JOURNAL OF AIRCRAFT
Vol. 43, No. 5, September—October 2006

Stability of Cyclically Symmetric Strained Pumpkin Balloons
and the Formation of Undesired Equilibria

Frank Baginski*
George Washington University, Washington, D.C. 20052
Kenneth A. Brakke
Susquehanna University, Selinsgrove, Pennsylvania 17870

and

Willi W. Schur'
Accomac, Virginia 23301

DOI: 10.2514/1.21514

NASA’s effort to develop a large payload, high altitude, long-duration balloon, the ultralong duration balloon,
focuses on a pumpkin shape superpressure design. It has been observed that a pumpkin balloon may be unable to
pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state
instead. Hoop stress considerations in the pumpkin design lead to choosing the lowest possible bulge radius, whereas
robust deployment is favored by a large bulge radius. Mechanical locking may be a contributing factor in the
formation of undesired equilibria. Long term success of the pumpkin balloon for NASA requires a thorough
understanding of the phenomenon of multiple stable equilibria. This paper uses the notion of stability to classify
balloon designs. When we applied our finite element model to a balloon based on the NASA Phase [V-A pumpkin
design, we found the fully inflated/fully deployed strained equilibrium float configuration was unstable. To
demonstrate our approach for exploring the stability of constant bulge radius designs and their sensitivity to
parameter changes we carry out a number of parametric studies. We focus on analytical studies, but we also compare

our results with flight data whenever possible.

Nomenclature
& = total energy of the balloon system
&, = gravitational potential energy of the film
Ep = hydrostatic pressure potential energy
&£, = gravitational potential energy of the load tendons
Ewp = gravitational potential energy of the top fitting
Gr = flat unstrained reference configuration (natural state) of
the pumpkin gore
Gr = ideal doubly curved pumpkin gore based on shape-
finding process
H: = Hessian of the total energy
n, = number of gores in a complete shape
q = material properties vector used in the stability analysis
rg = bulge radius of the ideal pumpkin gore
S = complete balloon shape
S} = the strain energy of the balloon film
S = the strain energy of the load tendons
T = triangle in a discretization of G
Wi = relaxed strain energy density of the film
Wi = relaxed strain energy density of the tendon
€, = load tendon slackness parameter
I, = family of pumpkin balloon designs
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I. Introduction

HE pumpkin shape balloon concept for a superpressure balloon

seeks structural efficiency in a heterogeneous balloon structure
by assigning the global pressure confining strength primarily to a
system of load tendons with the load-carrying role of the skin being
primarily the transfer of the pressure load to the tendons. Within this
rather broad description of the pumpkin shape balloon, designs can
differ in a number ways, depending on 1) the nature and the relative
stiffness of the structural materials (both skin and tendons), 2) the
considerations given to fabrication, 3) the measures taken to ensure |
proper deployment and pressurization at altitude, and 4) the
maintenance of that proper equilibrium configuration throughout
service-life pressure cycling. We use the pumpkin gore shape
generation process as presented in [1] to generate families of balloon |
design shapes that we analyze in this paper. The model in [1] includes
an improvement over the standard natural-shape assumption of zero
hoop stress by taking into account hoopwise forces that are generated
by skin stress resultants and the local half-bulge angle. For practical
reasons, gores are made of flat sheets, but it is conceivable to use
molded gores if fabrication difficulties and fabrication costs are of no
consideration. The equivalent of a molded gore could be achieved by
fabricating such a supergore from several flat sheets that, when
seamed together and inflated, approximates the desired shape. See
[2] for more on the molded supergore construction.

A doubly curved representation of a pumpkin gore G generated
by the shape-finding process is shown in Fig. 1b. Although G is
doubly curved, it must be fabricated from a flat panel of film that we
denote by Gy (see Fig. la). The “spine” (centerline) of Gp is
isometric to the centerline of the lay-flat pattern G. A “rib” in G is
isometric to the corresponding segment that is transverse to the
centerline in the lay-flat paitern G . Clearly, the edge of the lay-flat
gore Gy is longer than the edge of the doubly curved deformed
pumpkin gore Gr. The tendon has the same length as an edge of Gr. A
tendon is foreshortened (relative to the edge of G) and is tacked at
appropriate intervals inside a sleeve that is heat sealed along the edge
of two adjacent gores. By foreshortening the tendons, the desired
pumpkin gore geometry can be achieved once the balloon is
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deployed and fully inflated. Foreshortening of tendons and our lack-
of-fit model is discussed in Sec. II. See [3] for more on tendon
foreshortening.

At full inflation and pressurization of the pumpkin balloon, there is
only one desired equilibrium state, and that is a cyclically symmetric
state where all gores are fully deployed. This state is, however, not
guaranteed for an arbitrary design of a pumpkin shape balloon. In
fact, by design, the pumpkin shape balloon has excess balloon skin
relative to minimum volume enclosure, which may provide an
opportunity for the existence of multiple equilibria at full inflation
and pressurization. The undesired equilibria can be of two types.
Either type must be avoided by the design throughout the service life
of the balloon. Only the cyclically symmetric configuration is
acceptable at full pressurization.

The first type of undesired equilibria appears to be inflation path
| independent or nearly so. In that case, configurations exist in the
vicinity of the desired equilibrium that have equal or lower total
potential energy than the desired equilibrium. In [4], the authors
calculated a number of these alternate equilibrium states for the case
I of an unstable constant bulge angle pumpkin balloon. Vulnerability
+ of a design to this type of threat can be investigated by a stability
« analysis of the desired equilibrium configuration. In a long-duration
- balloon flight, such a threat can occur even if the balloon deployed
. initially into a cyclically symmetric configuration. Subsequent
straining alters the configuration so that the cyclically symmetric
configuration is no more a minimum energy state. In that case,
. migration from the cyclically symmetric equ111bnum occurs
. spontaneously, possibly rapidly.

