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We consider the problem of estimating stresses in the ascent shape of an elastic high-altitude scientific balloon.
The balloon envelope consists of a number of long, flat, tapered shecets of polyethylene called gores that are sealed
cdge-to-cdge to form a complete shape. Because the film is so thin, it has zero bending stiffness and cannot
support compressions. In particular, the balloon film forms internal folds of excess material when the volume is
not sufficiently large. Because of these factors, a standard finite element approach will have difficulty computing
partially inflated balloon shapes. In our approach, we develop a variational principle for computing strained
balloon shapes that incorporates regions of folded material as a part of the geometric model. We can apply our

‘model to fully inflated or partially inflated configurations. The equilibrium shape is the solution of minimum energy
satisfying a given volume constraint. We apply our model to a design shape representative of those used in scientific
ballooning and compute a family of ascent configurations with regions of external contact for a volume as low as

22% of its float value.

Nomenclature
C = class of piecewise differentiable surfaces with
- symmetry of the dihedral group D,
Dy, = dihedral group; the group of motions
of the plane generated by rotations about
the origin through an angle of 2/ k
and reflections about some fixed axis
I = Young’s modulus of balloon film
¢ = balloon film thickness
Kiape = stiffness constant for load tape (units
of force)
N = number of facets in a triangulation of S,
n, = number of circumferential fibers
n, = number of gores in a complete balloon

(Ra(s), 0, = generating curve for design shape, where

'5.

Z,(8)) s is arclength, 0 <s < ¢,

F{,max = max; x; |

F2, max = maX; (-x,:%g +y;'2,2) /2 | |

Sy = reference configuration corresponding to S;

- = complele balloon surface

Y, = [undamental section of a balloon shape

S’ = reflection of Sy in the xz plane

S;(v;i ;) = fundamental section of a balloon shape defined by

the set of vertices {v; ;}

1 = facetin Sy

1, = facet in &,

lu| = J(zzf +- u% +- u%),- where w18 (1, us, uy)

V = gas volume enclosed by S _
%% ={(x,y,2) € R*|0<y < tan(mw/k)x)

Wi = weight density of balloon film

Wiane = weight density of load tape

I - =Poisson’s ratio of balloon film

_ L. Introduction
HE design shape of a large scientific balloon is typically based
on an axisymmetric model that was developed by researchers
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at the University of Minnesota in the 1950s (Ref. 1). A solution
of this model is referred to as a ¥ shape. If one assumes that all
of the tension is carried in the meridional direction and that the
circumferential stresses are zero, one obtains the so-called natural-
shape design.? We will consider a balloon desi gn based on a variation
of the natural-shape design, where the weight of the caps and load
tapes 1s included in the axisymmetric balloon envelope model. We
will assume that the weight due to all other structures (such as
venting ducts, fins, inflation tubes, backup tapes, etc.) is included in
the payload that is located at the base of the balloon.

Although the utility of the natural shape has been established by
humerous successtul missions using balloons based on the X-shape
design, the model has a number of limitations. In particular, the
length of the generating curve is assumed to be inextensible, and
the shape is assumed to be in static equilibrium. In a real balloon
at float, the film is strained, and the hoop stresses are not neces-
sarily zero. Near the top of the balloon, the film is under biaxial
tension and behaves like a standard membrane. Below this region,
the tension is predominantly in the meridional direction and the cir-

cumferential tension is negligible. As the gas bubble decreases, the

balloon envelope collapses, and the portion of the balloon that be-
haves like a standard membrane becomes smaller. The balloon film
cannot support a compressive load, and so the film will wrinkle and
form internal folds of excess material. _ -

At float, an elastic balloon will stretch and take on a shape that
is slightly taller and smaller in diameter than its design configu-
ration. In the lower portion of the balloon, where the tension is
predominantly in the meridional direction, the film will undergo
contraction in the circumferential direction due to Poisson’s effect.
strained float shapes and a family of ascent shapes were consid-
ered in Ref. 3, using a variation of the model presented here. For
float conditions, a standard finite element method applied to a shell
model (sce, e.g., Ref. 4) would predict small compressive stresses
In the bottom portion of the membrane. If the negative circumfer-
ential stresses are negligible, one could obtain a reasonable first
approximation to the stresses in the film for the special case at float.
However, for shapes even slightly below float, this method would
lead to poor results because the higher compressive stresses would
suggest a stiffness in the film that is unfounded. In our approach,
Internally folded material, regions of small or zero circumferential
tensions, and the contraction due to Poisson’s effect are handled
by our geometric model, and we are able to consider shapes well
below the float altitude. Ascent shges are characterized by large
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deformations but relatively small strains. We consider ascent shapes
in therange 0.22 < V/V,; < 1.00, where V is the volume of the shape

and V), is the volume of the design shape. Even though the range of

volumes considered here is large, the corresponding altitude varia-
tion is comparatively small. Suppose a balloon enclosmg a volume

of V;=29.5x 10% f* with a specific buoyancy (b; =2.253%-
04 1bf/ft?) is at a float altitude of 129,362 ft. By Archimedes’ princi-

ple, the total lift of the balloon is b;V,; = 6649 Ibf, where subscript

d indicates a parameter related to the design shape. A decrease

in volume to V =10.22V, with buoyancy b=>b,V,/V =1.0782e-
03 1bf/ft? (preserving bY =b,V,) corresponds to a lower altitude
of 99,101 ft. (The relation between altitude and buoyancy is tabu-
lated in Ref. 5.) This comparatively small altitude variation is due
to the low density of air at these altitudes. .
Wrinkling in the balloon film is negligible in comparison to the
magnitudes of typical folds that are observed. In this paper, we will
include a model for folds and ignore wrinkling in the balloon tfab-
ric. Although large deformations of membrane-like structures have
been studied theoretically and experimentally (see, e.g., Fig. 18.20,
Ref. 6), the loading conditions and size of a typical large smentiﬁc
balloon are nonstandard, especially the partially inflated configura-

tions. In particular, because the actual balloon filmis so thin (0.8-mil
polyethyleneisa typlcal balloon film material), any reasonably sized

model would require an extremely thin material.” For example, in a
model with a gore length of 6 ft, the material would be 8.0e-06 in.
thick. These are reasons to develop an accurate mathematical model
‘that is representative of how a real balloon behaves.

