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Abstract

By design, a pumpkin balloon is intended to assume
a cyclically symmetric “pumpkin-like” shape once it
reaches float altitude and is fully inflated. Recent
work by the authors showed that under certain cir-
cumstances, a strained cyclically symmetric pumpkin
balloon configuration can be unstable. This means
the balloon must assume an alternate non-cyclically
symmetric stable equilibrium shape. Julian Nott’s
round-the-world balloon Endeavour was one of the
first pumpkin-type balloons to encounter this insta-
bility. In this paper, we will explore the phenomena, of
unstable cyclically symmetric and stable asymmetric
balloon configurations. Through numerical computa-
tions using our mathematical model for strained bal-
loon shapes, we find asymmetric equilibria that bear
a striking resemblance to those observed in ground
inflation tests of Endeavour. One difficult aspect of
modeling such configurations is dealing with the prob-
lem of self-contact. By including certain linear con-
straints in our variational formulation of the problem,
we are able to represent balloon configurations with
significant regions of self-contact in a way that mimics
how a real balloon stores excess material. We apply
our finite element model for strained balloon shapes to
Endeavour-like pumpkin balloons and compute a num-
ber of asymmetric equilibrium balloon configurations.
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1 Background

In the late 1980’s in the race for the first balloon cir-
cumnavigation of the globe, Julian Nott proposed a de-
sign that was radically different from his competitors.
Nott’s design was a constant bulge angle pumpkin bal-
loon called the Endeavour. The constant bulge angle
pumpkin is described in Section 2. Endeavour was a
high pressure balloon that was originally designed to
have 64 gores. The Endeavour did not attain its in-
tended cyclically symmetric equilibrium configuration
in its first inflation test on the ground. In fact, when
FEndeavour was pressurized, it assumed the shape seen
in Figure 1(a). Nott and his team surmised that the
problem was related to excess material. When two
gores were removed, the asymmetry was less severe,
but still remained (see Figures 1(b)-(c)). Only when
four gores were removed did it attain an equilibrium
configuration that at least to the eye appeared to be
cyclically symmetric. See Figure 1(d). While reduc-
ing the number of gores to 60 enabled the balloon to
deploy, it is not clear how this balloon would behave
over time under normal loading conditions. Neverthe-
less, the Endeavour was later flown at reduced capacity
though not in a circumnavigation (see Figure 2).

Even though it was limited to hydrostatic pressure
only, Calledine [8] devised a model that attempted to
explain the behavior of the fully inflated Endeavour
in terms of stability. Being limited by computational
capabilities of the time, Calledine cleverly observed
that in his semi-empirical approach he could ignore
the variation in the strain energy contribution to the
corresponding variation of the total potential energy.
This allowed him to approximate the principle of min-
imum total potential energy by a maximum volume



rule. Calledine’s approximation, even though formu-
lated on the basis of a simple proxy-problem seems
to be remarkably accurate. When we compare our
stability results on constant bulge angle pumpkin bal-
loons using our full model with the stability results of
Calledine [8], we find very good agreement, support-
ing Calledine’s rationale to ignore strain energy con-
tributions in the analysis of Endeavour-like balloons.
See Section 5. The authors in [10] considered constant
bulge radius pumpkin balloons. Similarly to Calledine,
they only considered the hydrostatic pressure, ignor-
ing structural weight and strain energy distributions to
the total potential energy. While ignoring the strain
energy contribution in the analyses of the balloons con-
sidered in [8] and [10] was an enabling assumption that
provided good first order estimates, this assumption
would be grossly in error if the structural materials
were undergoing large elastic strains as in balloons
made of elastomeric materials. Furthermore, this sim-
plification is also inappropriate when the materials un-
dergo significant visco-elastic deformation over the ser-
vice life of the balloon, as it will be the case in NASA’s
Ultra Long Duration Balloon (ULDB) currently un-
der development. NASA’s current design scheme for
ULDB uses a tri-laminate polyethylene film, which at
the maximum internal pressure and temperature the
experiences during over-flight periods over hot deserts
in the southern hemisphere will accumulate significant
creep. Clearly, stability analyses need to be performed
on the deformed equilibrium state. In the case of visco-
elastic materials this may mean that several equilib-
rium states need to be examined unless a single equi-
librium state can be clearly defined as the most vul-
nerable to instability.

Analyses are only performed on idealized models.
Actual systems are only approximated by such mod-
els. Fabrication imperfections and variability in mate-
rial properties are generally random, so that including
them in analytical models is impractical. It is therefore
necessary that actual designs fall well inside the stable
regime of the feasible design space for a given design
class with sufficient margins to the stability threshold.
This issue will require analytical study. Obviously,
trial and error by designing, fabricating and testing
is impractical.

The constant bulge angle assumption in a pump-
kin balloon design is a geometrically imposed condi-
tion and is not based on global equilibrium principles.
It merely facilitates generating a three-dimensional
pumpkin-like shape. While some of these designs turn
out to be stable, most are unstable. The constant
bulge radius pumpkin balloon model presented in [3]
is based on an approximation to equilibrium that in-
cludes weight and pressure variation. Nevertheless, it
can lead as well to and unstable designs under cer-
tain circumstances. See Section 5 and the results in

[1] for more on the stability of constant bulge radius
pumpkin balloons. Moreover, since the balloon film is
visco-elastic, a balloon that is stable at the start of its
mission could through visco-elastic deformation over
time migrate into a configuration that is unstable. See
[1] and [2] for further discussions on the stability of
pumpkin balloons.