The second type of undesired equilibria is clearly inflation path
dependent. It occurs during ascent when three or more layers of film
| get mechanically locked and the locking is robust, preventing
. dislodging of the locked gores by the hoopwise tension forces that are
| generated by the flattened gores. In this case, a robustly stable
. equilibrium is reached that, in configuration space, is far removed
. from the desired equilibrium state. To picture this flawed con-
| figuration, one can envision a Z fold of 3K gores (K an integer). K
. gores are folded back behind the outer layer of K gores, then more K
. gores are folded behind the second layer. By locking under the
- internal pressure, this K gore wide Z fold resists the horizontal forces
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Fig. 1 Discretization of pumpkin gore configurations. a) G, € Re?: flat
unstrained gore panel with load tendon detached; 0 < v < L, where L,
- is the length of the centerline; L, is the tendon length. b) G, € Re?:
- theoretical pumpkin gore as determined by shape-finding process
- (centerlines of G and G, are identical in length); ¢) S € Re3: deformed
pumpkin gore.

that are generated by the hoopwise tension in the film. Earlier work
(see [5]) indicated that in a pumpkin balloon with several gores
swallowed up, the hoopwise restoring forces are relatively small,
especially when compared with the response in a similarly sized
zero-pressure natural-shape balloon. The zero-pressure natural-
shape balloon has a history free of deployment problems.

It appears that for a given class of balloon designs, both threats to
proper deployment and pressurization increase with the number of
gores and the amplitude of gore-width excess relative to minimum
volume enclosure. Also the distribution of that excess along the gore
length has a profound influence on the ability of the balloon to
properly deploy. These observations are affirmed with numerical
simulations in this paper.

To avoid the first threat, a design must be such that the cyclically
symmetric configuration at full inflation and pressurization is stable.
If £ is the total potential energy of a strained balloon configuration S
and H¢(S) is the Hessian of £ evaluated at S, then the eigenvalues of
H¢(S) determine the stability of S. We say that an equilibrium shape
S is stable if all the eigenvalues of H(S) are positive (see
Definition 3.1). If the film is linearly elastic then analysis of this threat
can be limited to the stability analysis of the fully inflated/fully
deployed strained equilibrium configuration.

Existing data on 48 gore test balloons have shown that a 48 gore
constant bulge radius balloon with a bulge radius at the equator near
180 deg will fully deploy into a robustly stable cyclically symmetric
equilibrium even for a test vehicle that has fabrication imperfections,
whereas a constant bulge angle design at a rather modest bulge angle
was clearly on the threshold between proper and improper de-
ployment. The sensitivity to both amplitude of excess gore width and
its distribution along the gore length has been further demonstrated
on other test vehicles. See [4,5] for more on deployment related
issues and [6] for a further discussion on experiments involving small
test vehicles.

In one parametric study considered in this paper, we analyze fully
inflated shapes arising from a class of pumpkin designs that are
related to the NASA Phase IV-A ultralong duration balloon (ULDB).
Two Phase IV-A balloons were flown. The nominal designs of the
Phase IV-A balloons were identical, but instructions given to the
fabricator were different. The difference manifested itself in a gore-
width shortfall near both gore ends in the first balloon. The first
balloon (Flight 1580 PT, July 2002) deployed properly in Palestine,
Texas, albeit it exhibited a fatal fabrication flaw. In Flight 1580 PT,
several tendon attachments on the nadir endplate failed, resulting in a
few gore pairs deploying as single gores of double width. Cautionary
gas venting was used to lower the gas pressure to at least partially
compensate for this structural degradation of the balloon. When a
tendon adjacent to one of the double-width gores failed, effectively a
gore thrice the width of a single gore was created and the balloon
disintegrated (in the vicinity of Crawford, Texas). We recognize that
had that flight continued over a longer period and the tendons had not
failed, the equilibrium configuration could, as a result of creep, very
well have migrated into an undesired configuration given the
closeness of the design to the stability limit as identified by our in-
vestigation. The second Phase IV-A balloon, Flight 517-NT,
launched in March 2003 experienced a deployment problem. A cleft
that was present in the launch configuration persisted throughout the
ascent phase and was maintained once the balloon reached float
altitude (see Fig. 2). Two Phase IV balloons (Flight 495-NT in Febru-
ary 2001 and Flight 496-NT in March 2001) also failed to properly
deploy. Flight 495 NT sprung a substantidl leak due to shortcomings
of trilaminate film. Flight 496 NT assumed an anomalous con-
figuration at maximum altitude and also sprung a leak. On the other
hand, two other pumpkin balloons deployed successfully: a ULDB
Phase II balloon (Flight 474-NT on October 23, 1999) and a ULDB
Phase I1I balloon (Flight 485-NT on June 4, 2000). In Sec. VI.B, we
compare our analytical predictions with these data.

The reason for first focusing on the fully deployed configuration is
clear. If the cyclically symmetric equilibrium of the balloon at float
and under pressurization is unstable, then such a balloon will not
deploy properly. Furthermore, if an initially properly deploying
balloon undergoes deformation changes that render the cyclically
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symmetric equilibrium at full inflation and under pressurization
unstable at any time during its service life, then in such an instance,
the balloon configuration will rapidly depart into an undesirable
stable configuration for which film stress resultants are far in excess
of those anticipated for the cyclically symmetric equilibrium. In both
these cases, the balloon is doomed. The existence of an equilibrium
with a lower total potential energy than the cyclically symmetric
equilibrium is similarly troublesome, even if the cyclically
symmetric equilibrium is at a local minimum of the total potential
energy. Through numerical studies, we hope to gain some insight
into those factors that promote proper deployment as well as those
factors that inhibit proper deployment.

Our finite element model for strained balloons was applied to
pumpkin balloons in [5,7] using a code developed in Matlab by the
first author. Our model is well suited for the analysis of compliant
structures. A typical FEM approach using an implicit solver will run
into difficulties when the stiffness matrix is noninvertible, but our
optimization approach circumvents these difficulties by directly
seeking a minimum unencumbered by the indefiniteness of unstable
intermediate configurations in the evolution of the solution. See [7]
for further details.

Details of our finite element analysis model are discussed in
Sec. II. This model has also been implemented into Surface Evolver,
an interactive software package written in C and developed by the
second author for the study of curves and surfaces shaped by energy
minimization (see [8]). Surface Evolver was used to carry out
stability analyses of pumpkin balloons in [4,9]. In [9], we explored
stability of the Phase IV-A ULDB as a function of the design
parameters (n,, rg) and the uniform tendon slackness parameter ,;
we found that the NASA ULDB Phase IV-A balloon was unstable.

A thorough understanding of the stability of pumpkin balloons and
their sensitivity to key parameters is critical to the successful
development of a safe and reliable ultralong duration balloon. In this
paper, we use Surface Evolver to calculate a strained cyclically
symmetric equilibrium balloon shape and to explore the stability of
these equilibrium configurations as a function of various parameters,
including added gore width 8, constant pressure P,, Young’s

" modulus of film E,, Poisson’s ratio v, tendon stiffness K,, and
uniform lack-of-fit €,. These results are presented in Sec. VI.C. We
use the stability plot with nominal parameter values as a baseline
defining stable and unstable regions. Sensitivity to parameter change
is illustrated by how the interface between the stable and unstable
regions changes from the nominal state as parameters are varied.

