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Abstract

The Surface Evolver is a computer program that minimizes the energy of a surface subject to con-
straints. The surface is represented as a simplicial complex. The energy can include surface tension,
gravity, and other forms. Constraints can be geometrical constraints on vertex positions or constraints
on integrated quantities such as body volumes. The minimization is done by evolving the surface down
the energy gradient. This paper describes the mathematical model used and the operations available to
interactively modify the surface.

AMS classification (1990):
Primary:
49-04 Calculus of variations explicit machine computation and programs.
Secondary:
35-04 PDE explicit machine computation and programs.
49Q05 Minimal surfaces.
49Q20 Variational problems in a geometric measure-theoretic setting.

Keywords: minimal surfaces, calculus of variations.

Introduction

One of the fundamental problems in the calcu-
lus of variations is to find a surface minimizing some
energy subject to constraints. A soap film on a wire
frame minimizes its area subject to its boundary stay-
ing on the frame. A cluster of soap bubbles minimizes
the total soap film area subject to enclosing fixed vol-
umes in each bubble. A capillary surface minimizes
the gravitational energy of a fluid in a vessel plus
the surface energy of its free surface and its contact
energy with the vessel walls. Other examples of sur-
faces are grain boundaries in metals, crystal facets,
fluid interfaces, and cell membranes [Almgren 1982;
Almgren and Taylor 1976]. Note that these surfaces
need not be simply connected, need not be orientable
(as in a Mobius band soap film), and need not be
manifolds (as in bubble clusters).

The Surface Evolver is an interactive program for
the study of surfaces shaped by surface tension and

other energies. The user specifies an initial surface,
the constraints that the surface should satisfy through-
out the evolution, and an energy function that de-
pends on the surface. The Evolver then modifies
the surface, subject to the given constraints, so as
to minimize the energy. The user can intervene dur-
ing the evolution, changing the surface’s properties
or applying certain operations to keep the evolution
well-behaved.

The action of the Evolver is meant to model the
process of evolution by mean curvature, which was
studied in [Brakke, 1977] for surface tension energy in
the context of varifolds and geometric measure the-
ory. The energy in the Evolver can be a combina-
tion of surface tension, gravitational energy, squared
mean curvature or user-defined surface integrals. The
Evolver can handle complicated topology (as seen in
real soap bubble clustes), volume constraints, bound-
ary constraints, boundary contact angles, prescribed
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mean curvature,crystalline integrands, gravity, and
constraints expressed as surface integrals.

The main focus of the Surface Evolver is on two-
dimensional surfaces in three-dimensional space, the
so-called soap-film model. The principal data struc-
tures are set up with this in mind, but they are de-
signed in such a way that the dimension of the am-
bient space and the ”surfaces” of interest can be ar-
bitrary. Thus, one-dimensional strings and higher-
dimensional surfaces can also be handled. Moreover,
the ambient space can be endowed with an arbitrary
Riemannian metric, and even be a quotient space un-
der a group action.

The Evolver has a graphical interface that allows
the user to follow the evolution of the surface on the
screen. The graphics can also be output to files in
several formats, including PostScript.

The Surface Evolver program is freely available
(see ”Software Availability” at the end of this article)
and is in use by a number of researchers. Some of the
applications of the Evolver so far include modelling
the shape of fuel in rocket tanks in low gravity [Tegart
1991], calculating areas for the Opaque Cube Prob-
lem [Brakke 1991b], computing capillary surfaces in
cubes [Mittelmann] and in exotic containers [Calla-
han et al. 1991], simulating grain growth, study-
ing grain boundaries pinned by inclusions, searching
for partitions of space more efficient than Kelvin’s
tetrakaidecahedra, modelling the shape of molten sol-
der on microcircuits [Racz et al.], studying polymer
chain packing, and classifying minimal-surface singu-
larities. Section 9 of this paper gives a proof, based
on the use of the Evolver, that a conjectured area-
minimizing cone in R4 is not area-minimizing.

The strength of the Surface Evolver program is in
the breadth of problems it handles, rather than opti-
mal treatment of some specific problem. It is under
continuing development, and not every feature is de-
scribed in this paper. Users are invited to suggest
new features.

