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1 Introduction

If S is a set of points in a Euclidean space R™, and each point of the space is associated with
the nearest point of S, then the space is divided into convex polyhedra, or cells. Such a partition is
called a Voronoi tessellation, also known as a Dirichlet or Theissen tessellation. When S is generated
randomly, the result is a random Voronoi tessellation. Such patterns turn up in the crystallization
of metals [1,2], geography [3], pattern recognition [4], numerical interpolation [5], and many other
subjects.

A general scheme was derived in [6] for calculating statistics of random Voronoi tessellations for
sets S generated by a Poisson point process of unit density. This scheme is applied in this paper
to find statistics of random tessellations of three dimensional space and plane cross-sections of such
tessellations.

Meijering [1] derived the mean values of many quantities. These are given in Table 1. Gilbert [2]
expressed the variance of the cell volume in terms of a double integral. This paper finds the variances
and covariances for all these quantities in terms of integrals, which are evaluated numerically. Also
found are the distributions of edge lengths of cells and cross-sections.

2 Tessellation geometry

Henceforth, the members of S will be called seeds (due to their role in generating cells), and point
will refer to a general point in the space, usually specified to be one of the types mentioned above.
The open ball whose center is at a point and which has the nearest neighbor seeds of that point on
its circumference will be called the void of the point.

The points closer to one seed than another are divided by the perpendicular bisecting plane
between the two seeds. Thus a cell is the intersection of half-spaces, and hence is convex. For
a random tessellation, only a finite number of half-planes bound the cell, so the cell is a convex
polyhedron. It follows that a plane cross-section of a 3-dimensional tessellation is a tessellation of
the plane composed of convex polygons.

The points of a tessellation of 3-space plane are of four types, depending on how many nearest
neighbors in S they have. A point with exactly one nearest neighbor is in the interior of a cell, a point
with two nearest neighbors is on the face between two cells, a point with three nearest neighbors is



on an edge shared by three cells, and a point with four neighbors is a vertex where three cells meet.
There is zero probability that there will be any point with five or more nearest neighbors.

Likewise, the points of a plane cross-section are of three types, depending on how many nearest
neighbors in S they have. A point with exactly one nearest neighbor is in the interior of a cell, a
point with two nearest neighbors is on the boundary between cells, and a point with three nearest
neighbors is a vertex where three cells meet.

The central object of this paper is a configuration of seeds and points. The definition of a
configuration type consists of

1. the number m of seeds involved,
2. the number k of points and their types, and
3. a specification of which seeds Sy, ..., S;p—1 are nearest neighbors of which points P, ..., Pg.

Usually there will be one or two points and their nearest seeds. An example configuration would be
a vertex and its four neighbor seeds. Note that an actual instance of a configuration in a tessellation
may have several possible labellings. For example, a vertex configuration has 24 possible labellings
of its seeds.

A complete configuration is a configuration that includes all the neighbor seeds of its points.
Examples would be a vertex and its four neighbor seeds, or an edge point with its three neighbor
seeds. An example of an incomplete configuration would be a vertex and one neighboring seed. For
a complete configuration, item 3 above can be rephrased in two parts:

3a. a specification of the geometrical relation of points to seeds (i.e., on perpendicular bisector, at
circumcenter), and

3b. a requirement that the voids of the points (as defined by 3a) are empty of seeds.

A set of m seeds and k (untyped) points that satisfies the geometrical relationships 3a will be
called a potential configuration. If the condition 3b is also true, it is an actual configuration, and
the points are necessarily of the requisite types. As an example, consider the configuration of a
vertex and its four neighbor seeds. A potential configuration would be any four seeds and their
circumcenter. This is an actual configuration if the void of the configuration is empty of other seeds.

The method of this paper may be outlined as follows:

1. State the problem in terms of an incomplete configuration.
2. Embed the incomplete configuration in a complete configuration.

