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Capillary-driven self-alignment using droplets is currently extensively investigated for self-assembly and mi-
croassembly technology. In this technique, surface tension forces associated to capillary pinning create restor-
ing forces and torques that tend to bring the moving part into alignment. So far, most studies have addressed
the problem of square chip alignment on a dedicated patch of a wafer, aiming to achieve 3D microelectronics.
In this work, we investigate the shift-restoring forces for more complex moving parts such as regular – convex
and non-convex – polygons and regular polygons with regular polygonal cavities. A closed-form approximate
expression is derived for each of these polygonal geometries; this expression agrees with the numerical results
obtained with the Surface Evolver software. For small shifts, it is found that the restoring force does not
depend on the shift direction or on the polygonal shape. In order to tackle the problem of microsystem pack-
aging, an extension of the theory is done for polygonal shapes pierced with connection vias (channels) and a
closed form of the shift-restoring force is derived for these geometries and again checked against the numerical
model. In this case, the restoring force depends on the shift direction. Finally, a non-dimensional number,
the shift number, is proposed that indicates the isotropic or anisotropic behavior of the chip according to the
shift direction.

I. INTRODUCTION

Capillary-driven self-alignment using droplets, or
capillary self-assembly (CSA), is currently exten-
sively investigated for self-assembly and microassembly
technology1–8. In this technique, surface tension forces
associated to capillary pinning create restoring forces and
torques that tend to bring the moving part into align-
ment. In the field of 3D microelectronics, the method
aims to be an alternate approach to the “pick and place”
approach. In the capillary technique, the chip is de-
posited on top of a water droplet and is brought into
alignment by the action of capillary forces, because the
liquid interface tends to minimize its free area9. Af-
ter alignment, which is fast, evaporation brings the chip
into contact with the pad on the wafer, and direct
bonding is possible if the two surfaces are sufficiently
hydrophilic10–13. It is expected that self-alignment meth-
ods could be faster and more precise than the conven-
tional robotic method. Developments have been fast, and
it has been found that a square chip can be aligned by the
action of restoring forces and torques if a certain number
of precautions are taken14,15. A review of the different
concepts for 3D integration has recently been published
by Lee and coworkers16.

In parallel, following the pioneering work of the White-
sides group17, new investigations have started: Knuesel
and colleagues have used the method for the assembly of
segmented monocrystalline solar cells18, Avital and Zuss-

man have developed CSA methods for fluidic assembly of
optical components19, Zhang and colleagues have investi-
gated the CSA of drosophila embryos on 2-D arrays of hy-
drophobic sites on a silicon substrate in water20, Stauth
and Parviz have developed the self-assembly of single-
crystal silicon circuits on plastic21, and Fukushima and
colleagues have studied the use of CSA for microsystem
packaging22. These investigations are mainly experimen-
tal (except for the work of Zhang et al.).

In this work, we present a novel theoretical and numer-
ical approach to the shift restoring forces for polygonal
chips. For many different polygonal shapes, the shift
restoring force is calculated analytically for an approxi-
mation, and numerically in more detail. In the partic-
ular case of regular polygons – convex or not – of the
same perimeter, it is demonstrated that the magnitudes
of the restoring forces at short range – small initial shift
or at the end of the alignment process – are equal for
all polygonal shapes. Also, the restoring force at small
shift does not depend on the direction of the shift for
these regular polygonal shapes. The theoretical results
are in agreement with numerical results obtained with the
Surface Evolver software23. Moreover, it is shown that
the approach can be extended to polygonal chips with
polygonal cavities, such as those used by Fukushima and
coworkers to seal microsystems22. If connection vias or
microchannels pierce the sides of the chip, the isotropic
behavior is lost, and the former analytical expression has
to be corrected by an anisotropic factor. Finally, it is
shown that anisotropic chip geometries have restoring
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forces different than regular shapes and the isotropicity
is characterized by a non-dimensional number which we
call the shift number.

II. THEORY

Consider a chip in shape of a polygon and a shift x in
the direction as sketched in figure 1. Edge number k has
length sk and angle from horizontal θk.

FIG. 1. Sketch of a polygon with shift direction.