In Section 2, we describe the types of pumpkin bal-
loons that are analyzed in this paper. In Section 3,
we outline our finite element model for strained bal-
loons. In Section 4, we define the term stability as
used in our work. In Section 5, we present numerical
studies on the stability of pumpkin balloon designs. In
Section 6, we calculate a few asymmetric stable equi-
librium shapes related to the Endeavour design. In
Section 7, we present concluding remarks.

2 Pumpkin Balloons

In this section, we define pumpkin balloons that are
analyzed in this paper. We begin with a description of
a constant bulge radius pumpkin that is parametrized
as a tubular surface. Next, we consider two pump-
kin designs, the Euler-elastica constant bulge radius
pumpkin and the Euler-elastica constant bulge angle
pumpkin balloon. Endeavour was based on the Euler-
elastica constant bulge angle design.

Constant bulge radius pumpkin. Let Y(s) =
R(s)i+ Z(s)k € R? be a planar curve that we call the
generator of the pumpkin gore. Apriori T is unknown,
and must be derived from equilibrium conditions. A
detailed exposition of the shape finding equations for
a pumpkin balloon, including the determination of Y,
is presented in [3].

The generator is parameterized by arc length s, i.e.,
|R'(s)[?+|Z'(s)|* = 1 where “'” denotes differentiation
with respect to s. Let t denote the unit tangent and
b =t x j the inward unit normal of Y; § = 6(s) is the
angle between t and k, and

sin 6i + cos 0k,
— cos 0i + sin k.

The set {b, t,j} gives a right hand curvilinear basis
for R®. The curvature of Y is k. We define a tubular
surface in the following manner. Let

Y (s) +rp (jsinv — b(s) cosv),
—m<v<m 0<s<Lg, 1)

x(s,v) =

z(s,v) = z(s,v) -1, and y(s,v) = z(s,v) - j



We denote partial differentiation using subscript no-
tation, e.g., s = Ox/0s. By direct calculation, we
have

zs(s,v) (1 + rpr(s) cosv)t(s),
z,(s,v) = rp(b(s)sinv+ jcosv),
zsxx, = rp(l+rpk(s)cosv)(b(s)cosv—jsinv).

A unit vector normal to the tubular surface is
N(s,v) = s X Ty /|Ts X T,| = b(s) cosv — jsinwv,

and the triple {x;, z,, N} gives a right hand basis for
IR3. The principal curvatures of the tubular surface

are
K COSv

1 )
1+ TBK COSV (2)

Il

K1(s,v)
ka(s,v) = —
A unit tangent to the curve s — x(s,v) is
a1(5,0) = @, (5, ) /|5 (2,v)| = £(s),
and a unit tangent to the curve v — x(s,v) is
as(s,v) = 2y (s,v) /|2y (s,v)| = b(s) sinv + jcosw,

where t and b are as previously defined.

0
722 b(s) cosv — jsinv = N. Arc length in the tubu-

Note,

lar surface along a curve parallel to the generator
s = x(s,v) is 8, where d5 = (1 + rpx(s) cosv)ds.

A pumpkin gore will be a subset of a tubular sur-
face. We assume that the pumpkin gore is situated
symmetrically with respect to the xz plane and in-
terior to the wedge defined by the half-planes y =
+ tan(m/ng)z with > 0. We will refer to rp as the
bulge radius of the pumpkin gore. The curve traced by
v = Y(s) + rp(jsinv — b(s) cosv) is a circle lying in
the plane with normal t(s). To find the length of the
segment of the circle that forms a circumferential arc
in the pumpkin gore, we need to find the values of v
where this arc intersects the planes y = + tan(w/n,)z.
For fixed s and v > 0, we find that v must satisfy
y(s,v) = tan(m/ny) z(s,v). This leads us to the equa-
tion

A(s) + B(s) cosv + C'sinv = 0, (3)
where
A(s) = —R(s)tan(r/n,),
B(s) = -—rpcosf(s)tan(m/ng),
Cc = rB.

Solving Eq. (3) for v, we denote the solution by
UB(S) = UB(S7 Ng,TB, R(S), 0(3))

In this paper, vg(s) is called the bulge angle of the
constant bulge radius pumpkin balloon. The param-
eter dependence as well as the dependence on s will

be clear from context and so we write vg(s) for con-
venience. By symmetry, the solution corresponding to
the plane y = —tan(w/ny)x is v = —vp(s). We define
the theoretical three-dimensional pumpkin gore G to
be

Gr ={(z,y,2) = z(s,v) | [v| <vB(s), 0 <s < Lg}.