Any finite element method applied to large scientific balloons
will need to address the presence of negative compressive stresses.
For example, Schur® computed strained balloon shapes at the float
altitude using ABAQUS, removing compressions through the use of
a tension field. Note that our approach in this paper is fundamentally
different from that of a tension field. Tension field theory normally
deals with finely wrinkled membranes (see, e.g., Ref. 9). However,
for problems that we are interested in, the folds of excess materia!
are of significantly higher magnitude. In the special case of float
conditions, we find that the tension field approach® and our own
approach lead to the same solution for the strained float shape.’ The
advantage of our approach is that we can apply our strain energy
methods to ascent shape geometries with large regions ot folded
material that cannot be handled by standard finite element methods.
In this paper, ascent shapes are quasisteady-state equilibria, in the
sense that they are computed for a fixed altitude. We do not consider
the dynamics of the balloon flight. Although actual ascent geome-
tries include a variety of other large-scale structures (cyclic lobe
patterns, flat wing-like sections of collapsed balloon film hanging
“beneath the gas bubble), we will focus on cyclic shapes without
regions of internal contact that can be determined by studying a sin-
gle half-gore. We include new results on strained partially inflated
balloon shapes in the range 0.22 <V/V, <1.00. Our goals are to
estimate the shape of the balloon (including folds where they are
present) and to determine estimates of the stress distribution for a
variety of ascent shapes. For the range of shapes here, the stresses
in the exterior film surrounding the gas bubble and load tapes are
most important inasmuch as these structures carry the bulk of the
balloon system weight. '

Balloon shapes with large-scale features including a spherical top,
internally folded balloon fabric, a periodic lobe pattern surrounding

the gas bubble, and flat wing-like structures below the gas bub-

ble were considered in Refs. 10 and 11. Variational principles were
developed to model the geometries of fully inflated and partially
inflated configurations. The total energy of the balloon system was
modeled as the sum of the hydrostatic pressure potential due to the
lifting gas and the weight of the balloon film. By minimizing this en-

ergy subject to a volume constraint and certain material constraints,

the authors were able to compute solutions, called energy minimiz-
ing shapes (EM shapes), that possessed many features observed in
real balloons. The results in Refs. 10 and 11 demonstrated the fea-
sibility of utilizing a variational approach for computing batloon
‘shapes. However, these models were concerned primarily with the
geometry of balloon shapes and distribution of folded material. The
straining in the balloon film and load tapes was ignored. In Ref. 7,
the authors considered strained balloon shapes but only for float

conditions and with a model that restricted degrees of freedom for
vertices along the center of the deformed gore. In the present work,
a geometric model is used that utilizes more degrees of freedom

- along the center of the gore.

In reality, the balloon film 1s a nonlmear viscoelastic matenal but

~ we will model it as a linearly elastic material with a constant strain

model, using material properties typical of what would be expected

' for the float conditions. We ignore the stress response history of the
balloon’s ascent to float altitude. In our model, the balloon surface

is triangulated, using the gore structure as a fundamental element.
A flat reference configuration is associated with each gore in the
balloon shape, and so it is possible to associate a triangle in the
balloon surface with a unique triangle in the flat reference configu-
ration. A constant strain model is used to compute the strain energy
for the faceted balloon surface. An isotropic plane-stress constitu-
tive model is used to estimate the stress distribution. The load tapes
that run along the edges of the gores are modeled as linearly elastic
strings. The contributions to the eravitational potential energy that
are due to the weight of the load tapes and two external caps are
also included in the variational principle. The external caps are mod-
eled as an added thickness. One could incorporate finite elements
more sophisticated than the linear elements used here. However,
in the case of the float conditions where we can directly compare
our results with those computed by other methods, we find that we

~ obtained good results using linear elements and a constant strain

model.” For this reason, we retain linear elements.
To compute a family of strained balloon shapes, we begin with the
initial design shape and evolve a strained float shape. We then solve

a series of constrained minimization problems, decrementing the

volume at each step, obtaining a family of ascent shapes. At each

‘stage, the EM shape from the previous step is used as the initial

guess for the new volume. Because the balloon will deform from
its design shape, a small internal fold of excess material will form
along the center of each gore at float. As the volume decreases, the
length and depth of the fold increase. It is difficult to determine the
precise length and depth of the actual fold, and this makes the prob-
lem of estimating the stresses in the fold region even more difficult.
For example, the wrinkling in certain regions of the fold could be
of a higher amplitude than the wrinkling in the neighboring regions ‘
consisting of exterior facets. However, our model does provide an
estimate of the location and size of the fold in the reterence con-
figuration. The specifics of our model are discussed in Sec. 1. The
volumes considered here are sufficiently large to avoid internal con-
tact, and so we need not consider shapes with wing sections. We
find that internal contact occurs near YV =0.22V,.

The validity of our approach was established for the fully de-
ployed configuration in Ref. 7, and in this paper, we focus on ascent
configurations that can be modeled by a half-gore. The design cri-
teria are based primarily on conditions the balloon will encounter
at float. Among the strained shapes, at or near float (for example,
0.85<V/V,; <1.00), the maximum film stresses occur at V = V.
Beginning with the float altitude, we find that the maximum principal
stresses decrease initially with decreasing volume. However, once
the gas bubble gets sufficiently small (for example, V <0.58V;),
the maximum stresses increase with decreasing volume. In partic-
ular, we find that the maximum principal stresses for the shape
Y =0.22V); are larger than the maximum principal stresses for the
float shape V =V,.

In Sec. I11, we formulate a variational principle that includes grav-—
itational potential energy and strain energy. In Sec. IV, we compute
a numerical EM shape for float and a number of ascent shapes. In
Sec. V, we present some concluding remarks.

- II. Geometric Model

Before attempting to model the strain in a partially inflated balloon
shape, a model for the geometry of the balloon envelope that is

~representative of how a real balloon behaves is necessary. The model

should incorporate features used in the construction of real balloons,
such as the gore, external caps, and load tapes. A gore is a long, flat,
tapered thin sheet of polyethylene. (For the design shape in Sec. 1V,
it is nearly 600 ft long, over 8 ft wide at the widest point, and 0.8 mil
thick.) To make a complete shape, the gores are sealed edge to edge.
Load tapes run along the gore seams from the top to the bottom of
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the balloon. Normally, one, two, Or three external caps cover the top

15-30% of the balloon. The gore structure is important in modeling

partially inflated balloon shapes because internal folds form along

the centers of these structures. The present model differs from that
of Ref. 10 by including the strain energy of the film and load tapes.

Although Ref. 3 considers strain energy, the model presented here

allows for extra degrees of freedom for vertices that lie along the
center of the deformed gore. These differences are outlined in the

following subsections. For the convenience of the reader, we first

review our geometric model of balloon shapes.