Now consider the deformation of one edge of length s
and angle θ, as shown in figure 2. The initial interface –
assuming it is flat – has an area of

A1 = sh, (1)

where h is the height of the liquid layer. The surface
energy is then

E1 = γA1 = γsh, (2)

where γ is the surface tension. The shifted interface –
still assuming it is flat – has an area of

A2 = s
√
h2 + x2 sin2 θ, (3)

where x is the shift. The corresponding surface energy is

E2 = γA2 = γs
√
h2 + x2 sin2 θ. (4)

Note that an interface parallel to the direction of the
shift keeps the same surface area (θ = 0), and an interface
perpendicular to the shift has the energy E2 = γA2 =
γs

√
h2 + x2, which is what was found in our previous

work in the case of a square chip and a shift perpendicular
to an edge9. The restoring force corresponding to this
single interface is

F = −δE2

δx
= −γsx sin2 θ

1√
h2 + x2 sin2 θ

. (5)

Approximating the surface energy of the whole interfacial
area by the sum of the surface energy of all “facets” – i.e.
not considering the inward curvature of the interface at
the junction of two facets or any curvature in the middle
of the face – the total surface energy after the shift is

E2 =
∑
i

Ei = γA2 = γ
∑
i

si

√
h2 + x2 sin2 θi. (6)

The restoring force is then

F = −
∑
i

Fi = −γx
∑
i

si sin
2 θi

1√
h2 + x2 sin2 θi

.(7)

FIG. 2. sketch of a shifted interface.

An interesting observation is that, when x is very small
in comparison with h, relation (7) collapses to

F = −γ
x

h

∑
i

si sin
2 θi. (8)

Relation (8) shows that when x is small, the restoring
force is a linear function of x. On the other hand, if the
shift is large compared to the vertical dimension of the
fluid layer h, then (7) collapses to

F = −sign(x)γ
∑
i

si| sin θi|. (9)

In this last case, the restoring force is constant. If we
apply relation (8) and (9) to the case of the square, we
retrieve the relations given in previous work9. A geomet-
rical interpretation of (9) is given in Appendix A.

Consider now polygons, convex or not, with equal
edges. Then, for all i, we have si = s, and relation (8)
becomes

F = −γs
x

h

∑
i

sin2 θi. (10)

Relation (10) can be simplified by introducing the poly-
gon perimeter p and using the fact that the average of
sin 2θ over equally spaced angles is:

F = −γ
x

h

p

2
, (11)
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where ϵ is the aspect ratio 2h/p. An important remark is
that the restoring force F at small range does not depend
on the shift direction or on the shape of the polygon.
On the other hand, (9) becomes an asymptotic value

for the shift restoring force for large shifts:

F = −sign(x)γs
∑
i

| sin θi|. (12)

Note that the restoring force F in this latter expression
depends on the polygonal shape and on the direction of
the shift, but not on the magnitude of the shift. For
a convex polygon, (12) is just the surface tension times
twice the transverse width of the polygon, which is to be
expected, since a large shift just stretches two horizon-
tal surfaces, top and bottom, each of the width of the
polygon.

III. REGULAR POLYGONS (CONVEX)

We investigate first the case of regular convex poly-
gons. In Appendix B, it is shown that relation (12) for
large shifts can be expressed by

F = − γs

2 sin π
n

∑
i

∣∣∣[cos(2(i+ 1)
π

n

)
− cos

(
2i
π

n

)]
sinα

+
[
sin
(
2(i+ 1)

π

n

)
− sin

(
2i
π

n

)]
cosα

∣∣∣ , (13)

where α is the shift angle. A non-dimensional expression
for the force can be defined by

f =
F

γp
. (14)

And the asymptotic value of f – that we denote here the
“shift number” Sf – is

Sf =

∣∣∣∣ Fγp
∣∣∣∣

= − 1

2n sin π
n

∑
i

∣∣∣[cos(2(i+ 1)
π

n

)
− cos

(
2i
π

n

)]
sinα

+
[
sin
(
2(i+ 1)

π

n

)
− sin

(
2i
π

n

)]
cosα

∣∣∣ . (15)

The shift number Sf depends only on the number of
edges n, i.e. the polygonal shape, and the shift direction.
It is a measure of the isotropic behavior of the chip. If Sf
is invariant with α, the shift-restoring forces are isotropic.
The shift numbers for 5 different regular polygons (equi-
lateral triangle, square, pentagon, hexagon, and octagon)
are shown in figure 3. The shift numbers are comprised
between 0.5 and 0.7 in all cases. The square has the
least isotropic behavior, with a maximum variation of
the shift-restoring force of 30% with the shift direction;
the other polygons show a variation of the shift-restoring
force less than 15%.
In conclusion, the theory predicts that the free energy

and restoring forces are not very far apart for any shift

angle or any regular polygonal shape. For small shifts
it is predicted that they are equal, and similar for large
shifts, because the shift number is similar for all shapes
and all orientations.