3. In the space of all potential configurations, write down the expectation measure for all potential
configurations defined by the Poisson process generating the seeds.

4. Multiply by the probability that the void region is empty to get the expectation measure for
actual configurations.

5. Integrate over some variables to find the induced measure on the space of incomplete configu-
rations.

6. Solve the original problem.



3 Configuration spaces and measures

Introduce a canonical parameter space W for all complete configurations of a given type as follows.
Let the seeds have locations Sy, ..., Sy—1. The seed coordinates thus form a space Wg = (R™)™. A
point P; of the k-dimensional skeleton of the tessellation is on the k-plane through the circumcenter
of its neighbor seeds and perpendicular to the (n — k)-plane those seeds determine. Let y; represent
the coordinates of P; in this plane. These point parameters y; form a space Wp = R? for some g,
which may be zero if all the points are vertices. Then W = Wg x Wp.

A tessellation T' generates in W a set W consisting of all the instances of the configuration
occurring in 7. Different labellings are considered different instances. Let dur be Hausdorff measure
of dimension q restricted to Wrp. The configuration measure du will be the expectation of dur under
the probability measure on the space of tessellations T defined by the Poisson process generating S.

For potential configurations, dur is the product of a sum of unit point measures on Wy (one
for each ordered subset of m seeds of S) and Lebesgue measure on Wr. By the unit density of the
Poisson process, the expectation of the sum of the unit point measures is Lebesgue measure on Wyg.
Hence the potential configuration measure djipo is Lebesgue measure on W,

d/Jpot = dSO N dsmfldyl e dyk (31)

The actual configuration measure du will be nonzero only on the subdomain Wy of W for which
none of the seeds of the configuration are in any of the voids. In Wy, the probability that the voids

will be empty of other seeds of S is the Poisson factor e=4, where A is the n-dimensional measure
of the union of the voids. Hence

dp = e *dSy...dSm_1dy ... dyy restricted to Wy. (3.2)
It will usually be convenient to change to coordinates relative to Sy for Sy, ..., S;—1. Note the

Jacobian of this transformation is 1. Also, results will often be in terms of expected value per cell.
For this, we may assume Sy = 0 and factor Sy out of W, leaving parameter space W', and factor
off the dSy part of du, which leaves the expected measure do for configurations associated with a
single cell (that generated by Sp):

do=e 4dSy...dSm_1dy: ... dy; restricted to W. (3.3)

The applicability of this scheme to calculate a statistic or distribution depends on whether it can be
phrased in terms of configurations of a small number of points. Two points is the maximum in this
paper. Hence the edge length distribution is calculable, but the face area distribution is not.

4 Second order statistics

Second order statistics, such as the expected square of cell volume, can be calculated by finding
the measure of pairs of points (P;, P») associated with the cell generated by Sy. Let o, be the
configuration measure for the common seeds of P, and P,, and let o; be the measure for the
remaining seeds of P;. Then the configuration measure may be written

do = eiAdacdaldag, (4.1)

where A is the void area.

Pairs may be classified by the types of points and by how many of their defining seeds the
points have in common. Pairs with Sy in common belong to the same cell, pairs with two seeds in
common belong to the same face, and pairs with three seeds in common belong to the same edge.
For computational purposes, it will be most convenient to classify pairs primarily by the number
of common seeds and secondarily by the point types. This way, for each o., a set of o;’s may be
constructed and considered in all possible pairs.