II. Finite Element Model

In this section, we outline the problem of determining the
equilibrium shape of a strained balloon. We refer the reader to [5,7]

Fig. 2 Cleft in Flight 517NT. Photograph provided by the NASA
Balloon Program Office.

for a more detailed exposition of our model. We will assume that a
balloon is situated in such a way that the center of the nadir fitting is
located at the origin of a Cartesian coordinate system. The nadir
fitting is fixed, and the apex fitting is free to slide up and down the
z axis. The nadir and apex fittings are assumed to be rigid.

The reference configuration 2 C R? for a complete balloon S C
R3is

n
Q =U;%,G;
where G; is isometric to G. In this case,
n
S =ULS;

where each S; is a deformation of G;. An equilibrium configuration
of a fundamental gore is denoted by Sy.. For convenience, we assume
that the fundamental gore S is situated symmetrically about the
y =0 plane, and contained within the wedge-shaped region
[yl < (tanw/ng)x, x > 0, and z > 0. If S is a cyclically symmetric
balloon shape with n, gores, then S can be generated from n, copies
of Sy, where the corresponding reference configuration is Gp. Gy is
assumed to be situated with the center of the bottom of G at the
origin of a (u,v) coordinate system. See Fig. la. Q and S are
discretized by constant strain plane stress triangular finite elements.
Adjacent gores are joined at their common edge. Tendons are located
along the edges where adjacent gores are joined.

We will describe our model as it applies to a complete balloon.
However, at times we will impose certain symmetry conditions,
which will reduce the total number of degrees of freedom in our
model. In practice, we typically compute a cyclically symmetric
strained equilibrium shape for a fully inflated balloon. However,
stability of that equilibrium configuration is calculated for the full
balloon.

The total potential energy £ of a strained inflated balloon
configuration S is the sum of six terms,

EG)=Ep+ &+ &+ &g+ ST+ 5} @

where

Ep= / P(z)dV =— [ (l b7? + Poz)k -ndo 2)
v s\2

Er= f wyzdA G
S
ng L
=) A o;(S) - kw,dS, @)
i=1
Etop = wlopzlop (5)

ny L,
$i=3 A Wi (e)ds ©

S}:LW}‘dA O

For the purpose of the analytical studies in this paper, we assume the |
differential pressure is in the form —P(z) = bz + P, where P, is

known. V C R? is the region enclosed by S and dV is volume
measure in R3. We follow the convention that —P(z) > 0 means that |
the internal pressure is greater than the external pressure. P, is the
differential pressure at the base of the balloon where z = 0, b is the
specific buoyancy of the lifting gas, n is the outward unit normal, and
do is surface area measure on the strained balloon surface, wy is the
film weight per unit area, w, is the tendon weight per unit length,
a; € R3 is a parametrization of a deformed tendon with reference
configuration I';, €; is the strain in tendon I';, wy, is the weight of the
apex fitting, and z,,; is the height of w,,,. Relaxation of the film strain
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energy density is a way of modeling wrinkling in the balloon film and
has been used in the analysis of pumpkin shaped balloons in [5,7].
The expressions for S} and S are defined in the following sections.

A. Strain Energy of Tendons

The length of a tendon L, in a pumpkin balloon is determined by .

the length of an edge in Gp. Let 0 < § < L, denote arc length
measured in the unstrained reference configuration of a tendon (see
Fig. 1). In the following exposition, we temporarily drop the
subscript i for convenience. By construction, the edge of the flat
panel Gy is longer than L,. The lack of fit between these different
lengths is accommodated by gathering the material along an edge of
G before attaching the tendon. In practice, the tendon is tacked at
appropriate intervals to a polyethylene sleeve which is then heat
sealed to the edge where two adjacent gores meet. If dU is the
differential of the arc length as measured along the edge of G, the
local lack-of-fit function is

dUu
(S) = i ®)
Note, in a pumpkin balloon, 7(S)>1 indicates tendon
foreshortening is applied and v =1 indicates no lack of fit. See
Figs. la and 1b.

Let s denote arclength measured along the edge of a deformed
tendon (see Fig. 1c). The tendon is parametrized by the curve
@(S) e R3for0 < § < L,,i.e.,ds = |a'(S)|dS. The tendon strain is
denoted by €, where

€=l () — 1] ®
and the tendon strain energy density is
W,(€) = 1K, & (10)

where K, is the tendon stiffness. K, has the units of force and € has the
units of strain (m/m). The value of K, in the nominal case is
determined experimentally. We assume that a segment in a load
tendon behaves like a linearly elastic string. Furthermore, to model
tendon slackness or additional foreshortening we introduce a
parameter ¢,. We are led to the following expression for the relaxed
strain energy density function for a tendon, i.e.,

Wie—¢€), e€z¢

Thus, a tendon comes under tension only when € exceeds ¢,. If a
tendon is slack by 0.8%, then ¢, =0.008. If a tendon has no
slackness, then €, = 0. If one overcompensates with additional
foreshortening of 0.8% in a tendon with no slackness, then we set
¢, = —0.008. Note that €, is constant over the length of the tendon,
{ whereas 7(S) varies as a function of S. Near the endcaps 7(S) is
nearly one, whereas near the equator 7(S) takes on its maximum
value.

If ; as defined in (10) denotes the strain in tendon 7, then the total
relaxed strain energy of the tendons is

ﬂg L’
si=Y [ wites (12
i=1

B. Balloon Film Strain Energy

In Chapter 10 of [10], Ciarlet derives the two-dimensional Koiter
equations for a nonlinear elastic shell using methods in asymptotic
analysis. Using this formulation and ignoring the bending or flexural
energy because the film thickness is so small, it is possible to derive
the resulting film strain energy S in the form

5, = L W,dA (13)

where W is the strain energy density function of the balloon film and
Q denotes the flat reference configuration corresponding to the
deformed configuration S. When € and S are discretized by
triangular constant strain finite elements and 7 is a typical triangle in
Q, it is possible to derive a simple expression for W(T') in terms of
the principal strains §; of the Cauchy—Green strain tensor. However,
because the film is so thin, it is unable to support negative
compressive stresses and will instead wrinkle. For this reason, the
standard film strain energy W is not representative of how areal film
behaves under these conditions. Wrinkling in S is accounted for by
using the relaxed strain energy approach of Pipkin; in particular, we
replace W, by its quasiconvexification Wy (see [11]).