Real balloon shapes near float are not axisymmetric but exhibit a
dihedral symmetry. In the following, let D, be the dihedral group.
D, is the group of motions of the plane generated by rotations about
the origin through an angle of 277/ k and reflections about some fixed
axis. Looking down onto the top of a balloon with D, symmetry and
lining up the central axis of the balloon with the z axis, one could
recognize a shape having the same symmetries as that of a regular
polygon with k sides. In this work, k is equal to the the number of
gores n,. In Fig. 1, we present a balloon shape with eight gores and
Ds symmetry. In Refs. 10 and 11, the basic building block was the

fundamental section S, and in this paper, Sy refers to a deformed

half-gore that is contained in the wedge-shaped region
WE = ((x,y,2) € R |0 <y < tan(rw/k)x}

S will be approximated by a faceted surface and, with no loss of
generality, will denote the faceted surface itself. S} 1S the mirror
image of Sy and is obtained by reflecting S¢ in the xz plane, 1.,
if (x, y, z) is a vertex in Sy, then (x, —y, z) is a vertex 1n S}. The
complete shape S is assembled from k copies of S and k copies of
S.’f using the symmetries of Dy. C; will denote the class of balloon
shapes with dihedral symmetry Dy, and S will denote a complete
shape in C;. Because we are considering a single half-gore in this
work. we will choose the convention that the deformed right gore
edge will lie in the plane y = tan(ir/k)x. Any excess material will
be treated as if it is contained within a fold lying in the xz plane.
This is a rough approximation but consistent with what is observed
in real balloons.

We first describe the geometry of a typical shape in C,. We do so
by focusing on the geometry of a half-gore. In Fig. 1a, we present

the right half of a flattened gore Sy with its tail located at the origin

(0, 0). In Fig. 1b, we present a curved but unstrained surface that 1s
formed by bending Sy to conform to the design profile. The right
edge of the goreliesinthe plane y = tan(s7r / k)x. No folds are present
in Fig. 1.

To facilitate modeling the straining in a deformed gore, we will

consider three configurations, S, (Fig. 2), Sy (Fig. 3), and Sy
(Fig. 4). The size of the fold 1s exaggerated for illustration pur-
poses. S is the flat reterence configuration, and Sy is the deformed
gore with excess material folded into the xz plane. S is an auxil-
iary configuration that will be used to estimate the straining in the

fold. The excess material in Sy is extended into the y <0 region.
In Fig. 4a, the excess material in Sy lies in the y < 0 region. The
portion of Fig. 4a outlined in dots lies behind the xz plane and 1s
identical with the exterior facets in Fig. 3a, forming the boundary
of the gas bubble. If the faceted configuration 5 is deformed 1nto
St (or Sy), the distortion will involve rigid-body displacements and
~ in-plane straining of the facets that make up S;. In Fig. 4, vertices
labeled v; o, vi 1, and v; » are collinear, whereas in Fig. 3, the corre-
sponding vertices u; o, Vi1 and v; » are not. The fold consisting of

excess material in Fig. 3ais based on observations and is represen-

tative of how excess material is stored. However, when folding the
material into the xz plane using Sy, we find higher than expected
stresses in folded facets. This was not as critical for the strained float
shape because the folded region is very small (see Ref. 7, where

straining of excess material was calculated after folding into the xZ

“plane). We cannot ignore the straining in the fold. However, based
" on observations, it should be less than the straining in the exterior

facets. If we estimate the straining of excess material using the rep-
resentation in Fig. 4, we find that the circumferential and meridional
stresses for facets of excess material in Sy are comparable to the

magnitudes of immediately adjacent exterior facets (see Sec. IV).
Because the distribution of folded material cannot be known exactly,

Vielo= Vier 1> Vi
Vio= Vi «Vi,
(0,0)—>

Fig. 1a Sy half-gore in the flat reference configuration.

\— _

|4 i+1,2

iv11 - Yisr0

e

Fig. 1b S}’ unstrained initial configuration (no folds).

(0,0,0) —>e
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a) Sy half-gore in the flat reference configuration

v Vi+1,1
i+1,0_> (_Vi+1.2
V.

Fig. 2 S/ configuration.

the strain energy in the folded material 1s better represcntcd by S /
than by Sy. The straining in the fold of the true balloon 1s most

likely less than the estimate based on Sy (or Sy). For these reasons,
our s)tram energy computations for excess material will be based on

S ;. We will discuss this aspect of the model in Sec. V. In Figs- b,

3b. and 4b, we have selected typical sections of Sy, Sy, amd Sy,

respectively, and labeled important quantities that will be ncdfd to

describe the geometries of these configurations. b
In all figures, we follow the convention that a vertex. m

reference configuration is denoted by an uppercase V and. l:r' ver-
tex in the deformed conﬁguratlon will be denoted by a ¥¥er-
case v. A vertex V; ; in Sy US% 18 identified with a venef_?e,i In
SpUS’ (or SfUSf) where j = 0, £1, X2 and? ......1,...;;.,_!: -
Perpendlcular to the center ams of a flat gore are th

C 12._ i():"’ | -----'l=-"1.,...

- The subscnpt i 1S the statlon number alono a mendlan. (esf!: "
C,=Cp.4+2=1(0,0). Along the nght boundary of a go
directed edges, @ - . R

| LEERE 7 1 .
SRR IR S
Eir=Vigi12— Vi2

defined by {v;;,i=1,.

- a) Sy deformed half-gore with excess material folded into xz plane

(_vi+1,2

b) Deformed quadrilateral between meridional stationiand 7 + 1

Fig. 3 &y configuration.

Vertices v; » = (x; 2, ¥i.2, Zi2) lie in the plane y = tan(;r/k)x, and
€i2 =Vit12 — Vi2 (2)

Because y; , = tan(;r/k)x; ,, we say that v;, has two degrees ot
freedom (corresponding to the free parameters x; ; and z; 7). In pre-
vious models, e.g., Ref. 3, vertex v; ; had zero degrees of freedom
because its position was determined by projecting v;; onto the xz

plane. In our treatment, we allow vertlces v; o to have three degrees
of freedom, i.e.,

vio = (Xi,0, Yi,0, Zi,0) D (3)

where x; o, i 0, and z; o are free but y; o <0 (see Fig. 4). Vertex v;
1s the point located at the 1ntersect10n of the xz plane and the line
connecting v; o and v; ;. | -

The vertex at the top of the balloon has one degree of freedom
because only its z component can vary. The vertex at the tail of the
balloon is assumed to be fixed. By construction, the depth of the
fold «; at each circumferential station is given by o; = -
The curve that marks the center of the deformed gore is M andis
n.+2}. The edge joining v; 411 tO Vi1
1Se; 1 =Vjy1.1— Vil- The load tape is located along the curve My
that is defined by {v,,z, =1,...,n.+2}. The edge joining v; and
Vi2 1S fi12 = Vi1 — Vi2.

