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Inverse bicontinuous cubic lyotropic phases are a complex solution to the dilemma faced by all self-assembled
water-amphiphile systems: how to satisfy the incompatible requirements for uniform interfacial curvature and uniform
molecular packing. The solution reached in this case is for the water-amphiphile interfaces to deform hyperbolically
onto triply periodic minimal surfaces. We have previously suggested that although the molecular packing in these
structures is rather uniform the relative phase behavior of the gyroid, double diamond, and primitive inverse bicontinuous
cubic phases can be understood in terms of subtle differences inpacking frustration. In this work, we have calculated
the packing frustration for these cubics under the constraint that their interfaces have constant mean curvature. We
find that the relative packing stress does indeed differ between phases. The gyroid cubic has the least packing stress,
and at low water volume fraction, the primitive cubic has the greatest packing stress. However, at very high water
volume fraction, the double diamond cubic becomes the structure with the greatest packing stress. We have tested
the model in two ways. For a system with a double diamond cubic phase in excess water, the addition of a hydrophobe
may release packing frustration and preferentially stabilize the primitive cubic, since this has previously been shown
to have lower curvature elastic energy. We have confirmed this prediction by adding the long chain alkane tricosane
to 1-monoolein in excess water. The model also predicts that if one were able to hydrate the double diamond cubic
to high water volume fractions, one should destabilize the phase with respect to the primitive cubic. We have found
that such highly swollen metastable bicontinuous cubic phases can be formed within onion vesicles. Data from
monoelaidin in excess water display a well-defined transition, with the primitive cubic appearing above a water volume
fraction of 0.75. Both of these results lend support to the proposition that differences in the packing frustration between
inverse bicontinuous cubic phases play a pivotal role in their relative phase stability.

Introduction

When mixed with water, biologically relevant amphiphiles
self-assemble to form a wide variety of lyotropic liquid crystalline
structures. These include the fluid lamellar phase,LR,1 the inverse
hexagonal phase,HII,2,3 the inverse bicontinuous cubic phases,
QII

P, QII
D, andQII

G,4 and the inverse micellar cubic phases,QII
m.5 All

of these structures are based upon lipid monolayers, the basic
building blocks of biological membranes. Of these, the most
complex are the inverse bicontinuous cubic phases which consist
of a pair of monolayers back-to-back (a bilayer) draped over the
primitive (P), double diamond (D), and gyroid (G) triply periodic
minimal surfaces (Figure 1). The inverse bicontinuous cubic
phases have been the subject of significant research for more
than two decades and have been found to occur in a wide variety
of amphiphilic systems6-8as well as in block copolymer systems.9

They are now believed to perform important biological func-

tions,10,11 they have been observed in cells and organelles,12,13

and the mechanism of their formation from the lamellar phase
is a fundamental step in the mechanism of membrane fusion and
fission.14,15 The inverse bicontinuous cubic phases have also
attracted considerable biotechnological interest in areas such as
protein crystallization16,17 and drug delivery.18

Despite significant advances, the energetic basis for the
observed phase behavior of the inverse bicontinuous cubic phases
is still poorly understood.19-24 In particular, consideration of the
competition between the incompatible demands for uniform,
homogeneous interfacial curvature and uniform chain packing
in lyotropic structures has not yet been applied to the inverse
bicontinuous cubic phases.21,25In this model, the total free energy
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of a phase is taken to be the sum of the curvature elastic energy
of the monolayer, the chain packing energy in the monolayer,
and all the nonlocal interaction energies between the monolayers,
such as the hydration repulsion energy between apposed polar
interfaces. One may then simplify the model without apparently
losing the essential features of relative phase behavior by only
considering the curvature elastic and packing free energies.

No one has yet used this idea to explain the relative phase
behavior of the inverse bicontinuous cubic phases, simply because
the chain extension variance in inverse bicontinuous cubic phases
of constant mean interfacial curvature has only been reported for
the D cubic,QII

D.26 We have therefore extended this work and
calculated the variances in chain extension inQII

D, QII
G, andQII

P.
We report both our determinations of the dimensionless variance
in chain extension for each structure and the distribution of the
chain extension over the bicontinuous structures.

In the second half of the paper, we have experimentally tested
the model. We have done this by combining our findings from
previously reported calculations of the curvature elastic energy
of inverse bicontinuous cubic phases of constant mean interfacial
curvature20 with the chain packing calculations reported here.
Our curvature elastic calculations indicated that, in excess water,

the QII
P phase should have lower curvature elastic energy than

theQII
D phase. Our calculations of the variance in chain extension

indicate that, for water volume fractions usually observed in
equilibrium measurements, the reverse is true for the chain packing
energy.Therefore, thismodelpredicts thatby relieving thepacking
stress in the equilibrium, excess waterQII

D phase we should be
able to stabilizeQII

P. We have experimentally tested this by
adding long chain alkane to the monoacylglyceride 1-monoolein
(1-MO) in water. Studied successively by Hyde and co-workers27

and by Caffrey’s group,28this system exhibits an extended region
of QII

D in excess water but noQII
P phase (Figure 2). Our

experiments show both that the free energy stored in the system
due to the raised curvature elastic stress inQII

D will melt the long
chain alkane and that once molten it enters the lyotropic
mesophase and stabilizes theQII

P phase.
A surprising result of our calculations of packing stress is that,

at very high water volume fractions well beyond the excess water
point observed in equilibrium phases, theQII

P phase should
become stabilized with respect to theQII

D phase. In recent
experiments where we have recorded the out-of-equilibrium
structural transformations that occur during the lamellar to
bicontinuous cubic transition, we have observed very high water
volume fraction structures. In particular, we have observed
metastable, swollen bicontinuous cubic phases within the core
ofmultilamellar (onion)vesiclesandas intermediatephasesduring
phase transitions of monoelaidin (ME) in water.29All of the data
we have acquired indicates that there is a clear transition from
QII

D to QII
P as water composition is increased, consistent with our

model.