A complete shape S has cyclic symmetry and is made
up of n, copies of Gr. Note that the length of the cen-
terline of Gp is L, = fOLd(l +rpk(s))ds and the length
of a tendon is L; = fOLd(l +rpk(s) cos(vp(s))ds. Cor-
responding to G C IR® is the lay-flat configuration
Gr C IR? shown in Figure 3. The respective center-
lines of Gr and GF are isometric. The length of a rib
in the spine of Gr is 2rpvp(s) and this is the same as
the length of a corresponding segment orthogonal to
the centerline of Gg. It follows that the correspond-
ing edge of the lay-flat pattern G is longer than the
tendon length L;.

Pumpkins based on the Euler-elastica. If
we ignore the film weight density and tendon weight
density, assume the differential pressure is constant,
and assume zero circumferential stress in the natural
shape model, we find that T can be related to the
FEuler-elastica curve, i.e.,

0" +2psinf =0 (4)

where g = mpo /Ty, po is the constant differential pres-
sure, and Tj is the total meridional tension (see [3]).
In this case, we find R(f) = o 'sin (37 —6). This
connection was first pointed out by Smalley in his dis-
cussion of the e-balloon [14]. Z(§) can be found using
elliptic functions (see [10]) or by directly integrating
Z'(s) = cosf. The actual length of the generating
curve is determined by Archimedes Principle so that
the lift generated by the enclosed gas is equal to the
weight of the balloon system.

If we assume that the tendon satisfies an equation
of the form (4), then we are led to a constant bulge
radius pumpkin balloon that we refer to as the Fuler-
elastica constant bulge radius (EECBR) pumpkin. The
EECBR is symmetric about its equator, and is in gen-
eral, slightly taller and slightly wider than the more
general constant bulge radius pumpkin balloon that
was defined at the beginning of this section. Once Gg
is determined, a corresponding lay-flat configuration
G is determined as described in the previous section.

Another pumpkin model involving the Euler-
elastica is called the Euler-elastica constant bulge angle
(EECBA) pumpkin balloon. In the EECBA pumpkin,
one assumes, as we did in the EECBR case, that the
tendons follow an Fuler-elastica curve. However, the
region between adjacent tendons is spanned by circular



arcs of constant bulge angle. Eqgs. (1)-(2) do not apply
to EECBA pumpkin balloons. We will denote the con-
stant bulge angle in an EECBA balloon by vg, and the
varying bulge angle in an EECBR balloon by vg(s).
From context, it will be clear when vp is constant and
when it depends on s. Thus, if we compare a constant
bulge radius pumpkin design with a constant bulge an-
gle pumpkin design, we find the constant bulge angle
pumpkin design leads to a gore-width that has signifi-
cantly more material away from the equator and par-
ticularly close to the poles (end-plates). See Figure 4
for a comparison of the EECBA and EECBR lay-flat
patterns. The EECBA and EECBR balloons in Fig-
ure 4 were designed to lift the same payload. Due to
the way in which the respective volumes of the EECBA
and EECBR balloons are distributed, the EECBR gore
is a bit wider at the equator. In any case, the material
distribution in the EECBA pumpkin is problematic,
and as a consequence EECBA pumpkin balloons are
more prone to be unstable. In the following, we will
be discussing only EECBA and EECBR balloons.

3 Finite element model

In this section, we outline the problem of determining
the equilibrium shape of a strained balloon. Our model
is applicable to any of the pumpkin balloons described
in Section 2. We refer the reader to [4] and [5] for a
more detailed exposition of our finite element model.
We will assume that a balloon is situated so that the
center of the nadir fitting is located at the origin of
a Cartesian coordinate system. The nadir fitting is
fixed, and the apex fitting is free to slide up and down
the z-axis. The nadir and apex fittings are assumed
to be rigid.

The reference configuration Q C IR? for a complete
balloon S C R is

Q=UG;

where G; is isometric to Gr and G is determined by
the particular design choice (e.g., Euler-elastica con-
stant bulge angle pumpkin or FEuler-elastica constant
bulge radius pumpkin). In this case,

S=U2S;

where S; is a deformation of G;. An equilibrium
configuration of a fundamental gore is denoted by
Sr. For convenience, we assume that the fundamen-
tal gore Sp is situated symmetrically about the y =0
plane, and contained within the wedge-shaped region
ly| < (tanm/ng)z, z > 0, and z > 0. If S is a cyclically
symmetric balloon shape with ng-gores, then S can be
generated from ng copies of Sg, where the correspond-
ing reference configuration is Gp. G is assumed to

be situated with the bottom of G centered at the
origin of a (u,v) coordinate system. See Figure 3.
and § are discretized by constant strain plane stress
triangular finite elements. Adjacent gores are joined
at their common edge. Tendons are located along the
edges where adjacent gores are joined.

We will describe our model as it applies to a com-
plete balloon. However, at times we will impose cer-
tain symmetry conditions, which will reduce the to-
tal number of degrees of freedom in our model. For
our stability studies, we typically compute a cyclically
symmetric strained equilibrium shape for a fully in-
flated balloon. Stability of that equilibrium configura-
tion is calculated for the full balloon. For asymmetric
shapes, we use the same model but adjust the bound-
ary conditions appropriately.