FIG. 3. Shift number as a function of the shift direction for
5 regular polygons.

IV. STAR POLYGONS (REGULAR AND NOT CONVEX)

Consider now the case of star polygons, a class of poly-
gons defined in24; and let us examine the case of three
polygons: pentagram, hexagram (star of David) and oc-
tagram. For small shifts (x/h < 1/2) relation (11)) is
valid. The case of large shift necessitates calculation of
(12) for star polygons. For each type of polygon, two
circles can be drawn, passing through the outer vertices
and inner vertices. An external re and an internal radius
ri can then be defined as functions of the length of the
edge s, and, using the same arguments developed in the
Appendix B, the restoring force for large shifts can be
expressed by

F = − γ

2 sin π
n

∑
i

∣∣∣[re cos(2(i+ 1)
π

n

)
− ri cos

(
2i
π

n

)]
sinα

+
[
re sin

(
2(i+ 1)

π

n

)
− ri sin

(
2i
π

n

)]
cosα

∣∣∣ , (16)

where the radii re and ri are linear functions of s. The
shift number showing the isotropic behavior of the chip
is shown in figure 4. It varies between 0.55 and 0.65
according to the shift direction.

V. REGULAR POLYGONS WITH REGULAR
POLYGONAL CAVITIES

More complex surfaces have also been under scrutiny
for capillary self-alignment. Sariola and coworkers have
investigated the behavior of a capillary gripper with a
cavity in its center25, and Fukushima and colleagues
are studying the alignment of microsystems cover for
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FIG. 4. Shift number for three different star polygons.

packaging22. In a general approach, Böhringer and col-
leagues have shown that couples of composite substrates
with hydrophilic and hydrophobic parts will reduce their
energy when self-alignment is achieved26, but even if
alignment reduces the system energy, it cannot always
be achieved when an energy saddle must be overcome.
In this section, we investigate the shift restoring force

for regular polygons – convex or not – with regular polyg-
onal cavities. With the prerequisite of the same free
perimeter p, relation (8) for small shift yields

F = −γx

h

(∑
i⊂ext

si sin
2 θi +

∑
i⊂int

si sin
2 θi

)
, (17)

where ext refers to the external polygon and int to the
internal polygon. This relation is similar to (11). Again,
the restoring force at small shift does not depend on the
shift direction or on the particular polygonal geometry.
On the other hand, relation (9) for large shift, yields

F = −γ

(∑
i⊂ext

si| sin θi|+
∑
i⊂int

si| sin θi|

)
. (18)

Let take the case of a regular polygon with side s and
no cavity compared to one with a cavity homothetic to
the external polygonal shape, with external side sext and
internal side sint. Assume that both geometries have the
same total perimeter p. Then sext + sint = s = p/n.
Because the internal and external edges are aligned, the
two terms of (18) with summation are equal. Finally, we
obtain

F = −γ(sext + sint)
∑
i

| sin θi|

= −γs
∑
i

| sin θi|. (19)

The theory predicts that the full regular polygon and the
polygon with homothetic cavity have the same restoring
force, for the same total perimeter.

VI. NUMERICAL APPROACH

The theoretical approach is an approximation since the
interfaces have been considered flat. In order to take
into account the real shape of the interfaces, we have
used the numerical software Surface Evolver22 to calcu-
late the surface energy for different polygons (fig. 5).
First are regular polygons, i.e. convex polygons with
n = 1, 2, . . . edges of same length. We limit ourselves to
the equilateral triangle, square, pentagon, hexagon, and
octagon. Second, we add the star polygons pentagram,
hexagram and octagram. Finally, we consider regular
polygons with a regular polygonal cavity: a square with
a square cavity, and a triangle with a triangular cavity.
All these shapes can be considered “isotropic” as we will
see in the following developments. In order to compare
with an “anisotropic” shape, we also consider a rectangle
of aspect ratio 2 or 1/2 (depending on its position in the
coordinates system). Guided by (11), we use the same
perimeter p = 4 cm in all cases.