Calculation of Variance in Chain Extension

Background Concepts.In the absence of any restraints on
the curvature of an amphiphilic monolayer, a spherical interface
will be formed unless the spontaneous curvature happens to be
zero, which would be quite unusual for a monolayer.30 In the
case of type II amphiphiles (those amphiphiles that tend to form
inverse phases), the interface bends toward the water and this
interfacial geometry reflects the fact that the amphiphiles seek
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Figure 1. Unit cells for the three inverse bicontinuous cubic
phases: (a) theQII

D phase with the space groupPn3m, (b) theQII
P

phase with the space groupIm3m, and (c) theQII
G phase, which

belongs to space groupIa3d. The amphiphilic monolayers draped
on either side of the underlying TPMS are indicated.

Figure 2. Phase diagram for 1-MO, drawn from the data of Briggs,
Chung, and Caffrey.28 The region designated byL2 is the inverse
micellar solution phase, and the region designated byLc is the lamellar
crystal phase. All other phases are defined in the text.
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to achieve a time-averaged conical shape where the head group
cross-sectional area is smaller than the cross-sectional area at the
chain terminus. In other words, amphiphiles exert a two-
dimensionally isotropic stress in the plane of the interface which,
in the absence of other physical constraints, gives rise to a
cylindrically symmetric molecular splay.

Sadoc and Charvolin31 pointed out that where we have one
amphiphilic species in water, it is impossible for inverse lyotropic
phases to simultaneously have uniform interfacial curvature (let
alone the preferred spherical interfacial geometry) and pack the
hydrophobic core of the phase uniformly. The simplest case to
illustrate this with is the inverse hexagonal phase (Figure 3).
Simple calculations of the two-dimensional hexagonal packing
of cylinders show that if the monolayer is to be cylindrical (such
that every amphiphile has the same average shape), 9% of the
hydrophobic interior of the phase will consist of empty “voids”
around the hexagonal interstices. The energetic cost of such
vacuum is too high to sustain, and the amphiphiles must alter
their shape (nonuniformly around the cylinder) to avoid this.
The packing frustration of a phase might therefore be defined
as the energy penalty encompassing any deformation of the
amphiphile away from its average preferred shape in that phase.
The concept of packing frustration has also been applied more
generically to other self-assembled systems such as block
copolymers32 and dendrons.33 The model we will be adopting
follows on from the work of Kirk, Gruner, and Stein25 and also
Duesing, Templer, and Seddon.21Here, the polar-apolar interface
has constant mean curvature (the mean curvature being half the
sum of the principal curvatures at any point) and the packing
frustration energy is determined by modeling the hydrocarbon
chains as Hookean springs, which have to be extended or
compressed from their average length to fill the hydrophobic
space. The surface averaged chain packing energy〈gp〉 is therefore
given by

wherel is the chain length at a point projected perpendicularly
away from the polar-apolar interface,〈l〉 is the average chain
length, A is the surface area of the interface over which the
variation in chain length must be integrated, andλ is the chain
stretching modulus. In this model, therefore, the energy tied up
in packing frustration is proportional to the variance in chain
extension. It should be noted that this is a very simplistic model,
since by maintaining a constant mean interfacial curvature and
extending/compressing chains we are varying molecular density.
In block copolymer systems, packing frustration has been assessed
in an alternative way by modeling the variation in curvature,
where a low standard deviation in the mean curvature,σH, reflects
a small degree of packing frustration.32,34 In this way, Matsen
et al. were able to demonstrate that the gyroid phase was more
stable than both the double-diamond and perforated-lamellar
phases.32 Preliminary experimental studies have also been per-
formed on block copolymer systems to measureσH for the gyroid
morphology; however, these were found to be significantly higher
than those predicted.35 More sophisticated models have been
developed,36,37but the Hookean model proposed here provides

us with an approachable means to gaining semiquantitative insight
into the energetics driving inverse lyotropic phase behavior.

Inverse Bicontinuous Cubics.It is generally agreed that the
surfaces defining the bilayer midplane of the inverse bicontinuous
cubic phases are the triply periodic minimal surfaces (TPMS),
in particular, the primitive or P surface forQII

P (crystallographic
symmetry Im3m), the double diamond or D surface forQII

D

(crystallographic symmetryPn3m), and the gyroid or G surface
for QII

G (crystallographic symmetryIa3d). The location of the
TPMSwithin thebilayerwasconfirmedexperimentallybyLuzzati
et al.38The TPMS at the bilayer midplane have a mean curvature
that is zero at every point. In other words, at any point the two
principal curvatures have equal magnitude, but opposite signs;
they are either saddle points or flat umbilic points. Surfaces
projected away from this midplane which are parallel to it (i.e.,
at a constant distance from it) have a surface that either is flat
(above the umbilic points) or has a net mean curvature toward
the water. The constant mean curvature surfaces, which vary in
distance from the midplane at different points, have the same
mean curvature toward the water at all points.