The total potential energy £ of a strained inflated
balloon configuration S is the sum of six terms,

E(S)=Ep+ &+ &+ Eiop + S; + 5§ (5)

where
£ = / P(z)dv
\%
= —/(%sz—}—Poz)k-nda (6)
S
& = /wfsz, (1)
S
Ng L,
& = Z/ o;i(S) -k wy dS, (8)
i=1 70
gtop = Wtop=top, (9)
g Ly
;o= 3 [ witeas. (10)
i=1 0
S; = /W}*dA, (11)
Q

Ep is the hydrostatic pressure potential due to the lift-
ing gas, & is the gravitational potential energy of the
film, &, is the gravitational potential energy of the load
tendons, &;p is the gravitational potential energy of
the apex fitting, S} is the total tendon strain energy,
and S; is the total film strain energy. For the purpose
of the analytical studies in this paper, we assume the
differential pressure is in the form —P(z) = bz + P
where Py is known. V C IR? is the region enclosed
by S and dV is volume measure in R®. We follow
the convention that —P(z) > 0 means that the inter-
nal pressure is greater than the external pressure. Py
is the differential pressure at the base of the balloon
where z = 0, b is the specific buoyancy of the lifting
gas, n is the outward unit normal, and do is surface
area measure in the strained balloon surface, wy is the
film weight per unit area, w; is the tendon weight per
unit length, a; € IR? is a parametrization of a de-
formed tendon with reference configuration I';, wiep



is the weight of the apex fitting, z:,p is the height of
Wiop- The strain in Tendon-i is €;. Wy*(e;) is the re-
laxed strain energy density in Tendon-i. W} is the re-
laxed film strain energy density. Relaxation of the film
strain energy density is a way of modeling wrinkling
in the balloon film and has been used in the analysis
of pumpkin shaped balloons in [4] and [5].

To determine a strained equilibrium balloon shape,
we solve the following:

Problem *
(12)

min £(S)

sec
where C denotes the class of feasible balloon shapes.
Boundary conditions or symmetry conditions are built
into C. In (12), the continuum problem of finding an
equilibrium configuration of the balloon is cast as an
optimization problem. This approach is particularly
well-suited for the analysis of compliant structures.
Problem x is solved using Surface Evolver, an inter-
active software package for the study of curves and
surfaces shaped by energy minimization that was de-
veloped by the second author [7]. Surface Evolver was
used for the analysis presented in [1] and [2]

Remark Self-contact of the balloon film is handled
by two mechanisms. First, the vertical planes that
bound the sides of the balloon segment are symme-
try planes of clefts, and these planes are sticky, in the
sense that any surface node that hits one of the planes
is thenceforth confined to the plane and cannot pass
beyond it. Second, clefts in between the end-planes are
handled by checking for each node at the bottom of a
groove (originally the tendon nodes) whether the two
short horizontal edges emanating from the node have
passed each other. If they have, then the two edges are
merged to form one edge, and the merged endpoint is
now deemed to be at the bottom of a groove. The
second mechanism does not permit opposing films to
slide on each other, so it may introduce some extra
strain, but it doesn’t come into play until the pertur-
bations are well-developed, and does not seem to have
hindered their development.

4 Stability

The degrees of freedom (DOF) in a faceted balloon
shape S are the z,y, 2-coordinates of the nodes of
triangular facets 7 € S that are free to move. Let
x = (21,%2,--.,ZN) be a list of the DOF. Let &(x)
be the total energy of a faceted balloon configuration

S =S(z).

Table 1: Input parameters for pumpkin shape finding.

Description Value
Tendon weight density (N/m) 0.094
Film weight density (N/m?) 0.344

Constant differential pressure (Pa) 200

The gradient of £ evaluated at x is the 1 x N vector

[ﬁ],szz,...,N.

Dé(x) = B
i

The Hessian of £ evaluated at « is the N x N matrix,

%€
81‘,’8.’17]'

Although N can be large for a full balloon, Hg is
sparse. The lowest eigenvalue of Hg was calculated
by inverse iteration. The matrix Hg — tI was sparse
Cholesky factored, with the shift value ¢ chosen to
guarantee positive definiteness. The factored matrix
was then used to iteratively solve (Hg —tI)@p i1 = T,
starting with a random vector xg, until the iteration
converged, almost certainly producing the eigenvector
of the lowest eigenvalue. See [11, Sec. 11.7, p. 493].
We are led to the following definition of stability.

He(x) = D*E(x) = [ ],i,j:l,...,N. (13)

Definition 4.1 Let S = S(x) be a solution of Prob-
lem x. We say S is stable if all the eigenvalues of
Hg(x) are positive. We say S is unstable if at least
one eigenvalue of Hg(x) is negative. We say that the
stability of S is indeterminate if the lowest eigenvalue
of Hg(x) is zero.

In principle, the fully inflated shape should be cycli-
cally symmetric so that the loads are distributed uni-
formly over the entire balloon. If we assume apriori
that the strained balloon shape is cyclically symmet-
ric, Problem x can be solved for a half-gore, and Sg
is determined. S is indeed a stable local equilibrium
within the class of cyclically symmetric shapes. How-
ever, within the class of complete balloons (call it C),
the complete balloon generated by Sg could turn out
to be unstable as was demonstrated in [2].

