IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-4, NO. 3, MAY 1982

Martin D. Levine ($°59-M’66-SM’74) was born
in Montreal, P.Q., Canada, on March 30, 1938.
He received the B.Eng. and M.Eng. degrees in
electrical engineering in 1960 and 1963, respec-
tively, from McGill University, Montreal, P.Q.,
Canada, and the Ph.D. degree in electrical en-
gineering in 1965 from the Imperial College of
Science and Technology, University of London,
London, England.

He is currently a Professor Electrical Engi-
neering in the Department of Electrical Engi-
neering at McGill University. From 1972 to 1973 he was a member of
Technical Staff at the Image Processing Laboratory of the Jet Propul-
sion Laboratory, Pasadena, CA. During the 1979-1980 academic
session, he was a Visiting Professor in the Department of Computer
Science, Hebrew University, Jerusalem, Israel. His research interests
are computer vision, biomedical pattern recognition, and artificial
intelligence.

Dr. Levine is the Treasurer of the International Association for Pat-
tern Recognition and an Associate Editor of Computer Graphics and
Image Processing. He is also the General Chairman of the Seventh In-
ternational Conference on Pattern Recognition to be held in Montreal
during the summer of 1984. He is a member of the Order of Engineers

291

of Quebec, the Computer Society, the Pattern Recognition Society, and
the Association for Computing Machinery.

Steven W. Zucker (S’71-M’75) received the B.S.
degree in electrical engineering from Carnegie-
Mellon University, Pittsburgh, PA, in 1969, and
the M.S. and Ph.D. degrees in biomedical en-
gineering from Drexel University, Philadelphia,
PA, in 1972 and 1975, respectively.

From 1974 to 1976 he was a Research As-
sociate at the Computer Science Center, Univer-
sity of Maryland, College Park. He is currently
an Associate Professor in the Computer Vision
and Graphics Laboratory, Department of Elec-
trical Engineering, McGill University, Montreal, P.Q., Canada. His re-
search interests are in computer vision, human perception, and artificial
intelligence.

Dr. Zucker is a member of Sigma Xi and the Association for Comput-
ing Machinery.

Nt

Systematic Feature Extraction
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Abstract—A systematic feature extraction procedure is proposed. It
is based on successive extractions of features. At each stage a dimen-
sionality reduction is made and a new feature is extracted. A specific
example is given using the Gaussian minus-log-likelihood ratio as a basis
for the extracted features. This form has the advantage that if both
classes are Gaussianly distributed, only a single feature, the sufficient
statistic, is extracted. If the classes are not Gaussianly distributed,
additional features are extracted in an effort to improve the classifica-
tion performance. Two examples are presented to demonstrate the per-
formance of the procedure.

Index Terms—Gaussian classifier, nonlinear feature extraction, non-
linear mappings, quadratic feature extraction, quotient space determi-
nation, sequential feature extraction.

I. INTRODUCTION

EATURE extraction can be considered as a problem of
finding a mapping (linear or nonlinear) that maps an n-
dimensional measurement space down to an m-dimensional
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feature space without significantly increasing the degree of
overlap between different class distributions. The determina-
tion of the m-dimensional feature space can frequently be
viewed as a collection of m features. The manner in which
most feature extraction algorithms determine the m features
can be divided into two categories. The first approach is to
determine all of the m features simultaneously. Examples of
these are discriminant analysis [1] and feature extraction
using the Bhattacharyya distance [2] or divergence [3]. The
second approach can be found in Foley and Sammon [4].
Their procedure can be divided into steps as follows.

1) Extract a feature.

2) Map the data down to a lower dimensional space. This
space should not contain any information about class separa-
bility present in the preceding extracted feature.

3) In the lower dimensional space a feature is extracted and
tested for its contribution to classification performance. If
the extracted feature shows little chance of improving the
classification performance, the feature is discarded, and the
procedure is terminated. If the extracted feature shows the
potential to improve classification performance, the feature is
retained, and the procedure is iterated [go to step 2)].