To model the geometry of inverse bicontinuous phases, a
monolayer must be placed on either side of the TPMS. Researchers
have used the two geometries mentioned above to achieve this:
a surface for the polar-apolar interface that is parallel to the
TPMS or one that has constant mean curvature at the polar-
apolar interface.26,39These two geometrical models of the interface
impose rather different conditions on the deformation of
amphiphiles in these phases. In the parallel interface model,
chain extension is uniform but there is significantly greater
variation in the anisotropic splay of the amphiphiles. For the
constant mean curvature interface, the variation in splay is
reduced, but at the cost of variations in chain extension.20 An
inherent consequence of the constant mean curvature surface
lying at the polar-apolar interface is that the contact area between
the lipids and water is minimized, therefore reducing the interfacial
free energy.(31) Sadoc, J. F.; Charvolin, J.J. Phys. II1986, 47, 683-691.
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〈gp〉 ) λ
∫A

(〈l〉 - l)2 dA

∫A
dA

(1)

Figure 3. Chain packing frustration is easily visualized by sketching
a cross section through theHII phase. For polar-apolar interfaces
with uniform circular cylindrical curvature, hydrocarbon chains must
deform away from their preferred length either by extension or by
compression to fill the interstitial voids represented by the light gray
regions. The water channels are shaded dark gray.
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It is more straightforward to calculate the geometry and
energetics of a parallel interface. This has therefore been the
geometry used in all reports19,22,24except for one:20 that of the
energetic behavior of the inverse bicontinuous cubic phases.
However, it has been remarked previously21 that since the
measured magnitude of the Gaussian curvature modulus is smaller
than the mean curvature modulus,30 one would conclude that
amphiphilic systems would tend toward interfaces of constant
mean curvature. Ultimately, a more refined model would allow
a competition between these two extreme geometries: that of
constant mean curvature and constant thickness. A system in
which the interfacial free energy dominated the chain stretching
modulus would be expected to adopt the constant mean curvature
geometry.

Constant mean curvature interfacial geometry breaks the
degeneracy in local energetics which is part and parcel of the
parallel interface model. This has already been shown for the
curvature elastic energy20 but not for the chain packing energy
of eq 1.

The packing frustration of the constant mean curvature surface
for QII

D as a function of hydration was first modeled by Anderson,
Gruner, and Leibler,26 and we follow their approach in
recalculating this and extending the calculations toQII

P andQII
G.

In their work, monolayer thickness is expressed as a dimensionless
quantity,l′, by setting the unit cell to have sides of unit length.
Equation 1 is then re-expressed in terms of the surface averages
of l′ and l′2

wherea is the lattice parameter andλ is the modulus for chain
extension (expressed in N m-1).

To first order approximation, Anderson, Gruner, and Leibler
found that the dimensionless variance in monolayer thickness
for QII

D was given by

whereφl is the amphiphile volume fraction.
Method of Calculation. We used the “Surface Evolver”

program40for both the generation of the constant mean curvature
and underlying minimal surfaces and the calculations of the
variation in bilayer thickness.41 The program evolves any given
surface toward its minimal surface energy, taking into account
constraints and boundary conditions that have been set. Suc-
cessively denser triangulations of the surface and iterations
produce an improved, more accurate, energetically minimized
surface. A complete description of the software can be found at
http://www.susqu.edu/brakke/evolver/html/.

The three periodic minimal surfaces, on which the bicontinuous
cubic phases are modeled, can be built up from a “fundamental
patch” or a “Flächenstu¨ck” that, under the appropriate symmetry
operations, can be tessellated in space to form the TPMS. The
number of fundamental patches required to form an entire surface
is therefore dependent on the space group of the minimal surface.
Data files previously written for the P and D minimal surfaces42

were modified, where the generating patch for theQII
P cubic

phase was twice that of the fundamental patch. In a similar way,
the generating patches for theQII

D andQII
G phases also consist of

a number of fundamental patches. The reason for the differences
in the number of fundamental patches in our generating patches
is so that the vertices and edges of the generating patch can move
during surface evolution, a necessary requirement. This can be
seen directly for the P and D patches shown in Figure 4. The
constraints set on the system are that the generating patch must
contact the walls of the bounding boxes, divide the volumes of
the boxes at the volume fraction imposed, and have uniform
mean curvature. To do this, the generating patch must be able
to slide up and down along the wall of the bounding box. The
G surface is more complex to generate. We have adapted a data
file written and generously provided by K. Groâe-Brauckmann
in which the fundamental domain is defined within a toroidal
box.43 This was possible, as shown by Ross44 and Groâe-
Brauckmann,45 since the gyroid divided by its translation is a
minimum of area under any deformations preserving volume.

In generating our constant mean curvature surfaces, we found
that as we approached the energetic minimum, it was both more
accurate and efficient to use a quadratic rather than linear
approximation for the energy of the perturbed surface. In practice,
this means switching on the “Hessian” command40 in “Surface
Evolver”. It is more sensitive to extremely small perturbations
than the first-order derivative but unsuitable when it is a long

(40) Brakke, K. A.Exp. Math.1992, 1, 141-165.
(41) Motherwell, M.-L. Exact computation of the Schwarz D, Schwarz P and

Schoen G minimal surfaces and their constant mean curvature families using
surface evolver: a model for inverse bicontinuous cubic phases used to calculate
variance in bilayer half-thickness. Imperial College London, 2001.

(42) Brakke, K. A.Philos. Trans. R. Soc. London, Ser. A1996, 354, 2143-
2157.

(43) Groâe-Brauckmann, K.Exp. Math.1997, 6, 33-50.
(44) Ross, M.Differ. Geom. Appl.1992, 2, 179-195.
(45) Groâe-Brauckmann, K.Math. Z.1993, 214, 527-565.

Figure 4. (a) Flächenstu¨ck and constraint lines for the primitive,
(b) generating patch and constraint lines for the diamond, and (c)
starting domain for the gyroid.