5 Parametric studies

In the following section, we will introduce two sets of
parameters denoted by p and q. Geometry, weight-
related, and loading parameters are the elements of p,



while the elements of q are material properties. The
tendon slackness parameter ¢, is treated as a material
property and is a component of q.

The elements of p include parameters that are input
into the shape finding process for a EECBR pumpkin
balloon: ng, number of gores; rp bulge radius, etc. In
the case of an EECBA pumpkin, the bulge angle vp
is used in place of rg as a parameter. Endeavour was
an Euler-elastica constant bulge angle pumpkin bal-
loon. Complete design specifications for Endeavour
were not available to us, so we selected materials that
are commonly used in the fabrication of NASA ultra-
long duration balloons. For our demonstrations in this
paper, we generated EECBA designs and EECBR de-
signs. For comparisons with the actual Endeavour bal-
loon, we found an Euler-elastica with rg = 0.979 m
and ny = 64 leads to a bulge angle at the equator
of vg = 60°. FEndeavour utilized a bulge angle of
vp = 60°. Nominal parameter values for p are con-
tained in Table 1. While we assumed Py = 200 Pa in
our studies, Endeavour with its stronger balloon fabric
and Kevlar tapes was capable of containing differential
pressures on the order of 20 mb.

Typically, material properties such as film modu-
lus and Poisson ratio do not enter directly into the
shape finding process. Once a set of values are as-
signed to p, the corresponding pumpkin gore shape
Gr(p) is found, and the lay-flat pattern Gg(p) is de-
termined along with other quantities such as the to-
tal system weight, volume, tendon length and seam
length of the lay-flat gore pattern, as outlined in Sec-
tion 2. The three-dimensional shape Gr(p) is dis-
cretized into a collection of triangular facets (call it
Gr(x;p)), and Gr(x; p) is used as the initial guess for
solving Problem * and determining the corresponding
strained equilibrium shape of the fundamental gore
Sr. Once Sp is determined, we then use the cyclic
symmetry of the balloon to generate a complete shape
S from ng copies of Sp. A cyclically symmetric com-
plete balloon generated from Gr will be denoted by
Sa(p)-

We are most interested in investigating the stability
of equilibrium configurations of pumpkin designs as a
function of (ng,rg) for EECBR pumpkins and (n,, vg)
for EECBA balloons. For this reason, we define the
following family of balloon designs,

g = {(Sa(p), 2(p)) | TB(1g) <TB <00}  (14)

where 20 < n, < 200, 7g(n) is the smallest possible
bulge radius for a design with n gores in class II4. For
EECBR pumpkin balloons, 7g(n) = max(R) sin(w/n).
For convenience, we will refer to a particular design in
IT4, by indicating the number of gores and the bulge
radius. For example, Q(n,,rp) withng = 64 and rp =
0.979 m refers to an EECBR pumpkin that is similar

Table 2: Material properties for case studies.

Description Value

Film Youngs modulus (MPa) 202
Film Poisson ratio 0.830

Tendon stiffness (kN) 650

in size to Endeavour.

IT}; denotes the class of EECBA balloon designs
My = {(Sa(p), 2p)) | 30° <wp < 90°}

where 20 < n, < 100. There was no need to go beyond
100 gores for the EECBA balloons since they were all
unstable for ny > 100. A lay-flat pattern in the family
IT), will be denoted by Q(ny,vg). It will be clear from
context what type of balloon design is being discussed.
Q(ng,vp) with (ng,v) = (64,60°) corresponds clos-
est to the Endeavour.

Once a design has been defined, then we can carry
out a stress analysis of that design for some loading
condition. For this analysis, we include the full set of
material properties, i.e., E¢, film Youngs modulus; v,
film Poisson ratio; K;, tendon stiffness; and ¢;, ten-
don slackness, etc.. The vector q includes parameters
that were not used directly in the shape finding pro-
cess. Nominal values for q are presented in Table 2.
Once p and q are specified, we can proceed to solv-
ing Problem x. Note, the shape determination process
and the stress analysis process are separate, and so
it is possible to use one value of a parameter in the
shape finding process, and another value in the solu-
tion of Problem %. The shape finding process defines
the lay-flat pattern Q(p) and provides a three dimen-
sional shape Sy(p) that is used for initializing the so-
lution process for Problem *. The strained equilib-
rium shape that is a solution of Problem x is denoted
S(p,q,Q(p)). After solving Problem x with a design
(Sa,2) € Iy or (S4,9) € I}, we will then classify the
resulting strained equilibrium configuration according
to Definition 4.1.

Remarks

1. We carried out analyses using a complete balloon,
and compared these to analyzes carried out using
one-half a balloon, i.e., assuming a balloon has
one plane of reflectional symmetry. We found
that there were roughly twice as many unstable
modes for the complete balloon than there were
for one-half a balloon. However, after classify-



ing the corresponding designs as stable or unsta-
ble, we found both approaches led to roughly the
same stability results. This is to be expected
due to symmetry breaking of two-dimensional
eigenspaces of the full balloon. Thus, we would
arrive at roughly the same unstable region if ei-
ther a full or half balloon were analyzed. To re-
duce computation time, we analyzed one-half a
balloon in our stability studies.