Features were extracted in Foley and Sammon’s procedure
by simply projecting n-dimensional data down to one axis,
which was used as the feature. Thus, the form of the mapping
was
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where V is a constant column vector, X ; is the jth sample, and
w is a scalar. We define the form in (1) as linear feature ex-
traction.

We are stimulated by Foley and Sammon’s idea and won-
dered if an extension to quadratic features was possible. That
is, features of the form

2= XJUX;+ VIX;j+w (2)
where U is a square matrix.

Let us introduce as our quadratic feature for the two class
problem

1 _ 1
h(X;) =_2‘(X]“ M)T 2 (X - My) - E(Xj - My)T

B N
"2 (X,--M2)+51n—

=, 3)

where M; and Z; are the mean vector and covariance matrix of
class w; and [Z;l is the determinant of Z;. If the two distribu-
tions are Gaussian, /(X)) is a sufficient statistic for classifica-
tion. In addition, A(X) is a sufficient statistic for a wide class
of unimodal symmetric distributions.

Jones [5] proved (see the Appendix) that regardless of the
distributions for class w; and class cw,

E{h(X)|Xew,} <0 and E{h(X)| Xew,}>0. @)

This indicates that 2(X) may carry classification information
regardless of the distributions of class w; and class w,. This
property is particularly important, since the distributions in
the lower dimensional subspaces are not likely to be Gauss-
ianly distributed.

Based on the preceding it should be clear that the extension
to the quadratic 2(X) in (3) has definite advantages.

Section II is devoted to mathematical preliminaries. Section
IIT specifies a general version of the algorithm. This version
makes no assumptions about the functional form of the ex-
tracted features. In Section IV a detailed feature extraction
procedure is developed using 7(X) in (3) as a basis. Experi-
mental results are presented in Section V and a summary is
contained in Section VI.

II. MATHEMATICAL PRELIMINARIES

A partition P of a set S is a collection of disjoint subsets of S
whose union is S. A partition P corresponds to an equivalence
relation =, wherein two elements of S are related iff they are
in the same member subset of the partition. The members of
P are also called equivalence classes and P is also called the
quotient space of S by =, denoted P=S +%. The quotient

map q: S ~ P is defined by
Xeq(X) forall XeS. (5

If u is a measure on S and f© S - W is a function from S to
a set W, then there is an induced measure f,u on W defined by

fu@)=u(f™ (4) forall Aew. (6

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI4, NO. 3, MAY 1982

Theorem: If u; and u, are measures on S and - S — S is
such that f,u; =u, and f preserves equivalence classes (i.e.,

a(f(X)) = q (X)), then

q.lh1 =g
Proof: Let A be a subset of P. Then

q,u1(4) = 111 (g7 (4))

=m (T (@ Q)

=fuk1 (@7 (4))

=1 (g7 (4)

=q. k2 (A). (7
Q.ED.

IlI. THE FEATURE EXTRACTION ALGORITHM

The algorithm we propose for two class sequential general
feature extraction is as follows.

1) Select a model for the distribution of class w; and w,.
Let uy and p, be the probability measures in S that the
models require for classes w; and w,, respectively. If the
samples in fact are distributed according to our assumed
model, then y; and y, allow the computation of a sufficient
statistic in § for classification. If this is not the case, then suf-
ficiency of the statistic in S is not guaranteed. Regardless, this
statistic is used as the first extracted feature.

2) Find a partition P of S and a map f: S — S that preserves
P and satisfies f,u; = up. That is, we seek a mapping fand a
partition P so that the distributions of the two classes in P are
identical, if the samples are distributed according to our as-
sumed models with u; and u, .

3) Map the two classes to the quotient space P. Since
q.M1 = q.lp in P, a feature extracted in P cannot include any
classification information contained in the previously ex-
tracted feature (computed using y; and w,).