This paper describes the capabilities of the Sur-
face Evolver so that readers can evaluate its useful-
ness in their research and so that users have a pub-
lished description to cite. It is not a substitute for the
Surface Evolver Manual [Brakke 1991a], although it
does mention certain operational details so that users
can find the corresponding features in the program or
manual.
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1 Surface models

1.1 Representing surfaces

Surfaces have been represented mathematically as
graphs of functions, level sets of functions, images
of maps, measures, simplicial complexes, polyhedral
complexes, spline patches, etc. Each way has its
strengths and weaknesses. The Surface Evolver uses a
simplicial complex representation. This permits the
representation of surfaces like soap films and bub-
bles, which may have arbitrary topologies and may
not be orientable. It permits the exact specification
of a surface in terms of a finite number of parameters,
the vertex coordinates. See the figures accompanying
this paper for some simple examples.

The main focus of the Surface Evolver is on
two-dimensional surfaces in three-dimensional space,
which is called the soapfilm model. The principal
data structures are set up with this in mind, but they
are so designed that the dimension of the ambient
space can be arbitrary and one-dimensional “strings”
can also be represented. Higher dimensional surfaces
can also be handled to a limited degree.

The units of measurement are dimensionless. If
the user wishes to model a specific physical problem,
then all values should be in one consistent set of units
such as cgs or MKS.

Section 3 describes what is available in the Evol-
ver in terms of alternatives or elaborations to the ba-
sic soap-film model: ”surface” of arbitrary dimension,
ambient spaces with an arbitrary Riemannian metric,
and so on.

1.2 Energies

Broadly speaking, the energies that the Evolver min-
imizes are any quantities that may be expressed as
integrals over the surface. Foremost among them is
surface tension. Soap films and interfaces between
different fluids have an energy proportional to their
area, which can also be regarded as a surface ten-
sion, or force per unit length. That is, across any line
in the surface, there is a tension whose value is the
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same as the surface energy density. In the Evolver,
the user can specify a value of the surface tension for
each facet.

Another common energy is gravitational potential
energy, which can be written as a surface integral by
means of the divergence theorem. Capillary surfaces
may be modeled by including both surface tension
and gravitational energy in the total energy. For more
details, see section 4.

1.3 Constraints

Several types of constraints are available in the Evol-
ver. Vertices may be fixed in place, reflecting the fact
that the edge of a soap film should be attached to a
wire. Vertices may be constrained to lie on smooth
manifolds, reflecting the case when the edge of a soap
film should lie on a wall, but is free to move on the
wall. Edges and facets may likewise be constrained,
which simply means that any vertices generated on
them will inherit those constraints. Bodies may be
constrained to have fixed volumes, as in the case of
the volume of the column of liquid underneath a cap-
illary surface. Section 5 explains the exact mathe-
matical form of the various types of constraints.

1.4 Basic Operations

The fundamental operation of the Evolver is the it-
eration step, which reduces energy while obeying any
constraints. A gradient descent method is used. The
force at each vertex is the gradient of the total energy
as a function of the position of that vertex. Every
vertex is moved simultaneously by a global multilple
of its force. This multiple, called the scale factor,
can either be fixed by the user or be the factor that
optimizes the decrease in energy. Details of all the
options available for the iteration step are given in
Section 6.

Several operations are available for manipulating
the triangulation. Refinement is the subdivision of
each facet into four similar facets, for better approx-
imation of curved surfaces. Equiangulation readjusts
the triangulation of a surface to make the facets as
nearly equilateral as possible. Vertex averaging moves
each vertex to the average position of its neighboring
vertices. These and other operations, including some
that change the topology of the surface, are more fully
described in section 7.

2 Three examples of the Evol-
ver in action

2.1 The Catenoid

The catenoid is the minimal surface whose boundary
is two parallel rings not too far apart. It is an ex-
tremely simple surface, yet it illustrates some of the
subtleties of evolving triangulated surfaces. Stages in
its evolution are shown in Figure 1. The surface in
the initial data file consists of six rectangles forming
a cylinder between the two rings. In general, a data
file contains only the minimum amount of informa-
tion needed to correctly define the topology of the
surface. When initially read in, the rectangles are
automatically triangulated into facets (top left). The
vertices and edges on the rings are fixed. The rings
themselves are not shown. With so few facets, the
initial surface cannot shrink, so the user refines the
surface (top middle). Here, only one refinement is
done to keep the facets large enough to be seen eas-
ily. Normally, there would be alternating stages of
refinement and iteration. Note that the vertices cre-
ated by subdividing the edges on the rings are them-
selves fixed on the rings. Equiangulation gives the
much nicer triangulation shown top right, by switch-
ing the diagonals of some quadrilaterals to make the
facets more equiangular. Fifty iterations with opti-
mizing scale factor result in an area of 6.458483 (bot-
tom left). At this point, each iteration is reducing
the area by only .0000001, the triangles are all nearly
equilateral, everything looks nice, and the innocent
user might conclude the surface is very near its min-
imum. But this is really a saddle point of energy.
Further iteration shows that the area change per it-
eration bottoms out about iteration 70, and by iter-
ation 300 the area is down to 6.4336 (bottom right),
near the true local minimum. We know it is a mini-
mum because iteration produces no change, and the
Evolver can calculate the Hessian matrix to be posi-
tive definite. One can see that the triangulation really
wants to be twisted around so that there are edges
following the lines of curvature.