FIG. 5. The different polygons considered in the study: (a)
regular, convex polygons; (b) star polygons, (c) regular poly-
gons with regular polygonal cavity, and (d) rectangle of aspect
ratio 2.

The numerical protocol is the following: given an ini-
tial shift, the interface numerically adjusts to the real
physical shape for that fixed shift. The corresponding
surface energy is stored in a dedicated file. Then the
chip is freed to move incrementally. At each shift in-
crement, the chip is fixed, the interface adjusts and the
surface energy again is stored. The relation between the
free energy and the shift is then plotted.

In this approach, we consider a uniform perimeter p =
4.10−2 m, which corresponds to a square of 1 cm× 1 cm.
We set the liquid volume to V = Ah, where A is the
surface of the solid wetted by the liquid and h the vertical
distance between the two solids. In our case h ≈ 400 µm
(there is a very small deviation due to the curvature of the
interface). It is straightforward to show that the surface
area of a regular polygon is given by the relation26

A =
1

4
ns2 cot

π

n
, (20)
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where n the number of edges, and s the length of an edge.
Figures 6 shows different restoring processes for the

different geometrical shapes considered.

FIG. 6. Capillary self-alignment for star polygons and poly-
gons with cavities, obtained with Surface Evolver.

VII. RESULTS

In this section, a comparison between the theoretical
and numerical approaches is presented first. Then the
influence of the shift direction and chip shape on the free
energy and on the restoring force is investigated. It is
recalled that the restoring force is given by

F = −δE

δx
, (21)

where E denotes the free energy and x the shift.

A. Comparison between theoretical and numerical results

A comparison between theoretical and numerical re-
sults for a 0◦ shift is shown in figure 7, for four different
polygonal shapes (triangle, square, pentagon and square
with cavity). The agreement between theory and numer-
ical model is good – which signifies that the hypothesis
of flat surfaces is not too far from the reality – except
maybe for the case of the square with a square cavity. In
this case, the theory predicts the same restoring force as
for the square. The discrepancy comes from the number
of additional corners of the square with cavity. The real
free surface becomes smaller for each additional corner,
as is shown in figure 8.
The agreement also depends on the height h of the

liquid layer. A large value of h would certainly increase
the influence of the curvature of the interfaces. In the
present case, the aspect ratio ϵ = 2h/p of the thickness
of the liquid layer and half the free perimeter is only 0.02.
In the industrial process, a still smaller ratio is expected.
The preceding observation is still more acute in the

case of star polygons: the presence of sharp angles and
reentrant angles decreases the liquid interfacial area, and
reduces the restoring force (fig. 9).

FIG. 7. Comparison between theory (continuous lines) and
numerical model (dotted lines) for four different polygonal
shapes with same perimeter: equilateral triangle, square, pen-
tagon and square with cavity. The references E0 for energy
and F0 for the force are respectively E0 = γhp and F0 = γp.

FIG. 8. View of the liquid interface in sharp or reentrant
corners (Evolver).

In conclusion, the theory slightly overestimates the
magnitude of the restoring force; but as the thickness of
the liquid layer will be smaller in the real process, the dif-
ference between theory and numerical model is expected
to be less than that shown in figure 9.

B. Influence of shift direction - isotropicty and
anisotropicity

We analyze now the restoring force as a function of the
shift direction. In section II it has been found that for
regular polygonal shapes, theory predict an independence
of the shift-restoring force for small shifts (x/h < 1/2),
and a moderate dependence for large shifts (x/h > 1). In
this section we use the Evolver to check these theoretical
results.

Consider a square chip, and different directions of shift:
α= 0, 30, 45, 60, 90, 135 and 180 degrees. A plot of the
different restoring forces based on the general relation
(7) is shown in figure 10. It is observed that when x/h is
smaller than approximately 1/2, the restoring forces are
all equal, as expected from the theory. The same results
can be obtained for all the regular polygonal shapes. We
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FIG. 9. Comparison between theory and numerical approach
for star polygons (of same perimeter). Continuous lines corre-
spond to the theory and dotted lines to Evolver calculations.

deduce that when x/h is less than 1/2, the shift direction
has no influence on the close range restoring forces for
“isotropic” chips.

FIG. 10. Restoring forces as a function of the shift magnitude
and direction (from Evolver).