2. We note that stability of an equilibrium config-
uration is investigated at a strained equilibrium
state. In general, a strained equilibrium shape is
only approximately a cyclically symmetric con-
stant bulge radius surface. Other strained equi-
librium states (due to pressure variations or visco-
elastic straining over time) depart from the cycli-
cally symmetric constant bulge radius configura-
tion even more. In the case of a visco-elastic film,
that departure can be significant. As shown in [2]
by way of looking at different classes of balloon
designs, this shape change can have profound ef-
fect on stability.

Previous analytical work by the authors showed
that for n, sufficiently small, a minimum bulge radius
design that approaches the lower bound is robustly sta-
ble. This has been demonstrated in the exploratory
work of [13] for 48 gore test vehicles and is demon-
strated analytically in [2] for even larger n,. Calledine
(see [8]) showed that for constant bulge shape designs,
increasing the number of gores increases vulnerability
to instability of the cyclically symmetric configuration.

We analyzed EECBA balloon designs in II;, for
nominal parameter values. The results are shown in
Figure 5(a). In Figure 5, if a design Q(ngy,vp) is
unstable, then the point with coordinates (ngy,vg) is
covered with a disk. A design that is stable is cov-
ered with a circle. We see from Figure 5(a) that an
EECBA pumpkin balloon with Endeavour-like param-
eters clearly lies in the unstable region. For compari-
son purposes, we considered designs in which the gore
pattern is widened by 2 cm. The stable and unstable
designs are indicated in Figure 5(b). We find that the
number of unstable designs increases when the gore
width is increased. We compared our stability results
obtained using our full model (Eqn. (5)) with Calle-
dine’s model that only includes hydrostatic pressure.
In Figure 5, we plot two stability curves that are de-
rived by Calledine, vg = (34/n)2/5 (a curve appropri-
ate for a 64 gore design, see [8, Eq. (26)]) and

vp = (47/n)*/® (15)

(a curve that is appropriate for a 60 gore design, see [8,
Eq. (27)]). From Figure 6(a), we see that our results
on EECBA balloons are in very close agreement with
Calledine, supporting his assertion that for constant

bulge angle designs and small strains it is appropri-
ate to ignore the film strain energy and load tendon
strain energy in a stability analysis of the fully inflated
EECBA balloon. Calledine’s model does not do so well
for the constant bulge radius pumpkins (see the next
paragraph). Furthermore, large strains whether elas-
tic or visco-elastic limit the usefulness of Calledine’s
approach.

We generated I, a class of constant bulge radius
pumpkin balloons of comparable size to those in II/;,
and determined the stability of these designs. We
found that all designs in II; were stable. See Fig-
ure 6(a). When we increased the gore width by 1 cm,
we found that for 142 < ny < 200 and rp < 0.4 m,
some equilibrium configurations were found to be un-
stable. See Figure 6(c). Note, that even with a 1 cm
perturbation, the constant bulge radius pumpkin bal-
loons are stable for ny, < 142. A constant bulge radius
pumpkin balloon similar in size to the Endeavour falls
well inside the stable region. In Figure 6(a) and (c),
we present our results in terms of (ng,rp). For each
design in 11, we calculated the maximum chord ratio,

2
A = max 77.3.1}3 (5) . (16)
0<s<Lq 2rp sinvp(s)

where we see that 1 < A < 17, The maximum value
of A is taken at the equator, and vg(s) decreases as
one nears the end plates. Stability results are pre-
sented in terms of (ng, A) in Figures 6(b) and (d). In
[15], the authors observed relation (16), substituted
vg(n) = (47/n)2/ ® into it, and then asserted designs
that fell above the curve (n, (47/n)2/5 / sin (47/n)2/5)
were unstable, and those that fell below this curve
were stable (see [15, Fig. 6]). This curve is repro-
duced in Figures 6(b) and 6(d) which clearly indicates
that (n, (47/n)%/® /sin (47/n)*/®) is not a reliable in-
dicator of instability for EECBR balloons. See [1] and
[2] for more on comparisons of analytical predictions
with flight and experimental data.

6 Asymmetric equilibria

If a cyclically symmetric shape is unstable, an al-
ternate equilibrium configuration must exist. We
used Surface Evolver to explore the set of alternative
equilibria. We are motivated by the photographs of
Endeavour and the work of [13] to seek shapes with a
certain wave number k. The wave number is the num-
ber of waves in a complete balloon and in this case, we
say the shape has k-fold symmetry. For example, in
Figure 1(a)-(c), it appears that Endeavour assumed a
shape with k£ = 1. For our case studies, we assumed a
design with ny = 64,vp = 75°, and rp = 0.848 m at



Table 3: Total energy of Endeavour-like balloons with
p gores per half-section; S - cyclically symmetric; r =

64 (mod 2p) is the number of gores per gap.