4) A feature is extracted in P. If the extracted feature pro-
vides a significant increase in classification performance, it is
retained and the algorithm is iterated. If this is not the case,
the extracted feature is discarded and the algorithm is termi-
nated.

It is important to understand that it is not required that the
assumed model in step 1) be correct. If it is, the algorithm ex-
tracts, as the first feature, a sufficient statistic. Subsequent
extracted features do not add any information, so the algo-
rithm terminates extracting the sufficient statistic as the only
feature. When the assumed model is incorrect, we expect
much of the classification information not contained in the
statistic to be mapped to the quotient space P. The algorithm
is then iterated using P as a basis.

IV. ApPPLICATION USING A GAUSSIAN STATISTIC

In this section we develop the algorithm of Section III using
a Gaussian model for the distributions. Suppose that w; and
w, are two sample distributions in R" (S from Section III)
with mean vectors M; and M, and covariance matrices Z; and
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2, for classes w; and w,, respectively, i.e., uy = {M;, Z},
U, = {M,, Z,}. Our first feature is the sufficient statistic used
for classifying two Gaussian distributions. One form of this
is the Gaussian-minus-log-likelihood ratio #(X) in (3). Since
this statistic is invariant under nonsingular linear transforma-
tions, we may assume without loss of generality that the sam-
ple space is linearly transformed so that Z; =1, where [ is the
identity matrix, and £, = A, where A is a diagonal matrix with
positive diagonal entries.

We now need to determine /© R™ = R” such that f, ity = ,.
This can be.accomplished by finding a linear transformation
AT such that

M, =AM, 8
and
A=ATIA. ©)

This is most easily achieved by initially introducing a transla-
tion

X=X+C (10)
where Cis chosen so that

M, =M, +C=AT(M, + C) =AM,
or

C=AT-IY'(M, - ATM,) (11

where ]l7I,~ is the mean vector of class w; prior to the transla-
tion. This translation satisfies (8). We shall choose 4 to be
the diagonal matrix,

A=A (12)

to satisfy (9). Henceforth, we assume (8) and (9) are satisfied,
so that fu; =My

The case where (11) has no solution (A - I is singular) is
discussed more fully later.

We now define a partition P and show that the transforma-
tion f(X) = ATX has the equivalence preserving property we
require.

Define the set P of equivalence classes to be the set of tra-
jectories of the differential equation

X(H) =BX(t) (13)
where
AT =68 (14)

Such a B exists by our earlier assumption of the positive def-
niteness of 4. Solving (13) we get trajectories of the form

X(r) = eB*X(0) = A"* X(0). (15)

Equation (15) shows that our map f(X)=AY2X does map
trajectories to trajectories. Thus, we have met all of the as-
sumptions of the theorem. So for the quotient map g: R" -
P we have equality of the induced measures

qubl1 = qublz - (16)
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The significance of (16) is that it guarantees that P contains
no classification information represented in the 2(X) com-
puted in S. As a result, if #(X) is a sufficient statistic (the
Gaussian model is correct), there will be no classification in-
formation at all in P. Hence, there is no feature that can be
extracted in P that will increase classification performance.

Having completed our work on f we now turn to P. In its
present form it is a set of trajectories. To perform the map-
ping into quotient space in a practical way, we need to find
some method to individually and uniquely specify almost
all of the trajectories. Observe that we need only specify
which trajectory a sample is on, not its location on the tra-
jectory. To accomplish this it is necessary to parameterize P
as an (n - 1)-dimensional space. An obvious method is to
choose a hypersurface in R” that intersects each trajectory
exactly once, except possibly for a subset of trajectories with
probability measure zero. Another possibility is to introduce
homogeneous coordinates as follows. In component form we
know from (15) that

x{(H) =N"x;(0) j=1,---,n. (17
(Note that the sign of x;(¢) remains constant along a trajec-
tory.) By our earlier assumption that A7 - 7= A% - T is
invertible, we know that A; # 1 for all i. Thus, we may rewrite
(17) as

sgn (e (1)) Ix; () 11"