= |v; o — Vi, | P
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xz—plane

b) I

Fig.4 Sy configuration: a) Sy deformed half-gore with excess material
(outlined in solid and dashed edges) penetrating xz plane, triangles out-
lined in dotted lines lie in the region y > 0; and b) deformed quadrilateral
between meridional station: and ¢ + 1.

~ Vertices v_,; and V_,; are determined by symmetry, 1.e., if
vi 2 = (Xi2, Yi2, Zi2) is a vertex in S¢ (or Sy), then v; _» = (x; 2,
—Yi2, Zi2) 1s a vertex in S’ (or S’ r). Similarly, if V;, =(Yi2, Zi2)

is a vertex in S¢, then V; _2 = (— Y, 2, Zi,) 1s a vertex in S’ Using

the symmetries of D,, we can then generate the portion of S that

forms the exterior of the balloon, i.e., that portion of the balloon

- that comes in contact with the atmosphere. In the following, we let
n; 1 be the vector normal to the curve M, at vertex v; ;, which is
‘computed in the following way: If ;- and e;-, , ; are unit vectors in
the xz plane perpendicular to ¢; ; and ¢; ;.| i, respectively, then

Lol
€1 T €11

nip1 = ik=2,...,nc+1

1 1 ’
- |ei,l + e, 1,1|

By convention, n; ; is chosen to be the inward-pointing unit vector.
Note that n; | - fi 12 1s not necessarily zero.

Vertices u; o form the crease of the internal fold in S and are
computed as '

Ui ="v;1 —o;n;

By construction, «; = |u; o — vi 1] =|vio — vi1]. In previous work,
e.g., Ref. 7, v; ; was determined by projecting v; ; onto the xz plane

and «; was a parameter to be determined. If the ith circumferen-

tial fiber is under sufficient tension, then «; = (0. Note that f; i,
need not be parallel to j= (0, 1, 0). Unlike previous work where

- we required the length of each circumferential fiber to be fixed [see

Eq. (2) of Ret. 10}, a stretchmg or contractlon of C; 1s allowed in

the present model.

In the flat reference conﬁguratlon we deﬁne

Vi --VxO“l“'“'"""""'“""‘"""Ci (4)
1 al+l.fl 12| |

where i=1,...,n.+ 1. Following our labeling convention, if

Vii=i1, Ziy), then V; 1 =(=Yi1, Z;1). We define F; =
Vi1 — Vi2, and so F; 1, in the flat reference configuration is identi-
fied with f; 12 in the deformed configuration. Note that both V; _,
and V; ; are identified with v; , and the vertex V; ( is identified with

Vi 0- When o; = O then V...I—--V,l--v,() and Vi1 = V;0- By COIl-

struction, o = Ope +2 = = (.
The design, 1.e., ﬂoat shape is a surface ot revolutlon generated
by a curve,

Ya(s) = (Ry(5), 0, Zy(s)), 0<s<Y, (5)

that is found by solving the standard X-shape model equations.
The design shape used here is based on a variation of the natural
shape, where the cap weight is modeled as an added thickness.
Before computing an EM shape, we define an unstrained curved
configuration and its corresponding flat reference configuration for
a half-gore. The unstrained curved shape of a half-gore is obtained
by intersecting the parametrized ruled surtace X (s, v) = y,;(s) + vJ,
where j= (0, 1, 0), v € R, and the wedge-shaped region Wk.

Partitioning the interval [0, £4], we have O=s5;<s; <:-- <
s,,‘_,+1 < Sn.+2=2~£4. To be consistent with the way m which a real
gore is constructed, we define

ri = Ry(si)/ cos(m/k), Zi = Z4(s;) (6)
i =1,...,n.4+ 2, and the following:

Ari =riy —ri, AZi = Zip1 — 2

(7)
As; = [(Ar)? + (Az)*]7, = Y412 — Yial
' !
AZ; = [(As)* — (AY)?]? (8)
ori=1,...,n.+ 1, where

Yi.2 = T Sin(ﬂ/k)s _ I = l,...,n¢+2 (9)

Setting Z,; » =0 and using Egs. (6-9), we obtain
Z,Z_le—l—ZAZk, i=2,...,n.+2  (10)

Note that the total length of a gore s edge 1n the reference conﬁgum '
ration 1S

nc+1

Ld = Z AS,

i=1

and, in general, is different from the arc length £, used to parame-
terize Eq. (5). '
The 1nitial configuration of the balloon shape is triangulated. A

superscript 0 of a vertex label indicates that the vertex is in the

(unstrained) initial conﬁguratlon In particular, vertlces in the un-
stramed triangulation are glven by

vy = (ricos(n/k), risinGr/k),z) (D

0, = (ricosGe/k),0,2) (12)
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, n. + 2. By construction, oz" =0and v}, = vy =v;_,

~for all i, and the v/, lie on the generating curve given by Eq. (5).
Vertices in the flat reference confl guratlon are glven by

Via = (le,z, ) (13)

Vz‘ n = (O;Z,- ) ST (14)

A typical fundamental section generated by the set {v; ;} will be
denoted Sy =S, (v; ;). We can consider Sy and Sy as parameter-
1zed by the same set of vertices {v; ;} because the u; ; can be deter-
mined from the v; ;. The initial unstrained configuration is denoted
by S% =S¢ (v};). As the balloon shape evolves to equilibrium, the
‘vertices v; ; can move, subject to the degrees of freedom described
earlier. '

Each triangle in the deformed configuration 7; is identified with a
triangle in the reference configuration 7; (see Figs. 2—4). If we let N
denote the total number of facets in a triangulation of a fundamental
section, we have ' '

Sr=\JT - (15)

=1

We can partition the set ’Z} ={7;,I=1, ..., N7} into two disjoint
subsets 77 and 7+, ! where 7/ denotes the set of triangles that form
the exterlor of the balloon and 7 . denotes the set of triangles that

formthe 1nternal folds. For the ran ge of volumes considered here, the

triangles7 ¢ are those on which the atmospheric pressure acts. The
triangles ’Z[ correspond to regions of external contact (the outside of
the balloon contacts 1tself). Note that triangles in 77 are constructed
- fromthe sets {v; |} and {v; »}, whereas triangles in f are constructed
from {u; o} and {v; ;}. We let N¢ denote the number of triangles in
77 and N7 denote the number of triangles in 7. Without loss of
generahty, we can assume that the triangles 7, are numbered so that
’Z}-e’]'f”, forl=l,...,N§

(16
T, € T, for [ =N3+1,..., Nt
where Ny = N} + N%. The triangles are labeled from bottom to
top. A similar convention will apply to triangles 7; and the reference
configuration (see Fig. 2). In particular, we let

Nt
Sf= UT[
=]

denote the preimage of S¢. A similar decomposition could be carried

out for S - Following the same conventions, we could define T ’ and
’]' ' noting 77

say that Ty, Ty, 4 | are adjacent in S¢.
A typical balloon system will include a number of external caps.