When triangular constant strain finite elements are used, it is
possible derive a compact formula for W (see [12]). Because Wiis
constant on T € 2, we have ‘

0,6, <0 and 4, <0 T slack
%th(S%,p,l <0 and §,>0 T wrinkled

WHT) = { ThE,8. 11, <0 and 8,z 0 T wrinkled (14
it (8 + 8 + 2v8,5,),

=0 and pu, >0 T taut

where & is the film thickness, E; is Young’s modulus, and y; for
i=1, 2 are the principal stress resultants. The membrane strain
energy of a wrinkled balloon is given by

St = [Q WdA (15)

The contribution due to caps can be modeled by modifying k and E,
appropriately.

To determine a strained equilibrium balloon shape, we solve the
following:

Problemx
min&(S) (16)
SeC

where C denotes the class of feasible balloon shapes. Boundary
conditions or symmetry conditions are built into C. In (16), the
continuum problem of finding an equilibrium configuration of the
balloon is cast as an optimization problem. This approach is
particularly well suited for the analysis of compliant structures. In
previous work such as [7,13], Problem » was solved using Matlab
software (fmincon). However, even when using the large-scale
option and sparse matrices to conserve computer memory, we were
unable to use fmincon to analyze a balloon section of more than 10
gores. For this reason, Problem * was implemented into Surface
Evolver. Surface Evolver is able to handle shapes with a large
number of degrees of freedom (see [4,9]). Typically, Problem * is
solved for a fundamental section S, and the cyclic symmetry is used
to generate the corresponding complete shape S. Stability is
determined by analyzing S.

ML Stability

The degrees of freedom (DOF) in a faceted balloon shape S are the
X, y, z coordinates of the nodes of triangular facets in & that are free to
move. Let x = (x,%,, ..., xy) be alist of the DOF. Let £(x) be the
total energy of a faceted balloon configuration S = S(x).

The gradient of £ evaluated at x is the 1 x N vector

Dg(x)=[§§], j=12,...,N

J

The Hessian of £ evaluated at x is the N x N matrix,

2
He(x) = DE(x) = [K} i,j=1,...,N (17

3xi3xj

Although N can be large for a full balloon, Hy is sparse. The lowest
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eigenvalue of Hg was calculated by inverse iteration. The matrix
H¢ — tI was sparse Cholesky factored, with the shift value 7 chosen
to guarantee positive definiteness. The factored matrix was then used
to iteratively solve (Hg — tl)x,,; = x,, starting with a random
vector x,, until the iteration converged, almost certainly producing
the eigenvector of the lowest eigenvalue. See Sec. 11.7, page 493 in
[14]. We will use the following definition of ‘stability when
classifying balloon shapes.

Definition 3.1: Let S = S(x) be a solution of Problem x. We say S
is stable if all the eigenvalues of Hg (x) are positive. S is unstable if at
least one eigenvalue of Hg(x) is negative. The stability of S is
indeterminate if the lowest eigenvalue of Hg(x) is zero.

IV. Preliminaries

In the following section, we will introduce two sets of parameters
denoted by p and q. Geometry, weight-related, and loading
parameters are the elements of p, whereas the elements of ¢ are
material properties. The tendon slackness parameter ¢, is treated as a
material property and is a component of q.

The elements of p are parameters that are input into the shape-
finding process for a pumpkin balloon: p; = n,, number of gores;
Do = rp, bulge radius; p; = P, constant pressure term; p, = b,
buoyancy of lifting gas; ps = ¢, length of cap 1; ps = ¢,, length of
cap 2; p; = wy, film weight density; ps = w,, , cap 1 weight density;
Py = w,,, cap 2 weight density; p,y = w,, tendon weight density;
p11 = L, suspended payload (includes weight of nadir fitting);
P12 = Wy, Weight of apex fitting, and py3 = d,, diameter of circular
endplate. Nominal parameter values for p are contained in Table 1.
See [1] for more on the shape-finding process. Typically, material
properties such as film modulus and Poisson ratio do not enter
directly into the shape-finding process. We define the shape-finding
vector to be

P = (P, P25 P13) (18)

The shape-finding parameters that were used for the Phase IV-A
design are presented in the last column of Table 1. Once a set of
- values are assigned to p, the corresponding pumpkin design shape
Gr(p) is found; the lay-flat pattern G(p) is determined along with
other quantities such as the total system weight, volume, tendon
length, and seam length of the lay-flat gore pattern (see Table 2). The
three-dimensional shape Gr(p) is discretized into a collection of
triangular facets [call it Gr(x; p)]. Gr(x; p) is used as the initial guess
for solving Problem » and determining the corresponding strained
equilibrium shape of the fundamental gore Sp. Once Sp is
determined, we then use the cyclic symmetry of the balloon to
generate a complete shape S from #, copies of Sp. A cyclically
symmetric complete balloon generated from Gy will be denoted by
8(1 (p)

The balloon manufacturer will try to remove tendon slackness
before attaching the tendons. Thus, in theory, €, = 0. However, to
illustrate sensitivity to this parameter, we will let e, = —0.008 for the
nominal case.

We are most interested in investigating the stability of equilibrium
configurations of pumpkin designs as a function of (n,, r3), and for
this reason, we define the following family of balloon designs:

Iy = {[Sa@). 2@)] [75(p1) < pr <00
pi € {48,49,...,320}, , D13 as in Table 1}

(19)

P3: P4y -

where 7 (n) is the smallest bulge radius for a design with n gores in
class I1,. For convenience, we will refer to a particular design in 1,
by indicating the number of gores and the bulge radius. For example,
[54(290,0.78), £2(290, 0.78)] refers to the Phase IV-A design. If a
parameter is not explicitly written out, it will be our convention that it
is assigned a default value given in Table 1.