If the two rings are too far apart, the neck of the
catenoid will shrink down to a point, as shown in
Figure 1. Upon iteration, the neck forms a ring of
very short edges (top middle). These edges can be re-
moved by identifying their endpoints, in a step (taken
by the user) known as tiny edge weeding (§7.5). This
produces a single vertex at the neck (top right). The
Evolver can recognize the topology around the neck
vertex as improper for a soap film and split the ver-
tex into two (bottom left), when instructed to do so
by the user. This called vertex popping (§7.7) The
two parts of the surface then quickly collapse to disks
(bottom right).
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Figure 1: The evolution of a stable catenoid. Top left: The initial surface. The boundary wire circles are
not shown. The rectangular faces of the datafile have been automatically triangulated. Top middle: After
one refinement. Note how vertices on top and bottom edges follow the boundary wire circles. Top right:
After equiangulation. Note the edges that have switched direction. Bottom left: After iterating fifty times.
This is a saddle point in area. Bottom right: Ultimate endpoint of iteration, with edges following the lines
of curvature, which are horizontal and vertical.

Figure 2: The evolution of an unstable catenoid. The neck pinches down to a point, and the surface splits
into two pieces.
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Figure 3: Capillary surface making contact with a wall. Left: the initial surface. The facets on the vertical
wall (darker shading) have surface tension 0.5, while the ones on the horizontal free surface have surface
tension 1.0. Thus the equilibrium contact angle is 60◦. The free surface is bounded by a fixed wire in front
and plane constraints on either side. Center left: After some evolution, the free edge has crept up the wall.
Note that several wall facets are getting very narrow, which would soon cause problems in the evolution.
Center right: After vertex averaging, the free edge has more room to migrate without overrunning vertices.
Right: the final equilibrium surface.

2.2 Capillary Surface Meeting a Wall

Figure 3 shows the evolution of an example where we
use constraints and varying surface tension to model
a surface meeting a wall at a given contact angle –
here 60 degrees. This is the situation for a capillary
surface, but this example does not include volume
constraints or gravity.

The initial configuration is shown on the left. The
fluid surface is the light gray horizontal surface, which
has one edge movably attached to the dark gray verti-
cal wall. The junction of the surface and wall consists
of edges belonging to both surface and wall facets.
We give the wall facets half the surface tension of the
surface facets, so the equilibrium contact angle is 60
degrees (0.5 = cos60◦). All vertices on the wall are
cnostrainted to stay in a vertical plane. The three
vertices at the top of the wall are fixed in place, as
are the vertices of the surface on the edge opposite
the wall. The two lateral sides of the surface and wall
are constrained to lie in vertical planes (not shown)
perpendicular to the wall. These planes contain no
facets and contribute no energy, so the equilibrium
contact angle is 90 degrees.

After several iteations (center left), the contact
line has moved up the wall, seeking the equilibrium
contact angle. The shrinking of the wall facets more
than offsets the stretching fo the surface facets. The
interior vertices of the wall do not move, since there
are no net forces on them. This can give rise to prob-
lems if the contact line overruns interior wall vertices,
as is about to happen. At this point, the user must
intervene to adjust the triangulation, using vertex av-
eraging, after which (center right) the contact line can
continue to move up the wall. The final equilibrium
state consists fo a plane surface (far right).

The wall facets sereve two purposes: to generate
the correct contact angle and to help visualize the

surface. But they also are the source of problems as
the surface moves up the wall, requiring repeated ver-
tex averaging. They occupy more computer memory
and calculation time than necessary. It is possible
to omit them. In §4.5 I show how to use edge inte-
grals to compute the equivalent energy of the facets.
The visualization function could be served by having
fixed facets on the wall that do not participate in the
calculations and do not refine.

