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1 Introduction

If S is a set of points in a Euclidean space Rn, and each point of the space is associated with
the nearest point of S, then the space is divided into convex polyhedra, or cells. Such a partition is
called a Voronoi tessellation, also known as a Dirichlet or Theissen tessellation. When S is generated
randomly, the result is a random Voronoi tessellation. Such patterns turn up in the crystallization
of metals [1,2], geography [3], pattern recognition [4], numerical interpolation [5], and many other
subjects.

A general scheme was derived in [6] for calculating statistics of random Voronoi tessellations for
sets S generated by a Poisson point process of unit density. This scheme is applied in this paper
to find statistics of random tessellations of three dimensional space and plane cross-sections of such
tessellations.

Meijering [1] derived the mean values of many quantities. These are given in Table 1. Gilbert [2]
expressed the variance of the cell volume in terms of a double integral. This paper finds the variances
and covariances for all these quantities in terms of integrals, which are evaluated numerically. Also
found are the distributions of edge lengths of cells and cross-sections.

2 Tessellation geometry

Henceforth, the members of S will be called seeds (due to their role in generating cells), and point
will refer to a general point in the space, usually specified to be one of the types mentioned above.
The open ball whose center is at a point and which has the nearest neighbor seeds of that point on
its circumference will be called the void of the point.

The points closer to one seed than another are divided by the perpendicular bisecting plane
between the two seeds. Thus a cell is the intersection of half-spaces, and hence is convex. For
a random tessellation, only a finite number of half-planes bound the cell, so the cell is a convex
polyhedron. It follows that a plane cross-section of a 3-dimensional tessellation is a tessellation of
the plane composed of convex polygons.

The points of a tessellation of 3-space plane are of four types, depending on how many nearest
neighbors in S they have. A point with exactly one nearest neighbor is in the interior of a cell, a point
with two nearest neighbors is on the face between two cells, a point with three nearest neighbors is
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on an edge shared by three cells, and a point with four neighbors is a vertex where three cells meet.
There is zero probability that there will be any point with five or more nearest neighbors.

Likewise, the points of a plane cross-section are of three types, depending on how many nearest
neighbors in S they have. A point with exactly one nearest neighbor is in the interior of a cell, a
point with two nearest neighbors is on the boundary between cells, and a point with three nearest
neighbors is a vertex where three cells meet.

The central object of this paper is a configuration of seeds and points. The definition of a
configuration type consists of

1. the number m of seeds involved,

2. the number k of points and their types, and

3. a specification of which seeds S0, . . ., Sm−1 are nearest neighbors of which points P1, . . ., Pk.

Usually there will be one or two points and their nearest seeds. An example configuration would be
a vertex and its four neighbor seeds. Note that an actual instance of a configuration in a tessellation
may have several possible labellings. For example, a vertex configuration has 24 possible labellings
of its seeds.

A complete configuration is a configuration that includes all the neighbor seeds of its points.
Examples would be a vertex and its four neighbor seeds, or an edge point with its three neighbor
seeds. An example of an incomplete configuration would be a vertex and one neighboring seed. For
a complete configuration, item 3 above can be rephrased in two parts:

3a. a specification of the geometrical relation of points to seeds (i.e., on perpendicular bisector, at
circumcenter), and

3b. a requirement that the voids of the points (as defined by 3a) are empty of seeds.

A set of m seeds and k (untyped) points that satisfies the geometrical relationships 3a will be
called a potential configuration. If the condition 3b is also true, it is an actual configuration, and
the points are necessarily of the requisite types. As an example, consider the configuration of a
vertex and its four neighbor seeds. A potential configuration would be any four seeds and their
circumcenter. This is an actual configuration if the void of the configuration is empty of other seeds.

The method of this paper may be outlined as follows:

1. State the problem in terms of an incomplete configuration.

2. Embed the incomplete configuration in a complete configuration.

3. In the space of all potential configurations, write down the expectation measure for all potential
configurations defined by the Poisson process generating the seeds.