For each designin I1,, it would be of interest to know how stability
depends on variations in the width of the lay-flat pattern. To study
this dependency, we will consider two additional classes of designs

Table 1 Pumpkin shape-finding parameters

Description Variable Nominal value
Number of gores pL=n, 290
Bulge radius, m py=rp 0.78
Constant pressure term, Pa p3 =P, 130
Buoyancy, N/m? pa=b 0.087
Cap 1 length, m ps=c; 50
Cap 2 length, m Ps = C 55
Tendon weight density, N/m p7=w, 0.094
Film weight density, N/m? Py = wy 0.344
Cap 1 weight density, N/m? Py = w,, 0.1835
Cap 2 weight density, N/m? Pio = W, 0.1835
Payload, kN pu=>L 27.80
Top fitting weight, N P12 = Wigp 790
Endplate diameter, m P13 =d; 1.32

Table 2 Quantities related to thé nominal pumpkin design,
Phase IV-A: (n,, rp) = (290, 0.78)

Description Value
Volume, Mm? 0.590
Skin weight, kN ‘ 13.33
Cap weight, kN 3.51
Tendon weight, kN 0.635
Tendon length, m 155.30
Gore seam length, m 155.93

IT# which we define in the following way. Let [S,(p), 2(p)] € T,.
Let v denote arc length as measured down the center of the lay-flat
pattern. The gore half-width is a function of v and depends on the
shape-finding vector p [i.e., #(v) = h(v; p), see Fig. 1a]. The lay-flat
configuration in I1, is given by

Gr(p) ={(u,v)|0 = v = L, |u] < h(v)} (20)

and L. is the length of the flat gore centerline. We define a
perturbation of G by

hE(v) =h(v) £8,0<v <L, @1

where § is a constant. Note, due to the nature of our discretization of
Gp, h(v) and hi(v) are piecewise linear functions that are
continuous over 0 < v < L. Equation (21) generates new lay-flat
patterns G (p), where

Gr(p) = {(u,)|0 = v = L, |u| < hf (v)} 22)

which in turn generate new lay-flat patterns for the complete balloon
Q*(p). We define

7 = {[Sa(p). 2= (p)],

Even though the lay-flat patterns are altered in I13, we can use the
three-dimensional shapes S,(p) from IT,, to initiate the solution
process in Problem . The nominal value of § is zero.

Once a design has been defined, then we can carry out a stress
analysis of that design for some loading condition. At this stage of
our analysis, we include the full set of material properties. These
include g, = Ey, film Young’s modulus; g, = v, film Poisson ratio;
g3 = E., cap 1 Young’s modulus; g, = v,,, cap 1 Poisson ratio;
gs = E,,, cap 2 Young’s modulus; gs = v,,, cap 2 Poisson ratio;
q7 = K,, tendon stiffness; and g3 = ¢,, the uniform tendon slackness
parameter. We define

for [Sy(p). 2(p)] € I} (23)

q =(q1,92,--.,4s) (24)

which includes parameters that were not used directly in the shape-
finding process. Nominal values for q are presented in Table 3. The
material properties presented in Table 3 were determined experi-
mentally at room temperature conditions by The Balloon Lab at the
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Table 3 Additional parameters for strained pumpkin shapes and
default Phase IV-A parameters with (n,,rg) = (290,0.78)

Description Variable Value
Film Young’s modulus, MPa q =E; 404.2
Film Poisson ratio G, = vy 0.825
* Cap 1 Young’s modulus, MPa 93 =E,, . 216
Cap 1 Poisson ratio qs =V, 0.825
Cap 2 Young’s modulus, MPa qs = E,, 216
Cap 2 Poisson ratio qs = Ve, 0.825
Tendon stiffness, kN q7 =K, 650
Tendon slackness, m/m qs =€, —0.008

NASA Wallops Flight Facility, Wallops Island, Virginia. During a
long duration midlatitude flight, the constant term in the hydro-
static pressure will vary with the diurnal cycle; Py = 130 Pa is an
estimate of the pressure corresponding to a daylight hot case
scenario. Once p and q are specified, we can proceed in solving
Problem *. Note, the shape determination process and the stress
analysis process are separate, and so it is possible to use one value of a
parameter in the shape-finding process, and another value in the
solution of Problem . The shape-finding process defines the lay-flat
pattern Q(p) and provides a three-dimensional shape S, (p) that is
used for initializing the solution process for Problem . The strained
equilibrium shape that is a solution of Problem  is denoted
S(p, q, 2(p)). After solving Problem * with a design [S,, 2] € IT,,
we will then classify S according to Definition 3.1.

Although it is possible to use Surface Evolver to solve Problem x
using a complete balloon, the number of degrees of freedom can be
quite large. For example, using a standard mesh with roughly
600 DOF per half-gore and a balloon with 300 gores, there are
roughly 360,000 DOF. If the cyclically symmetric configuration is
unstable, it is very difficult (taking at least a day of calculations) to
converge to an alternative noncyclically symmetric configuration.
Furthermore, if there are no nearby alternate solutions, the solution
process may not converge. This makes it virtually impossible to carry
out thorough parametric studies, since it might take years to complete
one parametric study such as the one presented in Fig. 3. On the other
hand, the desired equilibrium configuration at float is the cyclically
symmetric one and it takes less than a minute to converge to a
strained cyclically symmetric shape. This fundamental strained gore
can be replicated so that H¢(S) is determined for the complete
balloon with full degrees of freedom. Because H¢(S) is sparse, one
can quickly (less than a few minutes) determine the number of
negative eigenvalues of H¢(S).

We carried out analyses using a complete balloon and compared
these to analyzes carried out using one-half a balloon, i.e., assuming a
balloon has one plane of reflectional symmetry. We found that there
were roughly twice as many unstable modes for the complete balloon
than there were for one-half a balloon. However, after classifying the
corresponding designs as stable or unstable, we found both
approaches led to roughly the same results. This is to be expected due
to symmetry breaking of two-dimensional eigenspaces of the full
balloon. For example, we found one unstable mode for the design
(ng, r5) = (290,0.78) presented in Fig. 3 where we analyzed one-
half a balloon. An analysis of the same design using a full balloon
found two unstable modes. Thus, we would arrive at roughly the
same unstable region in Fig. 3 if either a full or a half balloon were
analyzed. To reduce computation time, we analyzed one-half a
balloon. To determine the stability of a strained balloon shape, we
carry out the following three steps:

Step 1: Calculate a cyclically symmetric equilibrium shape S for
adesign in IT,.

Step 2: Use Sy to generate a complete balloon S with one plane of
refectional symmetry.

Step 3: Determine stability of S using Definition 3.1.

In our stability studies, we will consider nominal parameter values
for q for a design class such as I, or TIF. We will also consider
design classes where we change some components of p or q from
their nominal values.
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V. Design Considerations

We note that stability of an equilibrium configuration is
investigated at an equilibrium, which is a strained state. In general, a
strained equilibrium shape is only approximately a cyclically
symmetric constant bulge radius surface. Other strained equilibrium
states (due to pressure variations or viscoelastic straining over time)
depart from the cyclically symmetric constant bulge radius con-
figuration even more. In the case of a viscoelastic film, that departure
can be significant. As shown in this paper by way of looking at
classes TT%, this shape change can have a profound effect on stability.
Although at this time we cannot look at complications that may arise
from inflation path dependent locking of gores, our paper provides a
step towards developing tools that lead to deployable, structurally
efficient designs of pumpkin shape superpressure balloons.

