 1668 3457 2936 1461 469 127
15 21 199 374 328 156 41 18
16 0 10 33 25 7 5 0

sides 10 11 12 13 14 15 16
3 183911 43076 7948 1113 130 21 0
4 1845561 439510 84485 12975 1668 199 10
5 4311355 986921 181815 26948 3457 374 33
6 4526987 982685 172891 24429 2936 328 25
7 2768939 569314 95594 12822 1461 156 7
8 1130007 220489 35149 4648 469 41 5
9 333141 61992 9401 1210 127 18 0

10 74472 13275 1988 220 22 2 0
11 13275 2172 299 38 6 1 0
12 1988 299 44 6 0 0 0
13 220 38 6 0 0 0 0
14 22 6 0 0 0 0 0
15 2 1 0 0 0 0 0
16 0 0 0 0 0 0 0
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