p r E v Symmetry
kJ] [’
1/2 0 -6,261 15,631 S
4 0 -6,261 15631 8-fold/S
5 4 -6,263 15,650 -
6 4 -6,270 15,680 -
7 8 -6,279 15,705 -
8 0 -6,285 15,719 4-fold
9 10 -6,288 15,726 -
10 4 -6,287 15,721 -
11 2 6,284 15,713 -

the equator. To begin our studies, we computed equi-
librium configurations for collections of p gores with
p=1,4,5,...,11 (see Table 3). If 2p does not divide
64, there is a gap of r = 64 (mod 2p) gores, since the
collection of p gores does not generate a closed shape.
Note, when p = %,4, or 8, we find the collection of p
gores generates a complete balloon. An evolved equi-
librium fundamental section with p = 4 is presented
in Figure 7. The complete balloon is presented in Fig-
ure 8. OQur approach to handling self-contact works
very well. As Figure 7 shows, our asymmetric shapes
have no “internal tubes” or regions of self-intersection
inside the balloon.

For high values of p, the gore structure becomes in-
visible and it is possible to compute shapes with wave
numbers that are not necessarily divisors of 64. Since
it is possible for some tendons that lie in a symme-
try plane (where excess film is stored) to become slack
or nearly slack, shapes with a variety of wave num-
bers are not unexpected. For example, to compute
a shape with £k = 3, we use the p = 10 solution in
Table 3 to generate an initial configuration. In or-
der to insure that the resulting shape has no gaps, we
must work with a minimum of 32 gores. An equilib-
rium configuration with three-fold symmetry is shown
in Figure 9. In this case, we find £ = —6,285 kJ and
V =15,713 m3.

Even though the shapes with four-fold and three-
fold symmetry have lower energy than the cyclically

symmetric shape in Table 3, we do not claim that the
balloon will assume either of these configurations or
even the one of lowest energy. Shapes with three-fold
and four-fold symmetry are but two of the possible al-
ternative states that are stable local minima. What we
can say is that when the cyclically symmetric shape is
unstable, it would be impossible for it to be observed.

Remarks

1. For high values of p, we found that the shapes all
developed higher wave number instabilities even-
tually on top of the half-wave mode that was be-
ing studied. Typically, the magnitude of the half-
wave mode got relatively large before the higher
wave mode appeared, and didn’t evolve back to
the pure higher-wave-number mode. This could
have been an artifact of the anti-penetration
scheme that was implemented.

2. It is interesting to note that when p = 4, the
evolved collection of 4 gores generates a balloon
shape with eight-fold symmetry that is identical
to the cyclically symmetric shape found in the
case p = %.

3. Even though Endeavour was inflated at a pressure
much higher than Py = 200 and used different
materials, there is a striking similarity between
the images in Figures 8-9 and Figures 1(b)-(c).

7 Conclusions

If a fully inflated cyclically symmetric balloon con-
figuration is unstable, then it must assume an alter-
nate stable asymmetric configuration. We explored
this phenomena using an Euler-elastica constant bulge
angle pumpkin balloon similar in size to Julian Nott’s
Endeavour balloon. By introducing linear constraints
to handle the problem of self-contact, we were able to
solve a formulation of the balloon problem and calcu-
late asymmetric equilibria, including those with four-
fold and three-fold symmetry. Our computed shapes
bear a striking resemblance to the asymmetric shapes
that have been observed in ground inflation tests of
small balloons intentionally fabricated with excess ma-
terial (see [13]) and some of the Endeavour configura-
tions (see Figure 1). In addition, we carried out a
stability analysis of a class of Euler-elastica constant
bulge angle pumpkin balloons and a comparable class
of Euler-elastica constant bulge radius pumpkin bal-
loons. We found that an Endeavour-like (EECBA) de-
sign was much more likely to have an unstable fully in-
flated cyclically symmetric equilibrium than an Euler-
elastica constant bulge radius pumpkin balloon of com-



parable size. Our stability results on the EECBA
pumpkin balloons studies are in close agreement with
Calledine’s 1988 stability work. While reducing the
number of gores from 64 to 60 was a quick fix for
the obvious Endeavour deployment difficulties, similar,
but much more subtle difficulties, are yet to be resolved
for the deployment of large NASA ultra-long-duration
pumpkin balloons. While it is clear, that it would be
impossible for a large pumpkin balloon that is based
on an unstable design to achieve a cyclically symmetric
configuration at float, it has yet to be demonstrated
that a stable design will deploy with any consistency.
Moreover, even if such a balloon were to deploy, other
hurdles due to the mid-latitude long-duration aspects
of flight will need to be overcome. Uncertainties that
arise with our predictions come from the fact that the
film for the gas envelope for NASA’s ULDB is non-
linearly visco-elastic and that cost-effective fabrication
introduces significant structural imperfections. The
former is difficult to include accurately in the analy-
sis. The latter is impossible to accurately account for
in a deterministic way. Both of these aspects, however,
can be treated satisfactorily using the tools and tech-
niques utilized in this paper. What is needed is a series
of analyses that bound the problem. Both aspects,
visco-elasticity and the effect of structural imperfec-
tions, require exploratory sensitivity analysis prior to
settling on a design class for which safe design guid-
ance can be provided.