〈gp〉 ) λ(〈l′2〉 - 〈l′〉2)a2 (2)

〈l′2〉 - 〈l′〉2 ) 3.5× 10-4
φl

2 + ... (3)
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way from convergence. The interfacial area as a function of
volume fraction calculated in this manner agreed within the
precision of our calculations with those previously determined
by Anderson and co-workers46 using their own algorithms.

The average distance between the constant mean curvature
patch and the minimal surface for any of the three cubics was
determined by subtending normal vectors from each of the
triangular facets of the minimal surface in its finite-element
representation, and the intersection point was found. It should
be noted that the density of triangulation over the generating
patch after evolution is not constant, and therefore, to avoid bias,
a weighted statistic for the average monolayer thickness over the
surface of constant mean curvature was used

whereAT denotes the total area of the minimal surface from
which the normals are dropped,Ai is the area of theith triangular
facet on the minimal surface, andli the length of the vector
from the ith triangular facet to the bilayer midsurface. Further
details of the code used for these calculations are provided in
Appendix A.

Computed Results.We have computed the dimensionless
variance in chain extension,〈l′2〉 - 〈l′〉2. The results are tabulated
in Appendix A and plotted in Figure 5.

Forφw < 0.75, the dimensionless variance is the greatest for
QII

P and the least forQII
G. We can understand this behavior to

some extent by noting the nature of the junctions in the
bicontinuous cubic phases.QII

P has six channels meeting at a
junction,QII

D has four channels, andQII
G three channels (Figure

6). Asφw decreases, the interface around these junctions tends
more and more toward a sphere to maintain constant mean
curvature. In fact, this behavior can only be sustained down to
a limiting value ofφl before the channels are pinched off (Figure
6). This pinching off occurs at water volume fractions of 0.500,
0.262, and 0.112 forQII

P, QII
D, andQII

G, respectively. These values
and the images in Figure 6 show that it is more difficult to create
a spherical interface around junctions of lower connectivity and
that where the junction interface is spherical, pinching off occurs
at lower values ofφw. Pinching off is, of course, a reflection of
large scale variance in monolayer thickness, and we can get
some sense of this by plotting the minimum and maximum
dimensionless monolayer width as a function ofφw (Figure 7).

In Figure 8, we show the distribution in distances across the
constant mean curvature surface for the three phases which show

how packing frustration builds up around umbilic and saddle
points. The saddle points sit over the regions where the channels
pinch off and the umbilic points sit over the junction, showing
that there is chain extension around the channels and compensa-
tory chain compression around the junction.

This explanation for the behavior that we observe is satisfactory
for φw < 0.75, but there is an unexpected crossover between the
dimensionless variance in the monolayer thickness ofQII

P andQII
D

at φw ≈ 0.75. As far as we have been able to determine, the
observation is not an artifact of any computational imprecision
in our calculations and we must therefore conclude that it is
caused by a subtle geometrical effect that we are not yet able
to understand.

In the limit that φw tends to 1, the variance in monolayer
thickness does not tend to zero. In Figure 9, we have plotted our
calculations for the variance in monolayer thickness for the lipid
1-monoolein. To do this, one needs to multiply the dimensionless
variance bya2(φl) and the details of this are shown in Appendix
B. Once again, this result is unexpected, but it does not appear
to be an artifact of the precision of our calculations.

Experimental Section

To our knowledge, there have been no experimental measurements
that reveal the packing stress within inverse bicontinuous cubic

(46) Anderson, D. M.; Davis, H. T.; Scriven, L. E.; Nitsche, J. C. C.AdV.
Chem. Phys.1990, 77, 337-396.

Figure 5. Calculated dimensionless variance in monolayer thickness
for the three bicontinuous cubic phases with interfaces of constant
mean curvature. The solid line, dotted line, and dashed line relate
to the P, D, and G phases, respectively.

Figure 6. Constant mean curvature interfaces showing pinching at
low water composition: (a)QII

P atφw ) 0.25, (b)QII
D atφw ) 0.188,

and (c)QII
G at φw ) 0.117.

〈l〉 )
1

AT
∑

i

l iAi (4)
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phases. Our model predicts that there should be differences between
the different cubic phases. In particular, there are two semiquantitative
predictions that the model makes. The first of these is that, in a
system where theQII

D structure is the equilibrium excess water
phase, the addition of a component that will release packing stress
should stabilize theQII

P phase. We have done this by adding
tricosane to 1-MO in excess water. The second prediction of the
model is that, if one can hydrate theQII

D structure beyond its
equilibrium size, one will eventually destabilize theQII

D structure in
favor of QII

P. We have been fortuitous in observing this behavior
during recently reported work on out-of-equilibrium structural
intermediates that we find during the course of phase transitions
within multilamellar vesicles of ME in excess water.29

Materials. The monoacylglycerides 1-MO and ME were pur-
chased from Larodan AB (Malmo¨, Sweden) with a stated purity of
>99% and checked using thin layer chromatography. The long-
chain C23alkane tricosane was obtained from Sigma Aldrich (Dorset,
England) with a given purity of 99% and used as received. Triply
distilled and deionized water was used throughout for the hydration
of samples. High-performance liquid chromatography (HPLC) grade
solvents were procured from Sigma Aldrich with a purity of>99%.