In a pumpkin balloon design that aims for structural efficiency, the
maximum meridional stress resultant max o, anywhere along the
gore length is at most as high as the maximum hoop stress resultant
max 0. Because the radius of curvature Ry, for the meridional
direction is much larger than r; everywhere along the gore length,
any relief in the hoop stress resultant due to a nonzero meridional
stress resultant is insignificant, as demonstrated by the equilibrium
equation

p=E, ¥ 25)
rg Ry

where P is the differential pressure, oy is the hoop stress resultant,

and o, is the meridional stress resultant. Because in superpressure

applications P & P,, it follows that for a constant bulge radius shape,

max oy &~ Pyrg.

For strength efficiency, the designer would like to choose the
smallest possible bulge radius. There are practical limitations that
discourage the designer from approaching this lower bound. Beyond
those limitations there are also stability considerations, which are the
subject of this paper.

For constant bulge radius designs with a fixed number of gores, the
one with the smallest bulge radius is the one that has the most
hoopwise excess material relative to a minimal gas bubble enclosure,
which for the purpose of our discussion is the developable surface
generated by straight line chords that span adjacent tendons. This
hoopwise excess, if sufficiently large, can be detrimental to the
stability of the cyclically symmetric configuration at float and under
pressurization. Still, for a small enough 7, a minimum bulge radius
design that approaches the lower bound is robustly stable as has been
demonstrated in the exploratory work for 48 gore test vehicles (see
[6]). This is demonstrated analytically in this paper for even larger n,.
Calledine (see [15]) showed that for constant bulge angle designs,
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increasing the number of gores also increases vulnerability to insta-
bility of the cyclically symmetric configuration. We demonstrate this
analytically for constant bulge radius designs in this paper. Clearly,
there is a need for design criteria that will enable the designer to arrive
at structurally efficient designs while providing sufficient margins
against the occurrence of instability with full consideration of the
usual uncertainties, and in the case of a viscoelastic ﬁlp1 also
accounting for the service lifetime configuration changes of the
balloon. Our exposition provides a description of how such design
guidelines can be derived and demonstrates their feasibility.

VI. Parametric Studies

In the following sections, we present the results of several
parametric studies. Section VI.A foeuses on designs related to the
NASA Phase IV-A design. In Sec. VI.B, we compare flight data for
large pumpkin balloons with the stability results obtained in Sec. VI.
A. Tn Sec. VI.C, we carry out sensitivity studies of Euler-elastica
constant bulge radius designs that are similar in size to the Phase IV-
A balloon. We study how the boundary between stable and unstable
designs changes as a single parameter is varied.

A. Flight 517

A pumpkin design that was very similar to the one used in
Flight 517-NT was analyzed using the gore pattern that was delivered
to the balloon manufacturer and it was found to be unstable (see [9]).
In Fig. 3, we denote a pumpkin design similar to the Phase IV-A by
S8(290,0.78). We found H¢[S(290,0.78)] had at least one negative
eigenvalue, and so we say that $(290, 0.78) is unstable.

To study this design’s sensitivity, we generated a class of balloon
designs I, following the shape-finding process outlined in [1] and
using the nominal parameter values in Table 1. The nominal case is

summarized in Fig. 3 using the (1, r)-parameter space. A character
" (acircle or pentagon) is plotted at the coordinates (ng, rp) where a
design exists. No designs exist for a balloon with (n,, 1) if rg < 7.
The lower bound 75(n,) was estimated numerically for each n,.
When 7y = 75(n,), we find that the rib at the equator of Gr is a
semicircle of length 7. For each design [S,, Q] € I1,, we solved
Problem x and determined the number of negative eigenvalues of
H¢(S). An empty circle is plotted at the coordinates (n,, rp) if the
corresponding design in IT, is stable. A solid pentagon is plotted at
coordinates (n,, rp) if the corresponding design leads to an unstable
equilibrium. The stable and unstable regions in Fig. 3 define a
baseline. Parameter sensitivity can be studied by observing how
the boundary between these two regions changes as a particular
parameter changes.

One disadvantage of expressing the stability plots in terms of
(ng. rp) is that r has the units of length and for each value of ng, ry
ranges over an infinite interval, rz(n,) < ry < co. To compare our
results with flight data, we will follow the conventions in Fig. 5 of [6]
and present our results in terms of the maximum chord ratio and the
number of gores. The chord ratio for a balloon design with n gores
and bulge radius rp varies as a function of gore length v and is
denoted by A, ., (v); more precisely, A, , (v) is the ratio of the rib
length in G to the corresponding tendon-to-tendon chord length in
Gr. The maximum chord ratio is

A(’B-”) = 0151}}2)20 A(rg,n) (U)
For aballoon with n gores (n fixed) and the smallest bulge radius, i.e.,

rg(n), the maximum chord ratio is one-half the circumference of a
circle of radius rp divided by its diameter 27, i.e.,

arg 1
Aeun = 08 Bern®) =27=73

For a given n, there is no upper bound on rp. For fixed n and
rg — oo, we find lim, , A, ,()=1 Thus, we find
T<Aum = %n. We calculated A, ,,, for each of the designs
used in Fig. 3, then summarized the stability results in the parameter
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Fig. 4 (A, n,): parameter space, regions of stability/instability, and
flight data. Baseline parameter values: ¢, =-—0.008, §=0,
E; =404 MPa, v =0.825, K, =650 kN, and P, =130 Pa. D:
deployed, F: failed deployment.

space (n,, A) in Fig. 4. Thus, the space of feasible designs in our
stability studies is represented  as a  rectangle
R={(n,A)48 <n<320,1 <A <im}

Remark: For the Phase IV-A pumpkin balloon with baseline
parameters considered here, we find the maximum principal strains
are roughly 1.5%. See [7] for a more detailed analysis of the principal
strains and principal stress resultants in a pumpkin gore for a similar
size balloon. The maximum principal strains reported in [7] are about
1%, but in that work, we did not include the local lack-of-fit function
in the tendon foreshortening model. The tendon foreshortening
model implemented in this paper is more representative of how the
Phase I'V-A balloon is manufactured.