4. Multiply by the probability that the void region is empty to get the expectation measure for
actual configurations.

5. Integrate over some variables to find the induced measure on the space of incomplete configu-
rations.

6. Solve the original problem.
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3 Configuration spaces and measures

Introduce a canonical parameter space W for all complete configurations of a given type as follows.
Let the seeds have locations S0, . . ., Sm−1. The seed coordinates thus form a space WS = (Rn)m. A
point Pi of the k-dimensional skeleton of the tessellation is on the k-plane through the circumcenter
of its neighbor seeds and perpendicular to the (n− k)-plane those seeds determine. Let yi represent
the coordinates of Pi in this plane. These point parameters yi form a space WP = Rq for some q,
which may be zero if all the points are vertices. Then W = WS ×WP .

Λ tessellation T generates in W a set WT consisting of all the instances of the configuration
occurring in T . Different labellings are considered different instances. Let dµT be Hausdorff measure
of dimension q restricted to WT . The configuration measure dµ will be the expectation of dµT under
the probability measure on the space of tessellations T defined by the Poisson process generating S.

For potential configurations, dµT is the product of a sum of unit point measures on WS (one
for each ordered subset of m seeds of S) and Lebesgue measure on WΓ. By the unit density of the
Poisson process, the expectation of the sum of the unit point measures is Lebesgue measure on WS .
Hence the potential configuration measure dµpot is Lebesgue measure on W ,

dµpot = dS0 . . . dSm−1dy1 . . . dyk. (3.1)

The actual configuration measure dµ will be nonzero only on the subdomain W0 of W for which
none of the seeds of the configuration are in any of the voids. In W0, the probability that the voids
will be empty of other seeds of S is the Poisson factor e−A, where A is the n-dimensional measure
of the union of the voids. Hence

dµ = e−AdS0 . . . dSm−1dy1 . . . dyk restricted to W0. (3.2)

It will usually be convenient to change to coordinates relative to S0 for S1, . . ., Sm−1. Note the
Jacobian of this transformation is 1. Also, results will often be in terms of expected value per cell.
For this, we may assume S0 = 0 and factor S0 out of W , leaving parameter space W ′, and factor
off the dS0 part of dµ, which leaves the expected measure dσ for configurations associated with a
single cell (that generated by S0):

dσ = e−AdS1 . . . dSm−1dy1 . . . dyk restricted to W ′
0. (3.3)

The applicability of this scheme to calculate a statistic or distribution depends on whether it can be
phrased in terms of configurations of a small number of points. Two points is the maximum in this
paper. Hence the edge length distribution is calculable, but the face area distribution is not.

4 Second order statistics

Second order statistics, such as the expected square of cell volume, can be calculated by finding
the measure of pairs of points (P1, P2) associated with the cell generated by S0. Let σc be the
configuration measure for the common seeds of P1 and P2, and let σi be the measure for the
remaining seeds of Pi. Then the configuration measure may be written

dσ = e−Adσcdσ1dσ2, (4.1)

where A is the void area.
Pairs may be classified by the types of points and by how many of their defining seeds the

points have in common. Pairs with S0 in common belong to the same cell, pairs with two seeds in
common belong to the same face, and pairs with three seeds in common belong to the same edge.
For computational purposes, it will be most convenient to classify pairs primarily by the number
of common seeds and secondarily by the point types. This way, for each σc, a set of σi’s may be
constructed and considered in all possible pairs.
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5 Three common seeds and edge length distribution

The only interesting pair with three common seeds is a pair of vertices at the ends of an edge. By
integrating over all variables in the configuration measure except the edge length, we will get the
distribution function of edge lengths. Let S0, S1, and S2 be the common seeds, and let S3 and S4

be the other determining seeds of P1 and P2 respectively. The common measure is

dσc = dS1dS2. (5.1)

Let S1 have spherical coordinates (r1, φ1, θ1), and let S2 have spherical coordinates (r2, φ2, θ2) in a
system whose north polar axis contains S1. Then

dσc = r2
1 sinφ1dr1dφ1dθ1r

2
2 sinφ2dr2dφ2dθ2. (5.2)

Let Q be the circumcenter of S0, S1, and S2. P1 and P2 then lie on the line through Q perpendicular
to the circumcircle. Let S3 have spherical coordinates (r3, φ3, θ3) in a system whose north polar axis
contains Q and has P1 at θ3 = 0. Let S4 have spherical coordinates (r4, φ4, θ4) in a system whose
north polar axis contains Q and has P2 at θ4 = 0. Then

dσ1 = r2
3 sinφ3dr3dφ3dθ3, (5.3)

dσ2 = r2
4 sinφ4dr4dφ4dθ4. (5.4)