1-MO/tricosane samples at differing molar ratios were made by
weighing the desired quantities of dry 1-MO and tricosane (with a
precision of(0.2 mg) to produce a combined weight of∼200 mg.
Both 1-MO and tricosane were then dissolved in cyclohexane, mixed,
dried down to a concentrated solution using N2 gas, and then
introduced into a 1.5 mm diameter glass X-ray capillary (W. Mu¨ller,
Berlin, Germany). The sample was lyophilized to produce a dry
powder and then weighed before adding twice the weight of water.
This ensured that the sample corresponded to an excess water mixture.
Finally, the X-ray capillary was flame-sealed, heated above the
melting point of tricosane (47.6°C),47 centrifuged up and down the
capillary, and then thermally cycled between-25 and 60°C to
ensure thorough and uniform mixing. All samples were stored at
4 °C and used within a week of preparation.

ME samples were made in glass vials by adding at least 90 wt
% water to the lipid. Homogenization was achieved by subjecting
the resulting mixture to at least 30 thermal cycles between-20 and
60°C. This resulted in samples composed of multilamellar (or onion)
vesicles with a narrow size distribution (cryo-TEM measurements
gave an average diameter≈ 200( 20 nm). These vesicular domains
were stable over a period of at least 1 day when stored at 4°C, and
measurements were made within this period. The measurements
made of the structural transformations that occur in this system in

the transit from the lamellar to theQII
D phase were made using

hydrostatic pressure jumps. Freshly cycled samples were thus housed
in a custom built high-pressure X-ray sample cell with flat diamond
windows, whose design has been described previously,48 with the
sample being held in a Teflon aperture between two Mylar windows.

X-ray Measurements.Small-angle X-ray diffraction measure-
ments on the 1-MO/tricosane system were used for definitive phase
determination and to obtain lattice parameters for all samples. Phase
identifications were further confirmed by polarizing microscopy
and examination of the birefringent textures in each phase.

The X-ray source was a GX-20 rotating anode generator (Nonius,
Netherlands) Ni-filtered for Cu KR radiation (λ ) 1.54 Å). Double-
mirror Franks optics were used to focus the radiation to a 190µm
point. Parasitic scatter was minimized by evacuation of all beamline
components. The temperature of the sample was servo-controlled
to a precision of(0.03°C using Peltier elements via a microcontroller
interface linked to a computer. The sample temperature and all other
elements involved in the X-ray experiments, such as shutter control
and data analysis, were managed using the TV4 software package
developed by E. F. Eikenberry (Paul Scherrer Institute/Swiss Light

(47) Small, D. M. The Physical Chemistry of Lipids, From Alkanes to
Phospholipids. InHandbook of Lipid Research; Hanahan, D. J., Ed.; Plenum
Press: New York, 1986; Vol. 4.

(48) Erbes, J.; Winter, R.; Rapp, G.Ber. BunsensGes. Phys. Chem.1996,
100, 1713-1722.

Figure 7. Calculated dimensionless minimum and maximum chain
extension from the constant mean curvature interface to the bilayer
midplane. Data forQII

G are shown as solid lines, those forQII
D are

shown as as dashed lines, and those forQII
P are shown as dotted lines.

The calculated behavior in every case appears to be linear, and there
is considerably more overlap in the region of chain extension between
QII

P andQII
D than there is betweenQII

G andQII
D.

Figure 8. Surface contour plot of the distribution of chain extension
and compression between the constant mean curvature interface and
the bilayer midplane for (a) the P phase, (b) the D phase, and (c)
the G phase. Black indicates chain extension, and white indicates
compression.
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Source, Switzerland) and S. M. Gruner (Cornell University, New
York) and modified by ourselves.49 The X-ray spacings were
calibrated against silver behenate (d ) 58.4 Å).

For the kinetic measurements on ME, pressure-jump experiments
were carried out at the ID02 beamline of the European Synchrotron
Radiation Facility (ESRF), Grenoble (France) using a high-pressure
X-ray sample cell capable of altering hydrostatic pressure within 7
ms.50

Experiments were carried out at a wavelength of 0.7514 Å with
beam dimensions of 200µm by 400µm in the vertical and horizontal
directions, respectively. Measurements were calibrated against silver
behenate and rat-tail collagen. This high energy beam maximizes
transmission through the diamond windows which surround the
sample in the high-pressure cell. Two-dimensional diffraction images
were recorded on an image-intensified charge-coupled device (CCD)
detector consisting of an X-ray image intensifier (Thomson TTE)
coupled to a FreLoN (fast-readout low-noise) CCD device developed
at the ESRF. The CCD has a frame rate of just under 10 frames per
second (1024× 1024 pixels).

Pressure jumps were made using an apparatus designed and built
at the University of Dortmund. The apparatus can perform
bidirectional pressure jumps of variable amplitude in a time of less
than 7 ms. Elevated hydrostatic pressures of between 0.1 and 4 kbar
(with a precision of(10 bar) were achieved by means of a manual
pump acting on a reservoir of water. Temperature control (with a
precision of(0.2 °C) was via a system of circulating water from
a thermostat through the temperature control jacket of the cell. A
detailed description of the apparatus is provided elsewhere.51

Results and Discussion

Release of Chain Packing Stress.Before heating, the 1-MO/
tricosane/excess water samples were all cooled to-15°C, which
induced the lamellar gel orLâ phase. This meant that all samples
were observed from a common baseline. Each sample was then
heated to 50°C, and above 15°C, measurements were taken at
1 °C intervals with a 15 min pause for sample equilibration at
each temperature. The phase behavior as a function of temperature
was determined for a range of alkane mole fractions in the interval,
0.02e xA e 0.35, wherexA is given by

andnA andnL are the moles of tricosane and 1-MO in the mixture,
respectively. The phase behavior at a number of values ofxA is
shown in Figure 10. Extremely low tricosane concentrations
exhibit similar phase behavior to that of the binary 1-MO/excess
water system at all temperatures studied (see Figure 2 for
comparison). However, atxA ) 0.04, theHII phase is induced
at 41°C (we show the data forxA ) 0.06). No significant change
in the phase behavior is then seen untilxA ) 0.10, at which point
theQII

P phase (Im3msymmetry) is observed between theLâ and
QII

D phases, first making its appearance at∼18 °C. At higher
tricosane mole fractions between 0.25e xA e 0.27, the inverse
micellar cubic, QII

m, phase withFd3m symmetry makes its
appearance. This is replaced by the inverse micellar,L2, phase
at higher tricosane concentrations.