B. Flight Data and Analytical Predictions

For Flight 517-NT, A (290,0.7y = 1.17. From Figs. 3 and 4, we see
that Flight 517 was right on the border separating stable and unstable
designs. In addition to Flight 517, we included data points in Fig. 4
corresponding to the following NASA test flights: Flight 474-NT
(Phase II), Flight 485-NT (Phase III), Flight 495-NT (Phase IV),
Flight 496-NT (Phase IV), and Flight 1580-PT (Phase IV-A).

A “D”in the legend of Fig. 4 indicates that the balloon successfully
deployed. An “F” indicates failed deployment. Phases IT, III, and first
Phase IV-A deployed. The Phase I and III balloons fell clearly in the
stable regime, whereas Flight 1580-PT fell on the stable/unstable
border. One should keep in mind that all of these missions were test
flights, and in each case there were mitigating circumstances that
may have contributed to a “failed” deployment or a “successful”
deployment. For example, in Flight 1580-PT, a number of tendons
were not properly secured, causing a number of double gores to form.
One cannot rule out the possibility that the formation of double gores
aided the deployment, even though the mission was doomed.

Remark: Calledine’s analysis of Julian Nott’s Endeavour balloon
was one of the first works to deal with the stability of pumpkin
balloons. Even though Endeavour was based on the dubious constant
bulge angle pumpkin and Calledine’s model is limited to constant
bulge angle balloons and hydrostatic pressure only, his approach is
appropriate. Calledine observed that in his semiempirical approach
the variation in the strain energy could be ignored in his analysis.
Calledine’s approximation, even though formulated on the basis of a
two-dimensional proxy problem, seems to be remarkably accurate
for constant bulge angle designs. In [4], we compared stability results
obtained using our full model for Euler-elastica constant bulge angle
designs to Calledine’s results and found good agreement, supporting
his assertion that for constant bulge angle designs it is appropriate to
ignore the strain energy. However, Calledine’s stability results do not
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extend to constant bulge radius pumpkins balloons (see [4]). Fol-
lowing the approach of Calledine and limiting their model to hydro-
static pressure, the authors in [16] considered the stability of con-
stant bulge radius pumpkins. However, in [16], the number of gores
is restricted to 64 and only three “buckling modes™ are considered.
Consequently, instabilities of other modes cannot be detected.
Furthermore, large film strains whether elastic or viscoelastic-limit
the usefulness of Calledine’s approach. See [4] for further
discussions on the stability of Euler-elastica constant bulge angle and
Euler-elastica constant bulge radius pumpkin balloons.

Remark: It is important to keep in mind there are many other
factors that the balloon designer must take into account besides
stability. For example, to avoid overstressing the film, designs with
too few gores or designs with bulge radii too large may be rejected,
regardless of their stability. Most of the designs we consider are not
practical. However, analyses of these cases allow exploration that aid
our understanding of the causes of the instabilities that are of
concern.

C. Sensitivity Analysis

In the following subsection, we analyze parametric families of
pumpkin designs that are similar in size to the Phase IV-A balloon.
For convenience, we use the Euler-elastica constant bulge radius
model to generate these families. The Euler-elastica pumpkin shape
is based on a number of simplifying assumptions, including a
constant differential pressure and zero film and tendon weight in the
shape-finding process. The resulting shape by construction is
necessarily symmetric about its equator and is different than the
pumpkin balloons generated without the aforementioned assump-
tions. Here, we used the Euler-elastica model so that we could
quickly generate a large number of balloon designs. The knowledge
that we wish to gain from the following studies is how the border
between stable and unstable designs varies as a function of certain
key parameters. The Euler-elastica constant bulge radius designs will
suffice for these demonstrations.

In Fig. 5, we present a number of parametric studies on stability
and sensitivity of the pumpkin design. We first generated a baseline
case using design parameters in Table 1. We calculated the stable and
unstable regions in the design space IT,. These regions are slightly
different than those found in Fig. 4, but this is due to the fact that the
corresponding design shapes are somewhat different. The boundary
between the stable and unstable regions is denoted by the solid curves
in Figs. 5a-5d. So as not to clutter the plots, we present only the
interface between the stable and unstable regions in Fig. 5. Stable
designs are below this curve and unstable designs are above. The
designs considered here had roughly a volume of 0.6 million cubic
meters. In the baseline (nominal case), the uniform lack of fit
€, = —0.008, the added gore width is § = 0, E; = 404 MPa, P, =
130 Pa, K, = 650 kN, and v = 0.825. We found that all designs with
n, < 160 were stable for all parametric studies, and so in Fig. 5 we
include only the region 160 < n, <320 and 1 < A < 7/2.

Next, we summarize our sensitivity studies.

1) Additional tendon foreshortening: We varied €, between
—0.012 and 0.000, where €, = —0.008 in the baseline case. For each
value of €;, we plot the stable/unstable boundary. Using the usual
local lack of fit 7 in all cases, we found that even with additional
foreshortening of €, = —0.004, all designs in IT, were found to be
stable. Figure 5a suggests that the design is sensitive to excess
foreshortening. However, the same plot suggests that a moderate
amount of foreshortening, which could be beneficial in the launch
and deployment stages, does not significantly affect stability.

2) Added gore width: Cost-effective fabrication introduces
significant structural imperfections that are difficult to account for in
a deterministic way. Data analysis of fabrication errors indicates a
maximum gore-width error as large as 7 mm. As a first step to
understanding the stability as a function of the gore-width error, we
calculated the stability of designs in a number of families IT} with
§=0.0, 0.5, 1.0, 2.0, and 3.5 mm and II; with § =—0.5 and
—0.2 mm. § = 0 is the baseline case. The results are presented in
Fig. 5b. Figure 5b suggests that the balloon is very sensitive to added

gore width. The same plot suggests that a small shortfall in gore
width can be beneficial.

3) Young’s modulus: In Fig. 5¢c we present the stable/unstable
boundary for variations of the Young’s modulus. E; = 404 MPa is
the baseline case. We consider 162 < E; <485 MPa. In these
studies, the Young’s moduli for the caps are modified in a similar
manner. Figure 5c¢ shows that a reduction in Young’s modulus
increases the likelihood that a design is unstable.

4) Poisson ratio: In Fig. 5d we present the stable/unstable
boundary for variations of the Poisson ratio. v = 0.825 is the baseline
value. We also considered 0.33 < v < 0.95. In these studies, the
Poisson ratios for the caps are modified in a similar manner.