5 Three common seeds and edge length distribution

The only interesting pair with three common seeds is a pair of vertices at the ends of an edge. By
integrating over all variables in the configuration measure except the edge length, we will get the
distribution function of edge lengths. Let Sy, S1, and S5 be the common seeds, and let S3 and Sy
be the other determining seeds of P, and P; respectively. The common measure is

dO’c = dSldSQ (51)

Let S; have spherical coordinates (71, ¢1,61), and let Sy have spherical coordinates (72, ¢2,62) in a
system whose north polar axis contains S7. Then

doe = r? sin ¢ydridp,dfyr3 sin odrodpodbs. (5.2)

Let @ be the circumcenter of Sy, S1, and Sy. P; and P; then lie on the line through @ perpendicular
to the circumcircle. Let S3 have spherical coordinates (r3, ¢3,03) in a system whose north polar axis
contains @ and has P; at 03 = 0. Let Sy have spherical coordinates (r4, ¢4,64) in a system whose
north polar axis contains @) and has P, at 84 = 0. Then

doy = 7r2singzdradpsdfs, (5.3)
dO’g = risin¢4dr4d¢4d04. (54)

Note that each edge is counted twice, once for each orientation.

Some changes of variables will permit integrals to be done. First, replace (r1,r2,¢s) with
(2,81, B2) where z is the distance from Sy to @, (1 is the angle QSp.S1, and (s is the angle .S5.S2,
oriented so that ¢o = B2 — B1. Then

do. = 642° cos? By cos? By sin® (B — B1) sin ¢1dzdB1dBadd1df1dbs. (5.5)
The domains are
0<2z< o0, —m/2 < B < P2 < 7/2, 0 <6, 0y <, 0<¢ <m7/2 (5.6)
It is possible to now integrate over (31, (s, 01, 02, and ¢, giving an effective common measure
do. = 121*2%dz. (5.7)

This includes the correction for double counting.
In doy, we replace r3 by (1, which is the angle QSyP;. Then

doy = 82% sin? g3 cos 03 sec? 31 (cos ¢ + sin ¢ tan B cos 03)2dB1df3dps, (5.8)
with domain given by
/2 < <72, —7/2<035<7/2, —tan[cosls < cotps < 0. (5.9)
The same can be done for o9, except that the domain for G must be
—B1 < B <m/2 (5.10)

in order to keep the seeds out of the void interior.
The volume A of the void is
A=72B (5.11)



where the quantity B (which will often occur in the rest of this paper) is

Sin3 ﬂl
3

sin ﬂQ) . (5.12)

B = sec® 3 (3 +sinf; — 3

- 2
> + sec® 3y <3 + sin Bg —
All variables except (31, [2, and z may be integrated analytically to give a reduced configuration
measure

do = 1278211 e =778 gec? B (sec By + tan B1)% sec? Ba(sec B + tan Bz)%dB1dBadz. (5.13)

The distribution of edge lengths L may be found by replacing z by z = L/(tan 31 4+ tanf82) and
integrating over 31 and [o:

/2 /2 »
fL(L) _ 127T6L11/ /Q/ﬁ 677TL3B(tanﬁl+tanﬁ2) 3 (5.14)
- —B

-(tan #; + tan 62)_12 sec? By (sec 81 + tan 61)2 sec? Ba(sec B2 + tan 62)2d61 dps.

An alternate, less singular form is

. 9 .3 9 .3

B = cos® 3, (3 +sin By — ﬂl) + cos® By <3 +sin By — Smg 62> ) (5.15)
/2 /2 an g

fu(L) = 127T6L“/ B /6 e~ LB/ sin"(B1+62) (5.16)

-sin 12 (By 4 Ba) cos® B1 (1 + sin 31)? cos® Bo(1 + sin Bs)2dB1dBs.

This may be normalized to a probability density function by dividing by the total number of edges,
14472 /35. The normalized distribution is tabulated in table 1 and graphed in figure 1.
The moments of the distribution may be expressed as double integrals by integrating over L:

35 n 7T‘/2 7T‘/2
E(L™) = g /37 (4+ = / / B—4-n/3 5.17
(2%) 36" ( +3) S (5.17)

-(tan B1 + tan fB2)" sec? By (sec 81 + tan 61)2 sec? Ba(sec B2 + tan /32)2d/81 dps.

or

35 w/2 /2 N
B(L") = Sar (4+§)/ /2/5 Bi-n/3 (5.18)
e

-sin™ (B + B2) cos® By (1 +sin B1)? cos® Ba (1 + sin Bz)2dB1dBs.