2.3 Grain Growth

When liquid metal solidifies, crystallization gener-
ally starts at many nuclei, with random orientations.
The crystal lattices are mismatched where the grains
meet, and the atoms along the grain boundaries are in
a higher energy state than interior atoms. To a good
approximation, the energy is independent of the ori-
entation of the boundary. In the process of annealing,
the metal is warmed enough for boundary atoms to
switch from one lattice to the other through thermal
motions, and the boundaries migrate at a rate pro-
portional to its curvature, assuming that impurities
or other obstacles do not interfere.

Figure 4 shows this process for a two-dimensional
metal in a unit flat torus that initially crystallizes
from 100 random nuclei, resulting in an initial grain
configuration of 100 Voronoi cells (top left). The ul-
timate product of evolution consists of four unequal
hexagonal grains. A video of the evolution is available
in [Brakke 1992b].

Modeling the dynamics of the evolution requires
using a fixed scale factor (the time step) much smaller
than the optimizing scale factor. Here, a time step
of 5 × 10−6 was used. The Evolver has several fea-
tures used to automate the evolution, including au-
tomatic topology changes in the string model. With
a feature called autopopping, any edge whose length
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Figure 4: The evolution by mean curvature of 100 Voronoi cells in a two-dimensional flat torus. The time
step is 5 × 10−6 From left to right: The initial configuration; configuration after 200 steps, still with 100
cells; after 1600 steps, with 66 cells left; and after 5000 steps, with 35 cells left.

is projected to become less than the critical length
is deleted and any improper vertices resulting are
popped. The critical length is automatically set to
the critical length for stability described in §6.4, which
works out to 0.003 here. Only edges whose lengths
are decreasing are tested in order not to eliminate the
very short edges generated by vertex popping. Also,
with autochopping, edges that become longer than a
chosen cutoff length of 0.015 are automatically sub-
divided.

3 Surface Models

This section describes several variations on the basic
soap-film model discussed in §1.1.

3.1 One-Dimensional ”Surfaces”: The String
Model

The “surface tension” can be declared to reside in
edges instead of facets. The surface then becomes
a network of elastic strings, hence the term string
model is applied to this mode of operation. The
strings may reside in any dimensional space, but if
the domain is two-dimensional, then the strings may
bound regions. In this case, a region is defined with
a facet structure and a body structure. The facet
may have any number of sides. The body has just
one facet on its boundary. The effect is to stretch the
string network into a cylindrical surface of height 1,
whence the mechanisms for surfaces can be applied
with minimal changes. The grain growth example in
§2.3 uses the string model.

3.2 Quadratic model

In an attempt to approximate curved surfaces bet-
ter than by flat facets, there is a mode in which
each facet is a quadratic spline patch. A midpoint
is added to each edge, giving a total of six control

points. Each coordinate is then quadratically inter-
polated from these six points to form the surface.
An edge becomes a curve that depends only on the
control points on the edge, thus guaranteeing that
neighboring facets meet without a gap. The disad-
vantages of the quadratic mode are that it is slower,
surface area is calculated approximately by numerical
integration, facets are displayed as if flat, and some
Evolver features are not implemented.

3.3 Higher-Dimensional Surfaces

Higher-dimensional surfaces cannot be represented by
the basic vertex-edge-facet scheme. There is a mode
of operation that permits the facets making up the
surface to be represented directly as simplices (vertex
lists). This permits an arbitrary dimensional surface
in an arbitrary dimensional space. However, many
features are not implemented yet for this mode.

3.4 Quotient spaces

The ambient space can be a quotient space of Rn un-
der some symmetry group. The vertex coordinates
are taken to be in a fundamental region, and each
edge is marked with a group element to tell how its
head vertex should be transformed (wrapped) relative
to its tail. The user invents an integer representation
for the group elements to be used in marking edges.
The flat torus quotient space is built-in with some
special notation in the datafile for specifying the fun-
damental parallelepiped and the wraps of the edges.
Using some other quotient space requires the user to
write C functions that handle group transformations
and compositions.

The display of a surface in a quotient space poses
some interesting problems, since the display space is
Euclidean. The Evolver offers three options, two of
which are illustrated in Figure 5, which shows a sur-
face in a flat three-dimensional torus whose funda-
mental unit is a unit cube. The three options are:
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Raw facets. Each facet is displayed as it is located in
the fundamental domain. Location is based on
the first vertex in the facet, with other vertices
unwrapped as needed.

Connected bodies. For each body, all facets on the
boundary of that body are gathered in a list.
One point is chosen as a base point, and un-
wrapping of vertices spreads out from neighbor
to neighbor facet until the entire body surface
is done. This nicely displays each logical body
as a single visual body. An example is shown
in Figure 5 (left).