5) Tendon stiffness: In Fig. 5e we present the stable/unstable
boundary for variations of the tendon stiffness. In the baseline case,
K, = 650 kN. We consider 520 < K, < 780 kN. Figure 5e suggests
that a reduction in tendon stiffness promotes stability.

6) Constant pressure: In Fig. 5f, we present the stable/unstable
boundary for 85 < P, < 195 Pa. P, = 130 Pa is the baseline case.
At night, Py may drop to zero. However, large deviations from the
nominal value of 130 Paresultin large volume changes, which would
skew the stability results. Large variations in P, will be taken up in
future work.

Itis important to observe that certain parameters such as 6 or €, can
initiate the formation of a region of instability in the parameter space.
For example, consider IT, with €, = 0, a standard local lack of fit
(z > 1) and baseline parameters. In this case, E; = 404 MPa and all
designs in T1,; are found to be stable. If E is reduced to 162 MPa, all
designs in [T, remain stable . So varying E; by itself may not be
sufficient to trigger an instability, but if there is excess foreshortening
(or added gore width), then a lower value of E, will increase the
likelihood that a design is unstable.

D. Remarks on Parametric Studies

Our notion of stability is exactly that which is provided by the
principle of minimum total potential energy. Our mathematical
approach does not require the use of simplifying assumptions to
render a linearly elastic model tractable by analysis. Using
Definition 3.1, we are able to quantify the boundary between stable
and unstable designs and provide guidelines to the balloon designer,
avoiding designs that can lead to unstable equilibria when fully
inflated and fully deployed.

Uncertainties that arise with our predictions come from the fact
that the film for the gas envelope for NASA’s ULDB is nonlinearly
viscoelastic and that cost-effective fabrication introduces significant
structural imperfections. The former is difficult to include accurately
in the analysis. The latter is impossible to accurately account for in a
deterministic way. Both of these aspects, however, can be treated
satisfactorily in an approximate manner by performing a series of
analyses that bound the problem.

At this time it is hoped that the nonlinear viscoelasticity of the film
can be accounted for by estimating the viscoelastic response at few,
perhaps only two pivotal times for the investigation of stability of the
cyclically symmetric equilibrium, an early post transient time (for the
current choice of balloon skin, a three layer coextruded low density
polyethylene film at room temperature approximately 25 to 30 min
under maximum pressure) and some time sufficiently beyond the
expected service life.

Both aspects, viscoelasticity and the effect of structural imper-
fections, require exploratory sensitivity analysis before settling on a
design class for which safe design guidance can be provided. Our
studies provide only the starting point, though they do give an
indication that through careful balancing of the design parameters,
robustly deploying and structurally efficient large-scale super-
pressure pumpkin balloons are feasible.

Although much of the reporting on the stability of pumpkin shape
balloons has been done in terms of the fabricated shape, stability is
determined at the strained equilibrium configuration. Therefore it is
appropriate to investigate design classes with a certain characteristic
in the deformed configuration and report stability limits in terms of
geometric parameters of the equilibrium configuration. These
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investigations must be done for at least two instances. One early in
the flight, post viscoelastic transient, at maximum pressure load, and
one at the end of the projected service life (sufficiently extended to
provide a margin of safety for the design).

For a constant bulge radius design, the relevant analysis should be
at the deformed pressurized post transient state. The fabricated shape
can be backed out using the mechanical properties of the materials in
conjunction with the time under load assumptions made for the
viscoelastic film. Further creep of the film under loading over the
service life will increase the gore-width amplitude everywhere along
the gore length, which can make the balloon vulnerable to sudden
departure into an undesired configuration with catastrophic results.
However, the bulge arcs in a constant bulge radius design become
increasingly shallow toward the central axis of the balloon. Any
growth of arc width due to creep reduces the bulge radius at locations
closer to the central axis more rapidly, hence reduces stress more
rapidly and consequently arrests creep at locations closer to the

central axis earlier than at locations further from the central axis.
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Thus, the gore-width distribution becomes more favorable possibly
not only compensating but even overcompensating for the
detrimental effect of gore-width amplitude growth. The latter case
is very desirable as with elapsed service time the balloon becomes
less vulnerable to stability related problems and more robust to small
departures from irregularities to projected creep.

VII. Conclusions

Although the stability criteria of Definition 3.1 is a statement about
a fully deployed/fully inflated equilibrium configuration, it also says
something about the likelihood of a given design to deploy properly.
For if the desired float shape is a cyclically symmetric unstable
equilibrium configuration, and the real balloon corresponds, in all
aspects including the pressurization state to the analytical model,
then the balloon should not even be able to attain that cyclically
symmetric float shape through a normal ascent.
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In this paper we analyzed a balloon design that is very similar to

the NASA Phase IV-A pumpkin balloon. A NASA Phase IV-A .

ULDB balloon with 290 gores experienced deployment problems.
Our investigation identifies the Phase IV-A design as unstable.
Instability in the design was a consistent indicator of a balloon’s
inability to deploy properly, when we reviewed available flight data
for large balloons. In our studies, we found two balloons (Phase II-
IIl) that were clearly in the stable region deployed and two balloons
(Phase IV) clearly in the unstable region experienced deployment
problems. Our comparable Phase IV-A design falls close to the
border between stable and unstable equilibria. One design in which
the different fabrication instructions resulted in a gore-width shortfall
deployed (Flight 1580-PT), but the other Phase IV-A balloon
assumed an anomalous shape (Flight 517-NT). Both our analytical
observations made in this paper and the observations made earlier in
[6] are consistent with what has been observed on these flights.

Out sensitivity studies showed that an Euler-elastica constant
bulge radius design comparable in size to the Phase IV-A design is
sensitive with regard to added gore width or excessive tendon
foreshortening. The same studies showed that moderate tendon
foreshortening was not detrimental and a small amount of gore-width
shortfall reduced the likelihood of a design being unstable.

The results of this paper should be used as guidance in determining
the characteristics of a structurally efficient, robustly deploying class
of balloons defined by nondimensional parameters given the
currently available materials. For such a class reliable, theoretically
sound, graphical depictions of safe versus unsafe designs can be
produced by the method presented in this paper. These graphical
depictions will be very much like the plots shown in this paper. They
will distinguish safe and unsafe designs in parameter space. The
required margins of safety should be developed by probing the
sensitivity of the predictions to changes of parameters that constitute
departure from the chosen class. In the design space plot, the design
safety margin consideration will appear as a line on the safe side of
the theoretical boundary between safe designs and unsafe designs.
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