Values of interest are:

1/3

E(L) = g(f;) I'(4/3) = 0.430857994283959 (5.19)
E(L?) = 0.290877746899549 (5.20)
Var(L) = 0.105239135661153 (5.21)

with the exact value for E(L) following from Meijering’s results.



6 Two common seeds

These pairs are on the same face, but not on the same edge. Let Sy and S; be the common seeds.
The common measure is

do. = dS;. (6.1)
Let S7 have spherical coordinates (r1, ¢1,61). Then
do, = rf sin ¢ drydeo,db . (6.2)

Face point. The remaining measure for a face area point P; is Lebesgue measure on the
perpendicular bisector plane of SyS7. Let (p, ) be the polar coordinates of P; on this plane. Then

do; = pdpdd. (6.3)
To replace p and 6, introduce coordinates
w = angle S150F; (6.4)
fp = longitude of P;.
Then )
do; = Zr% tan w sec? wdf pdw. (6.5)

Edge point. The remaining measure for an edge point P; is the product of Lebesgue 3-measure
for S5 and linear measure for P; along the centerline of Sy, S1, and Ss:

dO’i == dSQdy (66)

where y is the distance of P; along the centerline from the circumcenter. Let (r3, ¢2,602) be the
spherical coordinates of Sy with S7 northerly. Then

do; = TS sin ¢odrodpadbady. (6.7)

To replace 73, 62, and y, introduce coordinates

w = angle S1.5F;
fp = longitude of P (6.8)
0 = longitude from Ss to P;
Then 1
do; = 57“‘11 (tan w cos @ sin ¢y + cos ¢2)2 sin ¢ sec? w tan wdwd@dl pdeps. (6.9)

Suppose the void sphere intersection defines the domain of 6 to be —a < § < m — . The domain of
¢2 18 0 < ¢ < arccot(— tanw cos@). Then we can integrate over ¢, and 0 to get a reduced measure

1

do; = —
77 16

71 Fg (o, w) sec? w tan wdwdfp. (6.10)

where

Frla,w) = / (3tan” wcos? § + 1)arccot(— tanw cos @) + 3 tan w cos Odf. (6.11)



Vertex point. The remaining measure for a vertex P; is the product of Lebesgue 3-measure for
SQ and 53:
dO’i = dSQdS3 (6.12)

Let (rq, ¢2,02) and (ra, ¢2, 02) be the spherical coordinates of Sy and S3 with Sy northerly. Then
do = 7“% sin ¢2dr2d¢2d92r§ sin ¢2d7‘2d¢2d92. (613)

To replace 19, 02, 3, and 03, introduce coordinates

w = angle S15)P:
fp = longitude of P;
0o = longitude from P; to S, (6.14)
0 = longitude from P; to Ss.
Then
do = 7r%(tanwcosf 4 sin ¢y 4 cos ¢o)? sin? ¢y (tan w cos O sin ¢3 + cos ¢3)> (6.15)

-sin? g5 sin(fp — 64) sec? w tan wdwddO pdgs.

The domain for immediate integration is

0 < ¢o < arccot(—tanwcosfy), 0 < ¢3 < arccot(—tanwcoslp), —a <y <O, <mw—a.
(6.16)
Then we can now integrate over ¢s, ¢3, 84, and 0 to get a reduced measure
1
do = 6—4T?FV(a,w) sec? w tan wdwdf p. (6.17)
where
Fy(a,w) = / f(s)s(F(—=cosa) — 2F(s) + F(cosa))da, (6.18)
—
f(s) = (37%s* + 1)arccot(—7s) + 37s, (6.19)
F(s) = (1%s®+ s)arccot(—7s) 4 7562, (6.20)
s = cosb, (6.21)
T = tanw (6.22)