For results presented here, the balloon contains two caps. These

are modeled as an added thickness. To facilitate the mathematical
description of caps, we partition the collection of facets S; into

three disjoint sets (see Fig. 2), Sy =S5, US7 U §7.If a facet T} € S?,

then 7; contains t layers of film. For any 1 € S f» we define thet

“integer valued function

o(T) =1, for €S, te(l,2,3} (17
It 1s possible to model caps with different film material properties by
modifying our approach. However, in our applications, each layer

of film 1s assumed to have identical physical properties.

III. Problem Formulation

- The 1nclusion of strain energy in our analysis of balloon shapes
~ is done through a variational principle, assuming a constant strain
model for the balloon film and a linearly elastic string model for the
load tapes. In the following section, we will outline our variational
approach. Strain energy was included in Ref. 7, but only float shapes
were considered and the geometry was restricted to maintain a ruled
surface for the portion of the gore that contacts the atmosphere.

T" but ’T‘ ;ﬁT‘ because {v; 0} and {v; ;} are usej '
to form the facets T . By construct1on N = N& = 2n,, and we

Ascent shapes in the range 0.91 <V/V,; <1 were considered in
Ret. 3 using a model with fewer degrees of freedom. _
The total potential eneroy of a balloon conﬁ guration, E,,y, is the

~ sum of six terrns

' Buw = Ey+ Eoin + Fuge + Fop + Supes + S~ (18)

where E,, is the potential energy due to the lifting gas, i.e., the
hydrostatic pressure potential, Eg, is the gravitational potential
energy of the film; E,,,. is the gravitational potential energy of the
load tapes; E.op 1s the gravitational potential energy of the top fitting;

Supes 18 the strain energy of the load tapes; and S, is the strain

energy of the balloon film. In the following sections, we give a brief |
description of each of these quantities and indicate how they are
computed numerrcally

A. Hydrostatic Pressure Potentlal _
For a balloon at a fixed altitude, it is reasonable to assume that
the densities of the lifting gas and ambient air ( Pgas and 0y, r€spec-
tively) are constant over the height of the balloon. In this case, the
pressure difference across the balloon film at level z is given by

P = —g(pair — Peas) (z — 20) o 9)

where g is acceleration due to gravity and z; indicates the location
of the zero-pressure level, e.g., see Eq. (7), p. IL.5, Ref. 12. The
specific buoyancy at float will be denoted by b, = g(04ir — 0gas). In
this work, we assume that zy =0 for our EM shapes. In this case,

- the potential energy of the lifting gas is given by

E o = —b, / f f zdV (20)
V | |

where V 1s the region occupled by the gas bubble. Equation (20)
is the potential for hydrostatic pressure.!® Using the divergence the-
orem and the symmetries of S, Eq. (20) can be replaced by a sum
of surface integrals!!

- _
Ezzk .dA (21)

~where dA =ndA, where 7 is normal to S, dA is the surface area

measure on S, and (k = 0, 0, 1). For trlangular facets, terms in Eq
(21) can be computed exactly.
Toreflect the denser atmosphere at a lower altitude corresponding

to volume V when V < V), the coefficient b, in Eq. (20) 1S replaced .
by

b=byV,;/V . (22)

For ascent shapes, we will assume that the Zero pressure level re-
mains at the base of the balloon.

B. Gravitational Potential Energy -
The gravitational potential energy due to the weight of the balloon

film 1s f _
Em = // WeimZ dS (23)

where the film weight density is wg,. A cap is asobset of .S that
covers the top portion of the balloon. If the balloon system in-

cludes several caps, their contribution to the gravitational potentialin =~

Eq. (23) can be incorporated by appropriately modifying the film
weight density. We will assume that one cap covers the top 29%
of the balloon and a second covers the top 27%. Partitioning the

collection of facets as described in Sec. IT and using the function w“ o

[see Eq. (17)], we obtarn the following approximation for Egp:

Egim = 2kwiin Zz,w(r,) aea(T)  (24)
o l-l |

where z; 1s the z component of the centroid of 7.
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The grawtatlonal potential energy due to the weight of the load
tapes is -

o . | L, :
Etapc::kwt,ape/ | Otz(s)-kds o
- Jo

where Wy is the load tape weight density, a3 (s) € R’ for0 <s < L,
is a parameterization of the curve M, s 1s the arc length in the
flat reference configuration, and k = (0, 0, 1). The z component of
the centroid corresponding to the edge e; > 1S Z; 2 = 3 L(zis 1,2+ 2i2).

The contribution to the gravitational potential of this segment is
WpeZi 2| Ei 2|, Where Ej; ; is defined in Eq. (1). The energy of M, is

nc+1

Whape Z Zi2| Ei 2

i =1
The gravitational potential energy of the load tapes in a complete
shape 1s

nc'l"l

Etape — kwtapc E Zi,ZlEi,Zl
i=1

(25)

C. Load Tape Strain Energy
We assume that a fiber segment in a load tape behaves like a
linearly elastic string with stiffness constant K. It s* denotes the
arc length along a deformed meridional fiber and s the corresponding
arc length in the undeformed state, the nonlinear strain i1s given
by & = (ds** — ds?)/(2ds?) (see p. 58, Ref. 14). In the case of a
linearly elastic string, we can assume that (ds* + ds)/(2ds) =~ 1,
in which case we have ¢ =~ (ds* — ds)/ds. In our applications, the
fiber segments are straight lines, and so the linearized strain of the
ith segment in M is

gi = (leial = |Ei2D/IEial, i=1,...,n.+1  (26)

where E; ; and e; , are defined in Egs. (1) and (2), respectively. The
correspondmg strain energy for the ith segment of the load tape
running along M, with stiffness constant Kiype is 2 K ape (&)*|E; 2|