Acknowledgments The authors would like the
thank Julian Nott for providing photographs of En-
deavour.

References

[1] F. Baginski, K. Brakke, and W. Schur, Cleft for-
mation in large pumpkin balloons, to appear in Ad-
vances in Space Research.

[2] F. Baginski, K. Brakke, and W. Schur, Stabil-
ity, Clefting and Other Issues Related to Unde-
sired Equilibria in Large Pumpkin Balloons, ATAA-
2005-1803, 6th ATAA Gossamer Spacecraft Forum,
April 2005.

[3] F. Baginski, “On the design and analysis of in-
flated membranes: natural and pumpkin shaped
balloons,” SIAM Journal on Applied Mathemat-
ics, 65 No. 3 (2005), 838-857.

[4] F. Baginski and W. Schur, “Undesired equilibria
of self-deploying pneumatic envelopes,” to appear
in the ATAA Journal of Aircraft.

[5] F. Baginski and W. Schur, “Structural Analysis of
Pneumatic Envelopes: A Variational Formulation
and Optimization-Based Solution Process,” AIAA
J., Vol. 41, No. 2, February 2003, 304-311.

[6] F. Baginski and W. Collier, “Modeling the shapes
of constrained partially inflated high altitude bal-

loons,” ATAA J., Vol. 39, No. 9, September 2001,
pp. 1662-1672. Errata: AIAA J., Vol. 40, No. 9,
September 2002, pp. 1253.

[7] K. Brakke, The Surface Evolver, Experimental
Mathematics 1:2 (1992) 141-165.

[8] C. R. Calledine, ”Stability of the Endeavour Bal-
loon” in Buckling of Structures, I. Elishakoff et al.,
eds., Elsevier Science Publishers, (1988) 133-149.

[9] W. G. Collier, “ Estimating stresses in a partially
inflated high altitude balloon using a relaxed en-
ergy,” Quarterly of Applied Mathematics, Vol. 61
No. 1 (2003) 17-40.

[10] A. Lennon and Pellegrino, S. (2000) ”Stabil-
ity of Lobed Inflatable Structures,” AIAA-2000-
1728, 41st ATAA/ASME/ASCE/AHS/ASC Struc-
tural Dynamics, and Materials Conference and Ex-
hibit, Atlanta, GA, April 2000.

[11] W. Press et al, Numerical Recipes in C, 2nd ed.,
Cambridge University Press, 1992.

[12] A. C. Pipkin, “Relaxed energy densities for large
deformations of membranes,” IMA Journal of Ap-
plied Mathematics, Vol. 52, 1994, pp. 297-308.

[13] W. W. Schur , and C. H. Jenkins, ”Deploy-
ment destiny, stable equilibria, and the impli-
cations for gossamer design”, ATAA-2002-1205,
43nd ATAA/ASME/ ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference
and Exhibit, Denver, CO, April 2002.

[14] Justin H. Smalley, ”Development of the e-
Balloon”, National Center for Atmospheric Re-

search, AFCRL-70-0543, Boulder Colorado, June
1970.

[15] M. S. Smith and E. L. Rainwater, Optimum de-
signs for super-pressure balloons, Adv. Space Res.,
33 (2004) 1688-1693.



Figure 1: Inflation tests involving Endeavour.

(a) 64 Gores (b) Two gores removed

(c) Two gores removed
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Figure 2: Endeavour flight at reduced capacity.

=

Figure 3: Discretization of pumpkin gore configurations: (a) G € IR? - flat unstrained gore panel with
load tendon detached; 0 < v < L, where L, is the length of the centerline; L; is the tendon length.
(b) Gr € IR? - theoretical pumpkin gore as determined by shape finding process (centerlines of Gy and

Gr are identical in length); (c) Sp € IR? - deformed pumpkin gore.

()

(b)

ds

Tendon

Centerline
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Figure 4: Euler-elastica lay-flat (dashed edges, rg = 0.9) versus Endeavour lay-flat (solid, vg = 75 deg)

figure is not true to scale.

Endeavour-like pattern has more material in the mid-latitudes. In order to highlight differences, the
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Figure 5: Stability plots for Euler-elastica constant bulge angle balloons: (a) Case 1: Nominal gore-width;
(b) Case 2: Gore half-width increased by 1 cm. Calledine stability curves n < 34/v%* and n < 47/v3/* are
shown. With a half-gore-width perturbation of 1 cm, the 60 gore alternate Endeavour design is still on the

border of instability. BBS is stability based on Definition 4.1.
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Figure 6: Stability plots for Euler-elastica constant bulge radius balloons: (a) Nominal gore-width, (ng4,rg)-

family, all feasible designs are stable; (b) Nominal gore-width, (ng, A)-family, all feasible designs are stable;

¢) Gore width increased by 1 cm, (n,,rp)-family; (d) Gore width increased by 1 cm, (n,, A)-family.
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Figure 7: Fundamental half-section of an equi-
librium configuration with four-fold symmetry (8

gores, one eighth of a complete balloon). Com-

plete balloon shown in Figure 8.

Figure 9: Equilibrium configuration with three-

fold symmetry.
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