General form. The general form of the total configuration measure is

do = e_Aclri“ Fi(aq,wr) sec? wy tan wydw,dfpy cor? Fo(ag, ws) sec? ws tan wgdwgdﬂpgr% sin ¢ dridgdby,

(6.23)
where ¢; and n; are constants depending on the point type, and F; is a function depending on the
point type, as displayed in the formulas above. Replace (61,62, w1,w2) by (8¢, a1, aa,y) where

Op1 = 6g—ai, (6.24)
Op2 = 0Og+ g, (6.25)
tanw; = tanvyseca, (6.26)
tanws = tan~ysecas (6.27)



Note that a; and as are the same quantities introduced previously. Then

ni+nz+2
1 Fi(

do = e “cicor a1,7)Fe(ag,v) sec® ag sec® ap sin(ay + ap)

-tan® 7y sec? yda dasdydfg sin ¢y drde,db, . 6.28
Q

An abuse of notation has been committed with the F’s, letting the argument indicate a formally
different function. Integrating over fg, ¢1, and 6, gives a factor of 872

do = SWQe*Aclcgr?ﬁ"ﬁzFl (a1,7)Fa(ag,7) sec® ay sec g sin(a + ao) tan® v sec? yday dasdy.
(6.29)
We make a further change to bring the set of variables into conformity with the standard set used
in this paper. Replace (r1, a1, as) with (z, 51, 82), where

r. = 2zcos7, (6.30)
tanoy = tanfy/sinv, (6.31)
tanay = tan(y/sinn. (6.32)
Then
do = 2TL1+"2+67T261026_”323F1 (B1,77)F2(B2,7)(tan B1+tan [a) cos™ 272 v gec? 3 sec? Bodf1dfadydz.
(6.33)
Again, the factor functions have formally changed. The quantity B is the same as before.
The z integral can be done analytically, leaving
1
do = §2n1+n2+6ﬁ1+(n1+n2)/3f((n1 +n2)/3 + 1)ercp B mH72)/371 (6.34)
“F1(B1,7)F2(B2,v)(tan By + tan Ba) cos™ 7272 y sec? By sec” BodB1dBadry.
The domain is
O<vy<m/2, —w/2<fr<7T/2, —p1<f2<m/2 (6.35)
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Table 1. Probability density function f; of edge lengths L of a random Voronoi tessellation in

three dimensions generated by a unit density Poisson process.

L
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95

fL
1.616909054181E0
1.550881449610E0
1.484071056779E0
1.416509590558E0
1.348240491066E0
1.279321470737E0
1.209827585793E0
1.139854904429E0
1.069524802906E0
9.989888343732E-1
9.284339742239E-1
8.580878512108E-1
7.882233429050E-1
7.191616841676E-1
6.512730627001E-1
5.849736212586E-1
5.207179127395E-1
4.589862011435E-1
4.002665676502E-1
3.450325141577E-1
2.937175518087E-1
2.466889760644E-1
2.042235088008E-1
1.664876024323E-1
1.335248813054E-1
1.052524548101E-1
8.146677643717E-2
6.185851675679E-2
4.603477601235E-2
3.354608461124E-2
2.391517483031E-2
1.666451714206E-2
1.134006673124E-2
7.529443836481E-3
4.873707551006E-3
3.072797955924E-3
1.885465959787E-3
1.124990535497E-3
6.521728053798E-4
3.670293868739E-4