The addition of a long-chain alkane is known to lower the
packing frustration of a lyotropic liquid-crystalline system by
partitioning into the regions otherwise filled by amphiphilic
hydrocarbon chains that have had to deform.21,23,25,52If the chain
packing frustration of a system is reduced, the desire to attain
a uniform and two-dimensionally isotropic interfacial curvature
will dominate.30

Without relief of the packing frustration, only theQII
D phase

is stable above 18°C. However, a low tricosane mole fraction
will stabilize the QII

P phase in preference toQII
D at this

temperature. We can understand this result from calculations of
the packing stress and curvature elastic energy of a constant
mean curvature interface. The computed packing stress inQII

P is
much greater than it is forQII

D (Figure 9). However, in this model,
the curvature elastic energy ofQII

P is less than that ofQII
D. Adding

tricosane has allowed the system to reduce the system’s overall
free energy by reducing the packing stress inQII

P. This then
destabilizesQII

D, which in the absence of any chain packing stress
is always the more energetically costly phase with respect toQII

P.
It should be remembered that the behavior reported here all

occurs below the normal melting point of tricosane. This indicates
that the magnitude of the packing energy inQII

P is significant and
is further evidence to support the hypothesis that it is the
differences in the packing and curvature elastic energies among
the inverse bicontinuous cubics that governs their phase behavior.

Although this report focuses on the packing stress in the inverse
bicontinuous cubic phases, the behavior of the other observed
inverse phases is also informative. The phase sequence recorded
from Figure 10d onward shows a clear sequence from bicon-
tinuous cubic toHII, QII

m, andL2. This is entirely consistent with
the increasing volume of tricosane that is needed to pack into
the stressed regions of these phases.21 The appearance of theHII

phase at lower volume mole fractions of tricosane thanQII
P

confirms previous measurements that indicated that the chain
packing energy in theHII phase was significantly greater than
that in the bicontinuous cubic phases.20

SwollenBicontinuousCubicStructures.Our resultsonhighly
swollen cubic structures were a serendipitous byproduct of
research being carried out on the structural dynamics of theLR

to QII
D phase transition.29 In preparing the ME samples, by the

methods described above, we observed that highly swollen
metastable inverse bicontinuous cubic phases were formed in
coexistence with theLR phase (Figure 11). The evidence reported
by us29 indicates that these swollen cubic phases are located in
the core of the onion vesicles53 formed by the sample processing
method used. It has been hypothesised that the bicontinuous(49) Seddon, J. M.; Templer, R. H.; Warrender, N. A.; Huang, Z.; Cevc, G.;

Marsh, D.Biochim. Biophys. Acta1997, 1327, 131-147.
(50) Squires, A. M.; Templer, R. H.; Seddon, J. M.; Woenkhaus, J.; Winter,

R.; Narayanan, T.; Finet, S.Phys. ReV. E 2005, 72.
(51) Woenckhaus, J.; Kohling, R.; Winter, R.; Thiyagarajan, P.; Finet, S.ReV.

Sci. Instrum.2000, 71, 3895-3899.

(52) Rand, R. P.; Fuller, N. L.; Gruner, S. M.; Parsegian, V. A.Biochemistry
1990, 29, 76-87.

(53) Diat, O.; Roux, D.; Nallet, F.J. Phys. II1993, 3, 1427-1452.

Figure 9. Calculated variance in chain extension of the three
bicontinuous cubic phases for the 1-MO system. The following values
were used for the calculations for the molecular geometry of 1-MO
(see Appendix B for details):Vn ) 465 Å3, An ) 33 Å2, andV )
612 Å.3 The solid line, dotted line, and dashed line relate to the P,
D, and G phases, respectively.

xA )
nA

nA + nL
(5)
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cubic phase is stretched under an isotropic tension exerted by
the multilamellar vesicle in which it is encased. Although these
swollen structures are metastable, they persist for the order of
1 day.

The first pertinent observation made on these swollen struc-
tures is that we observe bothQII

D andQII
P, with the former being

found in coexistence with theLR phase and the latter being found
in coexistence with theLâ phase. For the swollenQII

D structure,
we find that there is a very distinct maximum lattice parameter
of 220 ( 0.4 Å. The structure disappears upon increasing the
hydrostatic pressure or decreasing the temperature, both of
which act so as to swell the inverse bicontinuous structures.
Interestingly, we also observe a swollenQII

D structure as an
intermediate during theLR to QII

D phase transition and here we

also observe a maximum lattice parameter of 220( 0.4 Å. These
results indicate that there is an absolute stability limit to forming
the QII

D structure at this size. Using the expressions relating
lattice parameter and water volume fraction in Appendix B, we
can estimate the equivalent water composition by approximating
the lipid geometry of ME to that of 1-MO. This should be a good
approximation, and it estimates the maximum water composition
in the QII

D structure to beφw ) 0.74.
If we continue to increase hydrostatic pressure beyond the

limit where QII
D disappears, the enveloping lamellar vesicle

undergoes a chain freezing transition into theLâ phase. The
lamellar gel phase has a lower water content than the fluid lamellar
phase, and as a consequence, water must be expelled from between
the multilamellar stacks. Since we can cycle back down in pressure