Note that each edge is counted twice, once for each orientation.
Some changes of variables will permit integrals to be done. First, replace (r1, r2, φ2) with

(z, β1, β2) where z is the distance from S0 to Q, β1 is the angle QS0S1, and β2 is the angle QS0S2,
oriented so that φ2 = β2 − β1. Then

dσc = 64z5 cos2 β1 cos2 β2 sin2(β2 − β1) sinφ1dzdβ1dβ2dφ1dθ1dθ2. (5.5)

The domains are

0 ≤ z < ∞, −π/2 < β1 < β2 < π/2, 0 ≤ θ1, θ2 < π, 0 ≤ φ1 ≤ π/2. (5.6)

It is possible to now integrate over β1, β2, θ1, θ2, and φ, giving an effective common measure

dσc = 12π4z6dz. (5.7)

This includes the correction for double counting.
In dσ1, we replace r3 by β1, which is the angle QS0P1. Then

dσ1 = 8z3 sin2 φ3 cos θ3 sec2 β1(cos φ3 + sinφ3 tanβ1 cos θ3)2dβ1dθ3dφ3, (5.8)

with domain given by

−π/2 < β1 < π/2, −π/2 < θ3 < π/2, − tanβ1 cos θ3 ≤ cot φ3 < ∞. (5.9)

The same can be done for σ2, except that the domain for β2 must be

−β1 < β2 < π/2 (5.10)

in order to keep the seeds out of the void interior.
The volume A of the void is

A = πz3B (5.11)
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where the quantity B (which will often occur in the rest of this paper) is

B = sec3 β1

(
2
3

+ sinβ1 −
sin3 β1

3

)
+ sec3 β2

(
2
3

+ sinβ2 −
sin3 β2

3

)
. (5.12)

All variables except β1, β2, and z may be integrated analytically to give a reduced configuration
measure

dσ = 12π6z11e−πzB sec2 β1(sec β1 + tanβ1)2 sec2 β2(sec β2 + tanβ2)2dβ1dβ2dz. (5.13)

The distribution of edge lengths L may be found by replacing z by z = L/(tanβ1 + tanβ2) and
integrating over β1 and β2:

fL(L) = 12π6L11

∫ π/2

−π/2

∫ π/2

−β1

e−πL3B(tan β1+tan β2)
−3

(5.14)

·(tanβ1 + tanβ2)−12 sec2 β1(sec β1 + tanβ1)2 sec2 β2(sec β2 + tanβ2)2dβ1dβ2.

An alternate, less singular form is

B̂ = cos3 β2

(
2
3

+ sinβ1 −
sin3 β1

3

)
+ cos3 β1

(
2
3

+ sinβ2 −
sin3 β2

3

)
, (5.15)

fL(L) = 12π6L11

∫ π/2

−π/2

∫ π/2

−β1

e−πL3B̂/ sin3(β1+β2) (5.16)

· sin−12(β1 + β2) cos8 β1(1 + sinβ1)2 cos8 β2(1 + sinβ2)2dβ1dβ2.

This may be normalized to a probability density function by dividing by the total number of edges,
144π2/35. The normalized distribution is tabulated in table 1 and graphed in figure 1.

The moments of the distribution may be expressed as double integrals by integrating over L:

E(Ln) =
35
36

π−n/3Γ
(
4 +

n

3

) ∫ π/2

−π/2

∫ π/2

−β1

B−4−n/3 (5.17)

·(tanβ1 + tanβ2)n sec2 β1(sec β1 + tanβ1)2 sec2 β2(sec β2 + tanβ2)2dβ1dβ2.

or

E(Ln) =
35
36

π−n/3Γ
(
4 +

n

3

) ∫ π/2

−π/2

∫ π/2

−β1

B̂−4−n/3 (5.18)

· sinn(β1 + β2) cos8 β1(1 + sinβ1)2 cos8 β2(1 + sinβ2)2dβ1dβ2.