= e 5gn(x;(0)) 1x;(0) 1%/10i (18)
where sgn(") is the signum function and « is an adjustable con-
stant convenient for numerical calculations. If we introduce
the new variables

vi(®) = sgnCe; (D) Ix; (DY =1, n 19)
(15) becomes

yi(t) = e*y;(0)
or

70 _ e%?. (20)

vi(0)

We observe that in the Y coordinate system all of the trajec-
tories are lines beginning at the origin. This is true because
e®"? is independent of i. This is not the case in the X co-
ordinate system, since (17) clearly shows that x;(¢)/x;(0) is
not independent of i. The fact that almost all of the trajec-
tories, except for a subset of trajectories with probability mea-
sure zero, are lines beginning at the origin, suggests that a
spherical coordinate decomposition will solve the parameteri-
zation problem. By retaining the angular components of any
sample we uniquely associate it with its trajectory. Note that
t specifies where on the trajectory the sample is located. Since
we need only specify the trajectory, ¢ need not be computed.
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Fig. 1. (a) Three trajectories for My = [?'8], =y =Tand M, = [lég ,
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The conversion to the angular components of spherical co-
ordinates is easily performed as

0, =arctan (&)
Y2

0, =arctan [(¥} +»3)""*/ys]

0,-, =arctan [(nz.l yf) 1’z/ynJ . 2D
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Fig. 2. (a) Y coordinate representation of Fig, 1(a). (b) Y coordinate
representation of Fig. 1(b).

Note that the range of 0, is (0, 2m) and the range of 65, - -,
0,1 is (0, m).

Figs. 1 and 2 show three examples of Gaussian distributions
with three trajectories labeled in the X and Y coordinate
spaces, respectively. Note that for Fig. 1(c) the Y coordinate
representation is identical to the X coordinate representation
[for this reason there is no Fig. 2(c)]. This is possible because
of the introduction of the control parameter a. By trying to
get a/In); as close to one as possible for all i, we can minimize
the distortion of the original data. Unfortunately, for wide
ranges of 1/In); and/or different signs for the various i it is not
clear how to best choose a.

We now detail the proposed feature extraction procedure.

1) Compute the sample mean vector and covariance matrix
for each class.

2) Compute A(X) in (3), and select this as a feature.

3) If A(X) is an effective feature, retain it and continue.
Otherwise, stop.

4) Simultaneously diagonalize the data.

5) Compute C in (11) and use it to translate the data sets.
Select an a so that a/In); is as close to one as possible for all i.
(This is to minimize data distortion.)

6) For each sample X in the data set compute Y using (19).

7) Convert Y to multidimensional spherical coordinates, re-
taining only the angular components, using (21).

8) Go to step 2).

After the first pass through the procedure the sample space
will be bounded. As a result, it is impossible for the data to be
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reduced to two dimensions using the nonlinear mapping al-
gorithm. The NN error estimate in the two-dimensional sub-
space indicated an error rate of 49 percent, which implies that
the two distributions were essentially identical. When a sec-
ond feature was extracted from the transformed data space
and combined with the first feature, there was no change in
the NN error estimate.

B. Experiment 2

In the second experiment the first distribution was 100
Gaussian samples with M{ = [-1.0 -4.0 -1.0] and Z, = I.
The second distribution was formed using two Gaussian dis-
tributions with parameters

2.0 0.1 0.0 00
M,, = 00|, =, =]00 4.1 00
0.0 0.0 00 4.1

and
2.0 0.1 0.0 00
My, =| 00|, =,,=[00 4.1 00
| 0.0 00 00 4.1

where the second subscript serves as an identifier for the two
distributions. Fifty samples from each distribution were com-
bined to provide 100 samples. The NN error estimate of the
data set indicated an error rate of 8 percent. The first feature
was extracted and the NN error estimate indicated an 11 per-
cent error rate. The data set was reduced to two dimensions
using the nonlinear mapping algorithm. The NN error estimate
in the two-dimensional subspace produced an error rate of 40
percent indicating that improvement was possible. A second
feature was extracted using the two-dimensional subspace.
The resulting NN error estimate of the two features was 8
percent. Since this was equal to the error rate of the original
data, the feature extraction process was terminated.