Normally, for a linearly elastic cable, the tensmn is given by

T =AE_ 1. (S —Sp) /Sy (p. 18, Ref. 14). A 1s the cross-sectional

area of the cable, and E ., i1s the modulus of elasticity of the ca-
ble. A load tape consists of several polyethylene fibers. The value
for K,pe is determined experimentally and is equivalent to AE i,
having the units of pound force (1bf). It follows that the strain energy
of the load tapes in a complete shape1s

1 ﬂc+l
Stapcs - 'ithapc Z (81 2|E12|

| =1

(27)

‘D. Balloon Film Strain Energy

~ In what follows, we will assume that the balloon film is made up of
a single layer. Using the function w defined in the preceding section,
we will add the contribution of the caps. In our work, we will use a
standard measure of shell strain energy, e.g., Eq. (1.1.20) of Ref. 4.
However, because the balloon film has negligible bending stiffness,
we drop terms related to the bending energy. Retaining only the first
integral in Eq. (1.1.20) of Ref. 4 and assuming a linearly elastic
‘isotropic material, the film strain energy Saim Can be written as

Sfiim = L f [ n(u) : y(u)dA®
2 ) Ja

where n is the tensor of tangential stress resultants, 4y is the Cauchy—
Green strain tensor, : is the tensor inner product, and €2 1s the param-
eter space for the flat reference configuration.’ The vector field u in
Eq. (28) denotes the displacement field that maps a triangle in the
reference configuration to one in the deformed configuration. e
will not use u directly in our derivation of an expression for Sqim,
~ but we will compute the contribution to Sg, for a typical facet and
then sum the results to obtain an approximation of the total strain
- energy of S. The contravariant components of n are denoted by n

andn : y —-nﬁya , where

nf = g Vi (29)

af
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Fig.5 Standard triangle (2° and the mapping, g = Mp My 7 p

E%PAe s the tensor of elastic moduli, i.e.,
ek
2(1 +v)

2V
1 —v

Eaﬁlu —

[a‘”aﬁ“ + a®*aP* + a“ﬁa“"] (30)

where a,g =87 is the first fundamental form of the reference con-
figuration. Because we use flat facets, the second fundamental form
by 18 zero on each triangle.

To derive an expression for the strain energy, we define all of the
geometric and physical quantities for a typical facet. Let p € T; and
g € ;. Let My, be the linear map that takes a standard triangle §2¢
with sidesi= (1, 0) and j= (0, 1) to T; € S¢, and let Mp ; be the lin-
ear map that takes the 2¢ to a triangle in the deformed configuration

7;. The mapping p — q is given by

q-—-MmMR,p

as shown in Fig. 5. The sides of 7; are ¢, and ¢, and these are

identified with f;; and f, ;, the corresponding sides of 7;. Because

r{;

" 1S

~ the mapping p — ¢ is linear, the deformation gradient on the /th

facet 1s

Jaq

ap = Mp, Mg,

F, =

In matrix form, the Cauchy strainis

C, F|F,
the Cauchy—Green strain is
E =3 -1
and the tensor of tangential stress resultants is

Ny =[eE/(1 — v = v)E; + v tr(E)I]

The matrices N, and E; are symmetric. By the spectral representa-
t10n we have

_ T T
Ny = pynyny; + Ko ng ny

where n;; and n,; are orthonormal vectors. The eigenvalues of N,
(denoted by w;; and i, ;) are the principal stress resultants.!> See
Appendix A of Ref. 7 for a further discussion. Because n(x) and
~(u) are constant on each 7; in a constant strain model we can
approxunate Eq. (28) by

ZkZ

l--l

f n(Tp) : y(T) dA®
T,

The contribution of external caps can be added by using the function
. In this case, the total strain energy (based on configuration Sy)

2k Z ~o(T)QV, : Ey)area(T) - 6D

| 1--1

where n(17) : y(T;) =N, : E,. In Ref. 7, the deformed gore was
wodeled as a ruled surface and the strain energy was based on
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Eq. (31). In our present work, we base our strain energy approx-
imation on the auxiliary configuration Sy, and so if 7; € 77, we let
E, and N; represent the corresponding Cauchy—Green straln and
tangential stress resultants, respectively. The film strain energy ap-
prox1mat10n based on S fis

| | NT | '
Sﬁlrn = 2k Z Lomov - B area(Y})
| l==-l

+ 2k Z —wa})(N, E)area(Ty) (32)

l-NT+1
where we use N, and E; for N2+ 1 <! <Nz. By construction,

Ny=N;and E; =E, for 1 <] < Nz.In Sec. IV, we discuss our rea-
sons for basing the strain energy of ascent shapes on Sy.

E. Variational Principle

The discrete form of the total energy of S is denoted by E(v; ;) '

and is obtained by substituting Egs. (21), (24), (25), (27), and (32)
into Eq. (18). In particular, we have

E(vi,j) — Egas + Eﬁlm + Etape -+ Stapcs + Sﬁlm Ztop Wiop (33)

The last term 1s the gravitational potential due to the top fitting of
the balloon (w,,, 1s the weight of the fitting, and z,,p = 25 5. +2 18 its
height of above the base).

The gas bubble is partitioned into tetrahedra, all of which have
a common vertex located on the z axis inside the gas bubble. The
[th tetrahedron has facet 7, as base, and its volume is V,. The total
volume of the gas bubble V is constrained so that

T
V—2kY V=0 (34)

=1
Upper and lower bounds in the form

Ib

ub o,
vl,() :_<_ U,,() S vi,()? [ = 2, e s o g 2nc + ].
o - (35)
b b .
;5 < V2 < Yy, I =2,...,2n.+1

are imposed. Vector inequalities are interpreted componentwise, and

bounds in Eq. (35) are applied only to free parameters. The upper
and lower bounds are chosen sufficiently large so they do not at-
fect the solution. The variational principle that is used to compute
the numerical EM shapes presented in Sec. IV is given by the fol-

lowing. Problem (x): For S(v; ;) € Cx, minimize: E (v; j), subjectto

G (v; ;) =0, satisfying Eq. (35), where G is defined by the left-hanc
side of Eq. (34). MATLAB software (constr) is used to solve Prob-
lem (*). Strictly speaking, the bounds in Eq. (35) are not required
by constr. However, from a practical standpoint, specifying Eq. (35)
accelerates the solution process by reducing the size of the set of
feasible solutions.