Clipping. For a torus domain, each facet is clipped
to the fundamental parallelepiped. Pieces lying
outside are wrapped around so they lie inside.
This option clearly shows the fundamental do-
main and how it wraps around. An example is
shown in Figure 5 (right).

The surface shown in Figure 5 bounds two tetra-
kaidecaheda. Lord Kelvin [Thompson 1887] conjec-
tured that the optimal way to partition space into
equal volume cells with least area is a packing of very
slightly curved tetrakaidecahedra. Several people (in-
cluding the author) have used the Evolver in attempts
to beat Kelvin’s partition, but nobody has succeeded
yet.

3.5 Background metric

The ambient space can be endowed with a Rieman-
nian metric. Only one coordinate patch is allowed,
but quotient spaces are possible. Basically, the Evol-
ver operates as usual in Euclidean coordinates, ex-
cept that the metric is used for the calculation of
edge lengths and facet areas. Edges are not taken to
be geodesics, nor are facets geodesic surfaces; rather
they keep their Euclidean shape. Surfaces are dis-
played as if their coordinates were in Euclidean space.

An example using a metric is discussed in sec-
tion 9 below. Other possible ways to use a metric
are: modeling a cylindrically symmetric surface by
means of the string model, and implementing a spa-
tially varying scalar surface energy, as in a surface
whose own weight is not negligible.

The metric need not be positive definite. One
can do minimal surfaces in a Minkowski metric, but
it takes a little care.

3.6 Internal Representation

Each geometric element (vertex, edge, facet, body)
is implemented as one data structure. An element
is stored as an oriented entity, but may be referred
to with this orientation or the inverse one. There is

a data type element id that contains a pointer to an
element structure and a relative orientation (normal
or inverted). This type is used for all references to
elements. The connectivity of the surface is speci-
fied by having links in each element structure to the
next higher- or lower-dimensional elements it inter-
sects. One design principle followed is that each ele-
ment should contain links to a fixed number of other
elements. Thus the body structure does not record
bounding facets itself; rather, the facet structure has
two slots to record which body (if any) is on each of
its sides.

The surface connectivity is completed by intro-
ducing facet-edge structures, which are a simplifica-
tion of the scheme described in [Dobkins and Laszlo
1987]. A facet-edge structure contains links to a facet
and an edge on the facet’s perimeter (with proper
boundary orientation), plus links to the previous and
next facet-edges around the facet and to the previous
and next facet-edges around the edge. This permits
a quick run-through of all facets containing a given
edge, and also the representation of facets with an ar-
bitrary number of sides, which is necessary in certain
situations.

4 Energies

The Surface Evolver tries to minimize the total en-
ergy of a surface. This energy may have several com-
ponents.

4.1 Surface tension

Soap films and interfaces between different fluids have
an energy proportional to their area. In the Evol-
ver, each facet has a surface tension of 1 unless oth-
erwise specified. Different facets may have different
surface tensions. It is possible to endow both facets
and chosen edges with tension in order to model sur-
faces wehre singular curves have energy, as in [Mor-
gan 1994].

Contact angles between free surfaces and walls, as
in capillary problems, can be specified by introducing
facets that are confined to the wall and have a dif-
ferent surface tension, as in the wall example in §2.2.
Negative tensions are allowed, so all contact angles
are possible. However, this method has the drawback
that a moving free boundary on the wall can overrun
wall facets, as noted in Figure 3. Another method
of prescribing contact angles, described in §4.5, uses
edge energy integrals.

There is no general mechanism yet to include the
integral over the surface of a general scalar integrand
which may depend on position and tangent plane ori-
entation. However, the use of a Riemannian metric
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Figure 5: Two of Kelvin’s tetrakaidecahedra in a flat torus. The fundamental region is a unit cube. A. The
surface plotted as the boundaries of connected bodies. B. The surface clipped to the fundamental region, a
unit cube.

on the ambient space can often acheive the same ef-
fect.

4.2 Crystalline integrands

The Evolver can model energies of crystalline sur-
faces. A crystalline surface energy density depends
on the direction of the surface normal vector. Such
a quantity is known as a crystalline integrand [Tay-
lor 1983; 1988]. The energy density is given by the
largest dot product of the surface normal with a set of
vectors known as the Wulff vectors. Surface area can
be regarded as a crystalline integrand whose Wulff
vectors coinciding with the unit sphere. In the Evol-
ver, a finite set of Wulff vectors may be specified, and
the corresponding crystalline energy computed.