On the other hand, this is not the case with a “non-
isotropic” polygonal shape, such as the rectangle. In fig-
ure 11, the shift number has been plotted as a function
of the shift direction. Isotropic behavior is character-
ized by a shift number Sf of 0.62 corresponding to the
octagon (regular polygon with many edges). An approx-
imate isotropic situation occurs for shift numbers com-
prised between 0.55 and 0.7. The square can be consid-
ered as the limit. The shift number for a rectangle of
aspect ratio 2 varies between 0.3 and 0.75, which indi-
cates an anisotropic behavior.
Note that, from Appendix A, the anisotropy is charac-

terized by the ratio between the maximum and minimum

FIG. 11. Shift number as a function of the shift direction. The
green curves correspond to the equilateral triangle, pentagon,
hexagon and octagon. Their behavior is nearly isotropic. The
magenta curve corresponds to the square shape, at the limit
of isotropic behavior, and the rectangle (red line) is fully
anisotropic.

cross lengths of the polygonal chip. In the case of a square
Lmax/Lmin =

√
2. More generally, it can be shown for

regular polygons, that Lmax/Lmin = 1/cos π
n .

C. Influence of polygonal shape

Let us now consider the different polygonal shapes of
figure 5. Free surface energies are plotted in figure 12 as
a function of a shift in the direction of the x-axis. From
the figure, we deduce that all “isotropic” shapes – regular
polygons, with a regular polygonal cavity, and star poly-
gons – have a similar free surface energy, while the surface
energy of the “anisotropic” rectangle notably differs from
the other “isotropic” shapes. Using (7), the same conclu-
sion can be drawn for the shift restoring force, as shown
in figure 13.

D. Restoring force for small shifts

A perfect alignment is obtained when the force at small
shift is sufficiently large; this can be characterized by de-
termining the value of the derivative of the restoring force
∆ = dF/dx|x=0 at the origin. The value of ∆ has been
obtained numerically from the Evolver values of figure
13. In figure 14, we have plotted the value of ∆ for dif-
ferent polygonal geometries (with same free perimeter p)
for very small shifts. For all regular polygonal geome-
tries, the value of ∆ converges towards the theoretical
value ∆ = γp/2h = γ/ϵ. On the other hand, the value
of ∆ for anisotropic geometries (here a rectangle) differs
considerably from the theoretical results.
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FIG. 12. Free energy vs. shift for the different polygonal
shapes obtained with the Surface Evolver.

FIG. 13. Restoring force versus shift for different polygonal
shapes with same free perimeter: The restoring forces are
similar except for the anisotropic rectangle. Values obtained
with the Evolver.

VIII. APPLICATION TO MICROSYSTEM PACKAGING

In this section, we investigate the shift restoring force
in the geometry of a square microsystem where vias
(channels) are opened on two opposite sides, as proposed
by Fukushima and colleagues in21. Closed square shapes
(with square cavities) have been investigated above, and
we focus here on the anisotropy induced by the vias (fig.
15). In this particular case, the width of the channels
piercing the square is set to 1/10 of the external edge, and
the cavity dimension is half that of the external dimen-
sion. In contrast with the preceding sections, we consider
the same external dimensions of the square polygons in
both cases, regardless of the difference between the free
perimeters.
Figure 16 shows the restoring force as a function of

FIG. 14. Value of dF/dx at small shifts: all the reg-
ular polygons converge to the analytical value, while the
anisotropic rectangular shape differs notably from this value
(from Evolver).

the shift for the square chip (with square cavity) and for
the cavity-chip along two perpendicular directions of the
shift: first, the direction of the channels – x-direction –
and second the direction perpendicular to the channels
– y-direction. The anisotropy induced by the channels
clearly appears in the figure.

FIG. 15. Alignment of a square microsystem cover after a
x-shift (a), and a y-shift (b).