IV. Numerical Solutions

~ For our calculations, we will consider a 29.5 x 10° ft°, two-cap
~ balloon based on a standard large scientific balloon design. The par-

ticular design is based on a variation of the natural shape, where
the caps are modeled as added thickness and the tail of the gore
is tapered. The balloon film 1s 0.8-mil polyethylene. We use a spe-
cific buoyancy that corresponds to a float altitude of 129,362 ft (see
p. 73 of Ref. 5). Material constants such as Poisson’s ratio v, Young's
modulus E, and load tape stiffness Ky, are highly temperature de-
pendent, and we use values appropriate for the float condition, 1.€.,
E =35,969 psi, v =0.82, and K, = 5900 Ibf. The payload is ad-
justed appropriately so that the balloon 1s in equilibrium at float.

Here, the payload includes the weight of the venting ducts, fins, .

inflation tubes, backup tapes, etc. For our design shape, the payload
is 3559 1bf, the total film weight is 2509 1bf, the total tape weight
1s 520 1bf, and the weight of the t0p fitting 1s 30 1bf; see Table 1 for
additional parameter values.

For our computations, we assume 38 circumferential fibers
(n. = 38) uniformly distributed along a meridian at intervals -f

Table 1l Parameter values

Description . Variable Value
Young’s modulus, psi . - E 35969
- Poisson’sratio v 03
- Film weight density, ]bf/ft2 - wfm  0.0038400
- Load tape weight density, lbf/ft - wyape  0.0054835
- Load tape stiffness pararneter Ibf Kuape 559500
- - Film thickness, in. h e  0.0008
Specific buoyancy at float, Ibf/£e b, 2.2539-4
Volume at float, 10° ft3 Vioat 29.5
Number of gores ' ng 159
Design gore length, ft La 596.859
ft

450

400t

350}

300

250

200

150

100
50
O

200 -150 -100 -50 O 50 100 150 200 't

Fig. 6 Unstrained design shape (. . . .), strained shapes (------), 0. 22 <
V/ vd < 1.00; ® marks the range of the fold.

roughly 15.3 ft. The results of our computations are summarized in
Table 2, where we present data on a strained float shape (V/V,; = 1.0)
and strained ascent shapes (0.22 <V/V,; < 1.00). To compute the
strained float shape, we use the unstrained curved reference config-
uration as an initial guess and solve Problem (x). We then decrement
the volume in steps of size (at most) AY =—0.015V, and compute
an energy-minimizing shape at each stage, using the EM shape from
the previous step as the starting shape for the current target volume.
We find that, if we try to change the volume by too large an amount
the solution process would diverge.

In Fig. 6, we present profiles of the design shape and the strained
EM shape corresponding to 0.22 <V/V,; <1.00. The principal
stress resultants of the two exterior triangles located at the same
station are averaged, and it is this average value that is plotted in
Figs 7. We denote the averaged principal stress resultants by ;t,. g

where ﬂrl = Hr 1> urnc = Hr 2n-

u'rq 2(u*r2q+u'r2q+l) r=1,2
for q=2, ...,n.—1. In Sy, the triangles T,, and T,,,, form a

quadrilateral, and we can interpret it,, as measured at the cen-
troid of the gth quadnlateral. (Note that 75,, 75, need not lie
in the same plane.) Following the numbering scheme already intro-
duced, averaged principal stress resultants can be computed for inte-
rior quadrilaterals of excess material. We observe by examining the

“eigenvectors corresponding to wy; and p,; that py ; corresponds to

the circumferential direction and (£, ; corresponds to the meridional

direction for the float configuration. However, for ascent shapes, the

direction of the principal stress resultants need not coincide with the

meridional and circumferential directions. The corners in the graphs

of the averaged principal stress resultants near s =400 ft in Figs. 7
correspond to the edge of the caps. The corners are not present when
the balloon 1s without caps.
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Table 2 Strained EM shapes; units of energy are foot-Ibf

1909

Quantity Design V=V, 0.85Vy
Stlm 0 3,310 2,673
~ Stapes 0 - 1,575 3,754
Egas -1,356,014 —1,400,190 —1,655,352
Esim 599,929 632,681 - 710,374
Etape 101,657 104,673 118,836
Eop 10,350 10,707  11,567.74
E'otal —654.426  —641,242  —807,904
max; Vi i 0 - 0.0317 0.5110
5. 0 -0.0197 —0.0166
81 0 0.00208 0.00178
5 0 - 0.00500 0.00357
En 0 0.00192 0.00166
Qj’ 0 0.00665 0.00483
84 0 0.00470 0.00378
8y, deg 57.460 56.431 39.994
Ztop ' 345.00 356.902 393.632
I, max 211.88 209.667 193.930
2. max 211.93 209.708 193.716
b1/ _ I —— - V=0.22V_
1.2 | ‘, (—-V—OZSV
1t | . | | « V=1, OOV
0_8 /'" ¢« V=0, 85V
0 100 200 300 400 _ 500 600 =
a) [11,4 circumferential
bthin______ . _. . _. o
1.2 /.I../ :v—o'zsv
1 '(—-V_IOOV
0.8+ V;___ - (——\/-.10:‘:3"5Vd.1
0.6} |
0.4+
0.2
O 100 200 300 400 500 600

b) j12 , meridional

Fig. 7 Averaged principal stress resultants, where s is arclength mea-

sured in reference configuration; 0.22 < V/V,; < 1.00; ® marks the
range of the fold. |

Before discussing our numerical results, we first comment on the
differences between solutions of Problem (x) when Eq. (31) (Shim
based on S as in Ref. 7) and Eq. (32) (Sfim based on S;) are
used to evolve a strained float shape. If Eq. (32) 1s used, the corre-
sponding energy minimizing shape is 0.1 ft taller and 0.4 ft smaller
in diameter, the fold is about 45 ft longer, and the maximum fold
depth is about the same (0.03 ft). Geometrically, the shapes S and
S ; are the same. The total strain energy and the the maximum aver-
aged meridional stress resultants are the same (0.95 1bf/in.) for both
shapes. However, for triangles that bound the gas bubble, the cir-
cumferential stresses are higher in magnitude when Eq. (31) is used.
The size of the fold 1s so small that corresponding stress resultants
are unreliable. Whereas for strained float shapes we conclude that

results based on S and on S are essentially the same, this is not
the case as the volume decreases. If Eq. (31) is used for modeling
ascent shapes, the circumferential stress resultants for solutions are
greater in magnitude than the corresponding results for a solution
based on Eq. (32). Whereas Sqi, decreases with decreasing volume

using S f»when S f 1s used, Sqim Increases with decreasing volume.