VI. SUMMARY

We have proposed a method to perform systematic feature
selection. The specific version of the algorithm is presented
that is based on the minus-log-likelihood ratio under a Gauss-
ian assumption. This approach provides the advantage that
if the classes are Gaussianly distributed, only one feature will
be extracted. This was substantiated in an experiment that
was presented. If the classes are not Gaussianly distributed,
additional features may be extracted. Since they are all based
on the Gaussian minus-log-likelihood ratio, an interesting in-
terpretation can be made. The first feature is based on first-
and second-order moment information in the original data
space. Due to the nonlinear nature of the mapping algorithm,
higher order information is mapped so that it can be measured,
in some sense, in the first- and second-order moments. There-
fore, even though subsequent features are also only based on
first and second moments in lower dimensional spaces, they
contain higher order information from the original space. An
experiment was presented suggesting the validity of this
statement.
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APPENDIX
Theorem: We define h(X) as

B =5 (X MYTER (X - M) - 5 (X M) 53!

(A1)

where M; and M, are mean vectors, and 2y and X, are co-
variance matrices of two distributions, in classes w; and w,,
respectively, in n-dimensional Euclidean vector space. With
h(X) so defined

E{h(x)| Xew;} <0 (A2)
and
E{h(X)| Xew,}>0. (A3)

regardless of the distribution of X.
Proof: Since h(X) is invariant under any nonsingular linear
transformation, we first transform the data as

y=4Tx. (A%)
The nonsingular matrix 4 is chosen so that
21 =] and 22 =A (AS)

where I is the identity matrix and A is a diagonal matrix.
Thus, we have

WX =h(Y) = (¥ = DYT(Y - D)

1.1
- —;—(Y— D,)TA(Y - Dy) + LWL

> Al (A6)

where D, and D, are the mean vectors for classes w; and w;,,
respectively, in the transformed space. The conditional ex-

pectations are computed as

E{h(X)| Xew,} = E{h(Y) | Yew, } = % tr [~ A

1 _ 1, ]
- '2_(D1 - D))" (Dy - Do) + Eln“/—“— (A7)
and
E{n(X)| Xew,} =E{n(Y)|Yew,} =%tr [A-1]
-1 1 1
+ 2@~ DT, - D)+ 3 (A8)

Expressing these in terms of the components A;, the ith diag-
onal element of A, and dj;, the jth element of the D;, we get

E{n(Y)|Yew,} =% é [( - i—) - (dyi - d1)* I\

+1n %] (A9)



BRAKKE etal.: SYSTEMATIC FEATURE EXTRACTION

and
n
E{n(Y)|Yew,} =3 2

1

[\ = 1) +(do; - dyp)?

-

+1n 1/N;]. (A10)

We consider the ith term of the summation in (A9) first.
Since -(d,; - dq;)?/%; is never positive, we need only establish
that

f)=1- ;—,_ In A, (A11)

1

is never positive. This is readily confirmed by evaluating the
first and second derivative of (Al11). We have shown that
every term in the summation of (A9) is nonpositive, hence

E{h(X)| Xew, } <0. (A12)

In a similar fashion the proof of (A3) requires establishing
that

g(>\,) = )\i -1-1n )\i (A13)

is never negative. Again, simple differentiation readily con-
firms this. Since all of the terms of the summation of (A10)
are nonnegative, we have

E{h(X)| Xew,}>0. (A14)

Q.E.D.
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