In the same figure, we have also plotted two “modi-
fied” curves: the first one corresponds to the value of the
force in the x-direction decreased by the missing interfa-
cial area corresponding to the channel openings. If sext
denotes the (external) square edge, and w the width of
the channels, we have

Fmicrosystem

Fsquare
=

2sext − 4w

2sext
= 1− 2

w

sext
. (22)

Conversely, in the case of a y-shift, the value of the restor-
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FIG. 16. Shift restoring force: comparison between a square
(with cavity) and a square (with cavity) pierced by two chan-
nels. The two channels induce anisotropy of the restoring
forces. Calculation performed with Surface Evolver. The two
additional curves are obtained from the square (with cavity)
curve multiply by the corrective factors given by (22) and
(23).

ing force is increased by

Fmicrosystem

Fsquare
=

2sext + 2sint + 2(sext − sint)

2sext + 2sint

= 2
sext

sext + sint
. (23)

Using the values w = sext/10 and sext = 2sint, we find
the correction coefficients 4/5 and 4/3, which reproduce
well the restoring force for a full (no channels) square
with cavity. Hence, the restoring force at small shift can
be approximated by

f =
F

γp
= − x

2h

(
1− 2

w

sext

)
(24)

for a shift along the channel axis, and

f =
F

γp
= − x

2h

(
2

sext
sext + sint

)
(25)

for a shift perpendicular to the channel axis. Relations
(24) and (25) constitute the two limits for the restoring
force at small shift for the pierced geometry considered
here. The shift number is comprised between the values.

x

2h

(
1− 2

w

sext

)
< Sf <

x

2h

(
2

sext
sext + sint

)
. (26)

IX. CONCLUSIONS AND PERSPECTIVES

In this work, an approximate closed form of the shift-
restoring force has been derived from the assumption
of flat interfaces for many different regular polygonal
shapes. It has been shown that this analytical expression

agrees well with the more detailed value produced by a
numerical approach with the numerical software Surface
Evolver. An interesting observation is that, for small
shifts, the restoring force does not depend on the shift
direction or on the polygonal shape. The restoring force
is simply proportional to the surface tension, to the free
perimeter and to the magnitude of the shift.

A non-dimensional number, the shift number, has been
defined that characterizes the non-dimensional shift-
restoring force, and the isotropicity of the system (for
large shifts), i.e. the independence of the restoring force
to the shift direction.

An extended expression of the shift-restoring force at
close range has been derived for chips with cavity pierced
by connection vias (microchannels), similar to that used
for packaging microsystems. This extended relation has
again been verified by a numerical approach.

So far, only the effect of the shift has been investi-
gated. Twist, tilt and roll restoring torques are still to
be investigated, in order to have a complete assessment
of the capillary effect on different polygonal chips.

Appendix A: RESTORING FORCES FOR LARGE SHIFTS
FOR ANY POLYGON

The force at large shift given by equation (9)

F = −sign(x)γ
∑
i

si| sin θi| (A1)

has a geometrical significance. In figure 17, the projec-
tions of the edges si on the direction perpendicular to
the shift show that∑

i

si| sin θi| =
L⊥

2
. (A2)

The restoring force at large shift is then

F = −sign(x)γ
L⊥

2
. (A3)

The magnitude of the restoring force is then comprised
between the minimum and maximum cross lengths Lmin

and Lmax (fig. 17).

Appendix B: RESTORING FORCES FOR LARGE SHIFTS

For a regular polygon with n edges of length s and free
perimeter p, the following relation holds:

p = ns. (B1)

Using trigonometrical calculation, we find the value of
the circumscribed circle to be

r =
n

2 sin π
n

. (B2)
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FIG. 17. Left: projections on the direction perpendicular to
the shift; right: the two extrema for a hexagon and a hexa-
gram.

Incidentally, the surface area of the solid wetted by the
liquid can be expressed as a function of the perimeter p
and the number of edges n:

A =
1

4
ns2 cot

π

n
=

1

4
p2

1

n
cot

π

n
. (B3)

The coordinates of the polygon vertices are

Si = r
[
cos
(
2i
π

n

)
, sin

(
2i
π

n

)]
, (B4)

where i is the vertex index. The oriented vector edges
are then

s⃗i = r
[
cos
(
2(i+ 1)

π

n

)
− cos

(
2i
π

n

)
, (B5)

sin
(
2(i+ 1)

π

n

)
− sin

(
2i
π

n

)]
Let us assume that the shift direction is the unit vector
defined by its polar angle α,

k⃗ = {cosα, sinα}. (B6)

The cross-product between s⃗i and k⃗ produces the value
of sin θi:

sin θi =
s⃗i

∥ si ∥
× k⃗. (B7)

We finally find the expression

sin θi =
1

2n sin π
n

{[
cos
(
2(i+ 1)

π

n

)
− cos

(
2i
π

n

)]
sinα

−
[
sin
(
2(i+ 1)

π

n

)
− sin

(
2i
π

n

)]
cosα

}
. (B8)
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