Higher compressive stresses are observed in shapes based on Eq.
(31). In addition, spikes in the principal stress resultants occur near

the points where the internal fold initiates and terminates when the

strain energy is based on S¢. We believe this is due to the inability of
the geometric model to adapt adequately to the equilibrium position.
In observations of a demonstrator balloon, we noted transition areas

that bridge subregions of external contact, i.e., folds, and regions of |

0.58V,; 0.40V,; - 0.25V, 0.22Vy
1,814 1,677 1,627 1,617
2,850 2,898 3,075 3,098
—-2,013,271 -2,259,769 -2,514,006 -2,575,507
790,186 826,349 852,913 858,160
133,370 139,900 - 144,693 145,648
13,119 13870 ' 14,548 14,698
—1,071,932 —1,275,073 —1,497,150 —1,552,285
1.4744  2.2249 - 2.9743 3.1153
-0.0138  —-0.0132 ~0.01337  —0.013340
0.00184 0.00217  0.002418 - 0.002685
0.00314 0.003187 0.003289 0.003304
0.00172 0.001959  0.00221 0.002403
0.00397  0.003925 0.00434 0.004393
0.00324 0.003238 0.00331 0.003328
17.421 6.6025 1.357 0.8300
- 437.290 462.343 484.939 489.935
166.548 145.676 123.464 117.831
166.406 145.549 123.431 117.802
1.2
1
0.8}
0.6}
0.4
0.2
0 100 = 200 300 400 500

a) 11 4 circumferential

i.2

1
0.8

0.6
0.4
0.2

L0
0 100

b) fi2, meridional

Fig. 8 Averaged principal stress resultants, where s is arclength mea-
sured in reference configuration; outside facets ( ), fold facets
(-X-=X=); VIV;=0.36; @ marks the range of the fold. -

niaxial tension. Our model would not be able to handle such features.

- For the class of ascent shapes considered, we find that results based

onS f are more representative of how the real balloon behaves, and
so Eqg. (32) will be used to approximate the strain energy in the film
for ascent shapes. . -

Figure 8 shows the averaged principal stresses for both the folded
(interior) facets and exterior facets for the case YV =0.36V,. From
Fig. 8, we see that, when an internal fold is present, the principal
stress resultants of a fold are comparable to those of the adjacent
exterior triangles (other cases in Table 2 are very similar). Figure 9
shows one-half of the load tape tension for each of our computed
EM shapes. In Figs. 6-9, the points where the internal fold initiates
and terminates are indicated with the symbol ®. On examining the
strained float shape in Fig. 6, we find the balloon is slightly concave
below the station where the internal fold initiates. This explains why
both principal stress resultants are positive near the tail of the bal-
loon. This 1s due to a tapering in the design shape. For the design
that we used, the tail of the balloon is nearly that of a cone, and so
there 1s very little excess material in this region at float. When the

gores are not tapered [see, e.g., case I(b) of Ref. 7], we find that this -
behavior does not occur. In any case, this effect near the tail of the

balloon at float is due to the design shape, not the solution process. N

V. Discussion _
At float conditions, we compute maximum principal stress resul-
t=1ts of approximately 1 1bf/in. Initially, as the volume decreases,
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V=0.22V p

V=0.25V q

V=1.00V
V=0.85V;

2 _

0

Fig. 9 One-half load tape tension for 0.22 < V/V,; < 1.00; ® marks
the range of the fold. - |

we observe a drop in the maximum principal stress resultants for
the corresponding ascent shapes (for 0.85 <V/V, < 1.0). This was
also observed in Ref. 3, where a slightly different model was used.
However, when the volume goes below a certain critical level, we
see that the maximum principal stress resultants begin to rise in the
region near the top of the gas bubble (see Fig. 7). This is not totally
unexpected because the radius of curvature of a circumferential fiber
decreases as the gas bubble is reduced. We find that the maximum
principal stress resultants of shapes in the range 0.22 < V/V, < 1.00
occur when V =0.22V,. We find that, around VY =0.22V,, the an-
gle at the base of the balloon is approximately 0.83 deg, the internal
fold penetrates the z axis, and the inside of the balloon comes into
contact with itself. It is unlikely that one would see an ascent shapsz
with V =0.22V, as in Fig. 6. Internal contact probably occurs much
earlier than V = 0.22V; due to other factors, such as impertections
introduced during the balloon’s construction or the stretching of
certain areas of the balloon while in the launch spool. In an actual
flight, the balloon will assume an asymmetric shape, and so it is un-
likely that one would see ascent shapes of the kind described here
for low volumes. In fact, if the zero-pressure level lies above the
base of the balloon, the differential pressure will act to push the
film inward near the base of the balloon. Once internal contact takes
place, most likely the balloon will assume a configuration with flat
wing-like structures near its base, e.g., see Ref. 10. It might be in-
teresting to compare the energy of strained ascent shapes (including
those with wing sections) to determine whether there is a minimuimn
energy principle that could help explain why configurations with a
certain number of wing sections are observed more frequently than
others. o

In Fig. 6, we see that the strained balloon shape at float is about 12
taller than its design and about 4 ft smaller in diameter. In Fig. 7, we
present plots of the averaged principal stress resultants of -exterior
facets for the strained float and ascent configurations. In Ref. 7.
we found good qualitative and quantitative agreement when our
results on the float configuration were compared to similar results
using a more sophisticated finite element method code. This gives

us a certain level of confidence for our results on partially inflated

- configurations. o ' _
As the volume decreases, the base angle of the balloon decreases.

Consequently, the magnitude of the reaction force due to the pay-

load decreases. This can be seen in Fig. 9, where one-half the load
tape tension is presented. Initially, there is a corresponding over-

100 200 300 400 500 600 700

all reduction in the principal stress resultants in the balloon film

- (0.85<V/V,; <1.0). However, for V/V, <0.58, we find that the

maximum principal stress resultants begin to rise in the region near

the top of the balloon. The same effect is observed in Fig. 9 near

s =500 ft, where the maximum load tape tension increases with _

~decreasing volume.

- VI. Concluding Remarks

- Because of the presence of internal folds of excess material, stan-
dard membrane theory cannot be directly applied to partially in-
flated balloon shapes. However, our energy minimizing approach
Is tailor-made to handle partially inflated configurations. Using
our model, we can compute strained balloon shapes in the range
0.22 <V/V,; <1.0. We find that the maximum principal stresses in

- the film are experienced at V/V, = 0.22. Even though the total strain

energy of the balloon is lower at the lower volume, the maximum
stresses are higher. _ ' '

- Although our work on modeling balloon shapes is motivated by
zero-pressure designs, our results can be applied to superpressure
designs or any other designs, fully or partially inflated.
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