Figure 10. Phase and structural behavior of 1-MO/tricosane mixtures in excess water. Phase and lattice parameters are recorded as a function
of temperature for tricosane compositions of (a)xA ) 0.02, (b)xA ) 0.06, (c)xA ) 0.10, (d)xA ) 0.25, (e)xA ) 0.27, and (f)xA ) 0.35.
The inverse micellar,L2, phase exists at high temperatures denoted by the region to the right of the vertical line in the phase diagrams of
both (e) and (f). The phases are denoted by the differing data point markers, that is, square grid,LR; tilted cross,HII; tilted square,Pn3m;
circle, Im3m; empty triangle,Fd3m; filled triangle,LR + nascentIm3m.
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and return to precisely the same structure and geometry, we
conclude that the water is expelled into the core of the onion
vesicle, into the region occupied by the swollen cubic structure.
Concomitant with the appearance of theLâ phase, we observe
the appearance of a swollenQII

P structure with a lattice parameter
of 310 ( 4 Å, which equates to a water composition in the
structure ofφw ) 0.76.

We have attempted, with partial success, to record the moment
of transition. In Figure 12, we show the integrated scattering
intensity pattern for a sample taken through a pressure decrease
from 1.5 to 1.3 kbar at 46.6°C. This jump takes the system from
a QII

P structure with a lattice parameter of 307 Å to theQII
D

structure. In making this transition, we lose definition in the
Bragg peaks of these structures, with a broadening of the
disappearing and emerging first-order peaks. Measurement of
the lattice parameters from these two peaks gives us estimates
of the lattice parameters ofQII

P and QII
D (313 and 216 Å,

respectively) which are entirely consistent with the more precise
static measurements.

We believe that the most straightforward interpretation of the
behavior we have reported above is that at a water composition
of approximatelyφw ) 0.75 the total free energies of theQII

D and
QII

P structures are equal. The constant mean curvature interfacial
geometry predicts precisely such a transition as a result of the
decreasing difference in the chain packing free energy of these
structures as they become swollen.

Conclusions
We have calculated that there are absolute and functional

differences in the packing stress of inverse bicontinuous cubic
phases modeled with interfaces of constant mean curvature. We
have been able to probe the predictions of this model in two
ways. In the first, we have shown that when packing stress is
reduced in theQII

D phase by addition of a long-chain alkane, the
QII

P phase is stabilized, consistent with the model. In the second,
we have shown that when highly swollenQII

D structures are
further hydrated, theQII

P structure is stabilized and this too is
predicted by the model.

Our results indicate that using a constant mean curvature model
for the interfacial geometry of the inverse bicontinuous cubic
phases may constitute a reasonable starting point for modeling
the energetics and explaining the phase behavior of these complex
structures. Combining the packing energy and curvature elastic
energy in the constant mean curvature model appears to provide
an explanation for the experimentally determined phase behavior
among the inverse bicontinuous cubic phases, and this will be
the subject of a future article.
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Appendix A
The variance at varying water volume fractions for each of

the three cubic phases was calculated using the Surface Evolver
executable file, downloadable from http://www.susqu.edu/brakke/
evolver/. The relevant .fe data file (all .fe files used are given
in the Supporting Information) for the desired cubic phase can
then be loaded into Surface Evolver.

Figure 11. Two-dimensional diffraction patterns of highly swollen
inverse bicontinuous structures obtained for the lipid system ME in
excess water using the ID02 High Brilliance beamline at the ESRF:
(a)QII

P structure (a ) 309 Å) coexisting with lamellar gel phase and
(b) swollenQII

D structure (a ) 220 Å) coexisting with the fluid
lamellar phase.

Figure 12. Plot of X-ray intensity with respect to the scattering
angle recorded during the transition from a highly swollenQII

P

structure to a highly swollenQII
D structure. The first-order peaks

from the fluid and gel lamellar phases can be seen in coexistence,
and the broadened first-order peaks of theQII

P and QII
D structures

appear at lower angles. The visible streaks are caused by the diamond
windows of the pressure cell used here.
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Before evolving the surfaces toward their minimum energy,
the desired water volume fraction can be altered by changing the
volume of body [1] in the data files for the P and D phases or
body [3] for the G phase, defined in the “bodies” section of the
pertinent data file. The water volume fraction is a simple multiple
of the body volume, specifically, 12, 2, and1/128 for the P, D,
and G surfaces, respectively.

Once one of the data files is loaded into Surface Evolver, the
command “run” will initiate the surface refinement and calculation
of the variance.

For each of our calculations, the triangulation of the P and D
patches was refined six times in each case, resulting in 1024
facets per patch (49 152 per unit cell), where, after each
refinement, the surface was evolved iteratively toward its
minimum energy. For the G surface, this level of accuracy was
not achievable, since the initial generating patch represented a
much larger surface area, and was already heavily triangulated.
Such refinement would therefore require both considerable
computing power and time; therefore, the G surface was refined
only three times, producing a surface with 24 576 facets.

For each phase, we varied the volume fraction between the
minimal surface and the constant mean curvature surface
systematically and obtained both the average monolayer thickness
and the average of the squared monolayer thickness at each volume
fraction. It should be noted that the volume fraction between the
minimal surface and the constant mean curvature surface is that
of a monolayer, whereas we are investigating inverse bicontinuous
cubic phases that consist of bilayers.