Values of interest are:

E(L) =
7
9

(
3
4π

)1/3

Γ(4/3) = 0.430857994283959 (5.19)

E(L2) = 0.290877746899549 (5.20)
Var(L) = 0.105239135661153 (5.21)

with the exact value for E(L) following from Meijering’s results.
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6 Two common seeds

These pairs are on the same face, but not on the same edge. Let S0 and S1 be the common seeds.
The common measure is

dσc = dS1. (6.1)

Let S1 have spherical coordinates (r1, φ1, θ1). Then

dσc = r2
1 sinφ1dr1dφ1dθ1. (6.2)

Face point. The remaining measure for a face area point Pi is Lebesgue measure on the
perpendicular bisector plane of S0S1. Let (ρ, θ) be the polar coordinates of Pi on this plane. Then

dσi = ρdρdθ. (6.3)

To replace ρ and θ, introduce coordinates

ω = angle S1S0Pi (6.4)
θP = longitude of Pi.

Then
dσi =

1
4
r2
1 tanω sec2 ωdθP dω. (6.5)

Edge point. The remaining measure for an edge point Pi is the product of Lebesgue 3-measure
for S2 and linear measure for Pi along the centerline of S0, S1, and S2:

dσi = dS2dy (6.6)

where y is the distance of Pi along the centerline from the circumcenter. Let (r2, φ2, θ2) be the
spherical coordinates of S2 with S1 northerly. Then

dσi = r2
2 sinφ2dr2dφ2dθ2dy. (6.7)

To replace r2, θ2, and y, introduce coordinates

ω = angle S1S0Pi

θP = longitude of Pi (6.8)
θ = longitude from S2 to Pi

Then
dσi =

1
2
r4
1(tanω cos θ sinφ2 + cos φ2)2 sinφ2 sec2 ω tanωdωdθdθP dφ2. (6.9)

Suppose the void sphere intersection defines the domain of θ to be −α < θ < π− α. The domain of
φ2 is 0 < φ2 < arccot(− tanω cos θ). Then we can integrate over φ2 and θ to get a reduced measure

dσi =
1
16

r4
1FE(α, ω) sec2 ω tanωdωdθP . (6.10)

where

FE(α, ω) =
∫ π−α

−α

(3 tan2 ω cos2 θ + 1)arccot(− tanω cos θ) + 3 tanω cos θdθ. (6.11)
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Vertex point. The remaining measure for a vertex Pi is the product of Lebesgue 3-measure for
S2 and S3:

dσi = dS2dS3. (6.12)

Let (r2, φ2, θ2) and (r2, φ2, θ2) be the spherical coordinates of S2 and S3 with S1 northerly. Then

dσ = r2
2 sinφ2dr2dφ2dθ2r

2
2 sinφ2dr2dφ2dθ2. (6.13)

To replace r2, θ2, r3, and θ3, introduce coordinates

ω = angle S1S0P .̇

θP = longitude of Pi

θA = longitude from Pi to S2 (6.14)
θB = longitude from Pi to S3.

Then

dσ = r6
1(tanω cos θA sinφ2 + cos φ2)2 sin2 φ2(tanω cos θB sinφ3 + cos φ3)2 (6.15)
· sin2 φ3 sin(θB − θA) sec2 ω tanωdωdθdθP dφ2.

The domain for immediate integration is

0 < φ2 < arccot(− tanω cos θA), 0 < φ3 < arccot(− tanω cos θB), −α < θA < θb < π − α.
(6.16)

Then we can now integrate over φ2, φ3, θA, and θB to get a reduced measure

dσ =
1
64

r6
1FV (α, ω) sec2 ω tanωdωdθP . (6.17)

where

FV (α, ω) =
∫ π−α

−α

f(s)s(F (− cos α)− 2F (s) + F (cos α))dα, (6.18)

f(s) = (3τ2s2 + 1)arccot(−τs) + 3τs, (6.19)
F (s) = (τ2s2 + s)arccot(−τs) + τs62, (6.20)

s = cos θ, (6.21)
τ = tanω (6.22)

General form. The general form of the total configuration measure is

dσ = e−Ac1r
n1
1 F1(α1, ω1) sec2 ω1 tanω1dω1dθP1c2r

n2
1 F2(α2, ω2) sec2 ω2 tanω2dω2dθP2r

2
1 sinφ1dr1dφ1dθ1,

(6.23)
where ci and ni are constants depending on the point type, and Fi is a function depending on the
point type, as displayed in the formulas above. Replace (θ1, θ2, ω1, ω2) by (θQ, α1, α2, γ) where