L
2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
3.95

fL
2.003578075652E-4
1.060044075479E-4
5.431258847951E-5
2.692677052292E-5
1.290698672091E-5
5.976860605026E-6
2.671658628863E-6
1.151864022629E-6
4.786163440079E-7
1.915112401722E-7
7.373546817565E-8
2.729540818461E-8
9.707105559146E-9
3.313854010528E-9
1.085118767444E-9
3.405482144160E-10
1.023516387349E-10
2.943632114733E-11
8.094736184960E-12
2.126720351996E-12
5.334145383441E-13
1.276216867384E-13
2.910367334435E-14
6.321111692749E-15
1.306532395719E-15
2.567951265721E-16
4.795701430365E-17
8.503059396260E-18
1.430260058539E-18
2.280502665965E-19
3.444141831032E-20
4.922950505153E-21
6.654617053004E-22
8.500275640637E-23
1.025213923257E-23
1.166612839121E-24
1.251494700702E-25
1.264679663993E-26
1.202930597858E-27
1.076139052200E-28



Table 2. Plane statistics:

E(area)

E(vertices)

E(edge length)

E(perimeter)

Var(area)

Var(edge length)

Var(perimeter)

Var (vertices)

Cov(area, edge)
Cov(perimeter,edge)
Cov(number, edge)
Cov(area, perimeter)
Cov(area, vertices)

Cov(perimeter, vertices)

= 1.000000000000000
= 6.000000000000000
= 0.666666666666666
4.000000000000000
= 0.28017604092670
0.18562733470512
= 0.94549301073850
= 1.78081169901223
0.03720310720856
= 0.085295154692359
= -0.089437445910828
= 0.49047211300708
= (.4008802046335

= 0.65058312387652

Table 3. 3D cell face statistics:

E(area)

E(vertices)

E(edge length)

E(perimeter)

Var(area)

Var(edge length)

Var(perimeter)

Var(vertices)

Cov(area edge)
Cov(perimeter, edge)
Cov(number, edge)
Cov(area, perimeter)
Cov(area, vertices)

Cov(perimeter, vertices)

= 0.374683050589892
= 5.227573437889669
= 0.430857994283959
= 2.252341806421243
= 0.14238966950293
= 0.10523913566115
= 1.4699757822866
= 2.48464067596800
= 0.044445918551

= 0.16370992196

= 0.06789595512

= 0.42458077312504
= 0.44617129643

= 1.42545838971

Table 4. 3D plane cross section statistics:

E(area)

E(vertices)

E(edge length)

E(perimeter)

Var(area)

Var (edge length)

Var(perimeter)

Var(vertices)

Cov/(area, edge)

Cov(perlmeter edge)
Cov(number, edge)
Cov(area, perimeter)
Cov(area, vertices)

Cov(perimeter, vertices)

= 0.685887514859605
= 6.000000000000000
= 0.522612294369352
= 3.135673766216111
= 0.22695289959512
= 0.13040733669562
= 1.4773161590933
= 2.8271549519400
= 0.0379654533346
= 0.1159756193049
=-0.000131629712

= (.54481761088193
= 0.60661583030

= 1.49530053480
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Table 5. 3D cell statistics:

perimeter = total of edge lengths;
surface = total surface area;

E(vertices) = 27.070914928702240
E(surface) = 5.820872595052579
E(volume) = 1.000000000000000
E(perimeter) = 17.495580164418480
E(edge length) = 0.430857994283959
E (number edges) = 40.606372393053360
E(number faces) = 15.53545746435112
Var(volume) = 0.179032437845
Var(surface) = 2.191483455281431
Var(perimeter) = 13.617940052235990
Var(vertices) = 44.498388684999960
Cov(volume, edge) = 0.002986565580
Cov(volume, vertices) = 2.0777760030
Cov(volume, perimeter) = 1.464113195990
Cov(volume, surface) = 0.61514448699074
Cov(volume, face area) = 0.014540335351
Cov(surface, edge) = 0.01253075318
Cov(surface, face area) = 0.0563219082
Cov(surface, perimeter) = 5.050452528193
Cov (surface, vertices) = 7.0272559379000
Cov (perimeter, edge) = -0.0073423626

Cov (perimeter, face area) = 0.06543396689
Cov (perimeter, vertices) = 21.532364020

Cov (vertex, edge) = -0.1779613716

Cov (vertex, face area) = -0.0842678804
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