Important considerations in each case were the dimensions of
the whole unit cell, built up from the generating patch. The

calculated lengths and a resulting variance from each patch were
therefore scaled to be consistent with a cubic unit cell of side
length 1. For the D and P surfaces, the division factor was 4,
whereas for the G surface, it was 64 due to the unit cell created
in Evolver having the dimensions 8× 8 × 8 rather than 2× 2
× 2.

The calculated variances for the P, D, and G surfaces at varying
water volume fractions are given in Table A1.

Appendix B
The dimensionless variance has been calculated for the three

inverse bicontinuous cubic phases for a number of different water
volume fractions. To facilitate the use of our data for further
calculations, we have fitted them in each case as an even power
series with respect to the water volume fraction and obtained
values for the coefficients of the first four terms,ψ1, ψ2, ψ3, and
ψ4:

The first coefficient shown in Table B1 for theQII
D surface is

close to the value obtained by Anderson.26

To increase the region in which the fit is accurate within a
small error margin, the number of terms could be increased. For
this to have relevance to experimental systems, the variation of
the lattice parameter,a, with water volume fraction,φw, for the
system of interest must be known; see eq 2 in the main text. The
lattice parameter was obtained by combining two expressions
(eqs B2 and B3) for the surface area at the pivotal surface for
one monolayer within the unit cell,Sn, derived by Templer et
al.20 for constant mean curvature interfaces

where the coefficients,σi, have been previously obtained20 and
the volume fraction of the pivotal surface,φn, is proportional to
the ratio between the pivotal surface volume,νn, and the molecular
volume,ν, and can therefore be described byφn ) νn/ν(1 - φw).
The molecular area at the pivotal surface,An, together with the
pivotal surface volume and the molecular volume are unique for
each system, and they must be experimentally determined. For
1-monoolein, these are given asAn ) 33 Å2, νn ) 465 Å3, and
ν ) 612 Å.3

Finally, the lattice parameter for any given water volume
fraction is given by

Supporting Information Available: Surface Evolver data for
the P, D, and G minimal surfaces. This material is available free of
charge via the Internet at http://pubs.acs.org.

LA700355A

Table A1. Calculated Variances for the P, D, and G Surfaces at
Differing Water Volume Fractions

QII
P QII

D QII
G

1 0 0 0
0.98 9.35448× 10-8 1.36372× 10-7 4.0954× 10-8

0.96 3.75446× 10-7 5.44667× 10-7 1.691× 10-7

0.94 8.53576× 10-7 1.22388× 10-6 3.8062× 10-7

0.92 1.53941× 10-6 2.17277× 10-6 6.872× 10-7

0.9 2.45634× 10-6 3.39527× 10-6 1.0855× 10-6

0.88 3.62657× 10-6 4.87891× 10-6 1.676× 10-6

0.86 5.08564× 10-6 6.64644× 10-6 2.1696× 10-6

0.84 6.87717× 10-6 8.65749× 10-6 3.013× 10-6

0.82 9.05737× 10-6 1.09919× 10-5 3.6672× 10-6

0.8 1.16946× 10-5 1.35262× 10-5 4.746× 10-6

0.78 1.48843× 10-5 1.64193× 10-5 5.5887× 10-6

0.76 1.88162× 10-5 1.94653× 10-5 6.9685× 10-6

0.74 2.34128× 10-5 2.29172× 10-5 7.9848× 10-6

0.72 2.91062× 10-5 2.64738× 10-5 9.421× 10-6

0.7 3.60737× 10-5 3.04871× 10-5 1.0839× 10-5

0.68 4.46785× 10-5 3.45861× 10-5 1.251× 10-5

0.66 5.53966× 10-5 3.90589× 10-5 1.4202× 10-5

0.64 6.89035× 10-5 4.38374× 10-5 1.624× 10-5

0.62 8.61827× 10-5 4.89229× 10-5 1.7563× 10-5

0.6 1.16174× 10-4 5.43382× 10-5 1.947× 10-5

0.58 1.47255× 10-4 6.00839× 10-5 2.1173× 10-5

0.56 1.9027× 10-4 6.62322× 10-5 2.345× 10-5

0.54 2.53669× 10-4 7.28172× 10-5 2.5194× 10-5

0.52 3.57945× 10-4 7.99289× 10-5 2.778× 10-5

0.5 5.76058× 10-4 8.75779× 10-5

Table B1. Coefficients to Calculate the Variance in Monolayer Thickness of the Constant Mean Curvature Inverse Bicontinuous
Cubics

QII
P QII

D QII
G

ψ1 2.10286× 10-4 ( 1.63× 10-5 3.37618× 10-4 ( 3.25× 10-6 1.03399× 10-4 ( 2.47× 10-6

ψ2 2.58955× 10-3 ( 4.41× 10-4 3.37858× 10-5 ( 5.11× 10-5 4.0106× 10-4 ( 6.05× 10-5

ψ3 -1.66996× 10-2 ( 3.65× 10-3 -4.89167× 10-4 ( 2.46× 10-4 -2.64235× 10-3 ( 4.53× 10-4

ψ4 0.125123( 9.36× 10-3 2.16436× 10-3 ( 3.66× 10-4 5.28353× 10-3 ( 1.05× 10-3

usable range 0.500< φw < 1 0.262< φw < 1 0.112< φw < 1

R ) ψ1(1 - φw)2 + ψ2(1 - φw)4 + ψ3(1 - φw)6 + ψ4(1 -

φw)8 + ... (B1)

Sn ) a2∑
i)0

σiφn
2i (B2)

Sn )
An

2

a3(1 - φw)

ν
(B3)

a ) ( 2ν

An(1 - φw))∑i)0

σiφn
2i (B4)
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