θP1 = θQ − α1, (6.24)
θP2 = θQ + α2, (6.25)

tanω1 = tan γ sec α1, (6.26)
tanω2 = tan γ sec α2 (6.27)
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Note that α1 and α2 are the same quantities introduced previously. Then

dσ = e−Ac1c2r
n1+n2+2
1 F1(α1, γ)F2(α2, γ) sec3 α1 sec3 α2 sin(α1 + α2)

· tan3 γ sec2 γdα1dα2dγdθQ sinφ1dr1dφ1dθ1. (6.28)

An abuse of notation has been committed with the F ’s, letting the argument indicate a formally
different function. Integrating over θQ, φ1, and θ1 gives a factor of 8π2:

dσ = 8π2e−Ac1c2r
n1+n2+2
1 F1(α1, γ)F2(α2, γ) sec3 α1 sec3 α2 sin(α1 + α2) tan3 γ sec2 γdα1dα2dγ.

(6.29)
We make a further change to bring the set of variables into conformity with the standard set used
in this paper. Replace (r1, α1, α2) with (z, β1, β2), where

r1 = 2z cos γ, (6.30)
tanα1 = tanβ1/ sin γ, (6.31)
tanα2 = tanβ2/ sin γ. (6.32)

Then

dσ = 2rι1+n2+6π2c1c2e
−πBz3

F1(β1, γ)F2(β2, γ)(tanβ1+tanβ2) cosn1+n2−2 γ sec2 β1 sec2 β2dβ1dβ2dγdz.
(6.33)

Again, the factor functions have formally changed. The quantity B is the same as before.
The z integral can be done analytically, leaving

dσ =
1
3
2n1+n2+6π1+(n1+n2)/3Γ((n1 + n2)/3 + 1)c1c2B

−(n1+n2)/3−1 (6.34)

·F1(β1, γ)F2(β2, γ)(tanβ1 + tanβ2) cosn1+n2−2 γ sec2 β1 sec2 β2dβ1dβ2dγ.

The domain is
0 < γ < π/2, −π/2 < β1 < π/2, −β1 < β2 < π/2. (6.35)
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Table 1. Probability density function fL of edge lengths L of a random Voronoi tessellation in
three dimensions generated by a unit density Poisson process.

L fL L fL

0.00 1.616909054181E0 2.00 2.003578075652E-4
0.05 1.550881449610E0 2.05 1.060044075479E-4
0.10 1.484071056779E0 2.10 5.431258847951E-5
0.15 1.416509590558E0 2.15 2.692677052292E-5
0.20 1.348240491066E0 2.20 1.290698672091E-5
0.25 1.279321470737E0 2.25 5.976860605026E-6
0.30 1.209827585793E0 2.30 2.671658628863E-6
0.35 1.139854904429E0 2.35 1.151864022629E-6
0.40 1.069524802906E0 2.40 4.786163440079E-7
0.45 9.989888343732E-1 2.45 1.915112401722E-7
0.50 9.284339742239E-1 2.50 7.373546817565E-8
0.55 8.580878512108E-1 2.55 2.729540818461E-8
0.60 7.882233429050E-l 2.60 9.707105559146E-9
0.65 7.191616841676E-1 2.65 3.313854010528E-9
0.70 6.512730627001E-1 2.70 1.085118767444E-9
0.75 5.849736212586E-1 2.75 3.405482144160E-10
0.80 5.207179127395E-1 2.80 1.023516387349E-10
0.85 4.589862011435E-1 2.85 2.943632114733E-11
0.90 4.002665676502E-1 2.90 8.094736184960E-12
0.95 3.450325141577E-l 2.95 2.126720351996E-12
1.00 2.937175518087E-1 3.00 5.334145383441E-13
1.05 2.466889760644E-1 3.05 1.276216867384E-13
1.10 2.042235088008E-1 3.10 2.910367334435E-14
1.15 1.664876024323E-1 3.15 6.321111692749E-15
1.20 1.335248813054E-1 3.20 1.306532395719E-15
1.25 1.052524548101E-1 3.25 2.567951265721E-l6
1.30 8.146677643717E-2 3.30 4.795701430365E-l7
1.35 6.185851675679E-2 3.35 8.503059396260E-18
1.40 4.603477601235E-2 3.40 1.430260058539E-18
1.45 3.354608461124E-2 3.45 2.280502665965E-19
1.50 2.391517483031E-2 3.50 3.444141831032E-20
1.55 1.666451714206E-2 3.55 4.922950505153E-21
1.60 1.134006673124E-2 3.60 6.654617053004E-22
1.65 7.529443836481E-3 3.65 8.500275640637E-23
1.70 4.873707551006E-3 3.70 1.025213923257E-23
1.75 3.072797955924E-3 3.75 1.166612839121E-24
1.80 1.885465959787E-3 3.80 1.251494700702E-25
1.85 1.124990535497E-3 3.85 1.264679663993E-26
1.90 6.521728053798E-4 3.90 1.202930597858E-27
1.95 3.670293868739E-4 3.95 1.076139052200E-28
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Table 2. Plane statistics:

E(area) = 1.000000000000000
E(vertices) = 6.000000000000000
E(edge length) = 0.666666666666666
E(perimeter) = 4.000000000000000
Var(area) = 0.28017604092670
Var(edge length) = 0.18562733470512
Var(perimeter) = 0.94549301073850
Var(vertices) = 1.78081169901223
Cov(area, edge) = 0.03720310720856
Cov(perimeter,edge) = 0.085295154692359
Cov(number, edge) = -0.089437445910828
Cov(area, perimeter) = 0.49047211300708
Cov(area, vertices) = 0.4008802046335
Cov(perimeter, vertices) = 0.65058312387652

Table 3. 3D cell face statistics:

E(area) = 0.374683050589892
E(vertices) = 5.227573437889669
E(edge length) = 0.430857994283959
E(perimeter) = 2.252341806421243
Var(area) = 0.14238966950293
Var(edge length) = 0.10523913566115
Var(perimeter) = 1.4699757822866
Var(vertices) = 2.48464067596800
Cov(area, edge) = 0.044445918551
Cov(perimeter, edge) = 0.16370992196
Cov(number, edge) = 0.06789595512
Cov(area, perimeter) = 0.42458077312504
Cov(area, vertices) = 0.44617129643
Cov(perimeter, vertices) = 1.42545838971

Table 4. 3D plane cross section statistics:

E(area) = 0.685887514859605
E(vertices) = 6.000000000000000
E(edge length) = 0.522612294369352
E(perimeter) = 3.135673766216111
Var(area) = 0.22695289959512
Var (edge length) = 0.13040733669562
Var(perimeter) = 1.4773161590933
Var(vertices) = 2.8271549519400
Cov(area, edge) = 0.0379654533346
Cov(perimeter, edge) = 0.1159756193049
Cov(number, edge) = -0.000131629712
Cov(area, perimeter) = 0.54481761088193
Cov(area, vertices) = 0.60661583030
Cov(perimeter, vertices) = 1.49530053480
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Table 5. 3D cell statistics:

perimeter = total of edge lengths;
surface = total surface area;

E(vertices) = 27.070914928702240
E(surface) = 5.820872595052579
E(volume) = 1.000000000000000
E(perimeter) = 17.495580164418480
E(edge length) = 0.430857994283959
E (number edges) = 40.606372393053360
E(number faces) = 15.53545746435112
Var(volume) = 0.179032437845
Var(surface) = 2.191483455281431
Var(perimeter) = 13.617940052235990
Var(vertices) = 44.498388684999960
Cov(volume, edge) = 0.002986565580
Cov(volume, vertices) = 2.0777760030
Cov(volume, perimeter) = 1.464113195990
Cov(volume, surface) = 0.61514448699074
Cov(volume, face area) = 0.014540335351
Cov(surface, edge) = 0.01253075318
Cov(surface, face area) = 0.0563219082
Cov(surface, perimeter) = 5.050452528193
Cov(surface, vertices) = 7.0272559379000
Cov (perimeter, edge) = -0.0073423626
Cov (perimeter, face area) = 0.06543396689
Cov (perimeter, vertices) = 21.532364020
Cov (vertex, edge) = -0.1779613716
Cov (vertex, face area) = -0.0842678804
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