4.3 Surface integrals

A facet may contribute an energy resulting from in-
tegrating a vectorfield over the facet as a surface in-
tegral. Multiple vectorfields may be defined in the
datafile as functions of the coordinates, and any facet
may use any number of them. Besides surface ener-
gies, these can be used to do volume energies, such as
gravitational energy, by using the Divergence Theo-
rem to convert a volume integral into a surface inte-
gral. Integrals are done numerically using Gaussian
quadrature.

4.4 Gravity

A body B having a density ρ contributes its gravita-
tional energy to the total. The acceleration of gravity
G is under user control. Letting ρ be the body den-
sity, the energy is defined as

E = Gρ

∫ ∫ ∫

B

z dV,

but is calculated by the Divergence Theorem as

E = Gρ

∫ ∫

∂B

z2

2
~k · ~dS.

The integral is taken over each facet that bounds a
body. If a facet bounds two bodies of different den-
sity, then the appropriate difference in density is used.
Vertical facets or facets lying in the z = 0 plane make
no contribution, and may be omitted if they are oth-
erwise unneeded. Facets lying in constraints may be
omitted if their contributions to the gravitational en-
ergy are contained in edge energy integrals.

Gravity is a special case of a surface integrand,
but it is implemented internally for several reasons:
it can be evaluated exactly without numerical inte-
gration; it is common enough to be worth saving the
user the trouble of setting it up; and, in general, eval-
uation of user-defined nitegrand expressions is slower
than that of compiled-in energies.

The built-in gravity does not apply to Riemannian
metrics or quotient spaces; users must define their
own gravitational energy integrands in such cases.

Gravity applies to bodies, not surfaces. Surfaces
are weightless. If one did want heavy surfaces, one
could use the metric mechanism to simulate a scalar
surface integrand.

4.5 Edge integrals

An edge may contribute an energy resulting from in-
tegrating a vectorfield over the edge as a line integral.
The objective of this is to let the free edges of a sur-
face have energy. This is useful to control the contact
angle of a surface on a wall. As mentioned earlier in
section 3.1, the contact angle can be specified by giv-
ing an energy density to the wall on one side of the
surface edge. Alternatively, an edge integral can be
defined to give an energy equivalent to the wall en-
ergy by means of Stokes’ Theorem. This eliminates
the need to coat the wall with facets. Likewise, edge
integrals can be used to replace other facet energies,
such as gravitational energy, for facets on constraints.

An edge integral is evaluated once for each edge
– regardless of how many facets it is on – using the
orientation given in the datafile.
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4.6 Prescribed mean curvature and pressure

For an equilibrium surface with a constant surface
tension, the mean curvature can be interpreted as
proportional to the pressure difference across the sur-
face. Therefore, prescribing the mean curvature is
equivalent to prescribing the pressure difference. The
Evolver permits the user to prescribe pressures in
bodies. Pressure can be defined as the rate of change
of energy with respect to volume, so the pressure fea-
ture is implemented by having each body with a pre-
scribed pressure P contribute energy

E = −PV,

where V is the actual volume of the body. The energy
is actually calculated by a surface integral

E = −P

∫ ∫

∂B

z ~k · ~dS.

The desired surface need not really be the entire bound-
ary of a body; it may have fixed edges. The energy
contributed by the omitted boundary is constant and
so does not affect the shape of the surface.

This method will only work if the desired sur-
face is stable at the prescribed pressure. If curvature
decreases as volume increases, then the surface will
either blow up or implode. For example, if a round
soap bubble of surface tension T and initial radius R0

is prescribed to have a pressure of P and P > 2T/R0,
then the pressure force will cause the bubble to ex-
pand, which reduces the curvature 1/R, so the pres-
sure can never be balanced by the curvature, and the
bubble expands indefinitely.

4.7 Squared mean curvature

There are circumstances under which one wants the
energy to include the integral over the surface of the
squared mean curvature. For example, surfaces which
minimize this integral are by definition Willmore sur-
faces. This presents a slight problem for a piecewise
linear surface, as the mean curvature (in the form of
first variation measure) is singular and concentrated
on the edges. Its square integral is therefore always
infinite. However, it is possible to come up with a
usable approximation. An average mean curvature
around each vertex can be calculated, and the inte-
gral of the square of this average counted as energy.

The definition of mean curvature used here is a
variational one, and corresponds to the average of
the sectional curvatures rather than their sum. The
integral of squared mean curvature in the soapfilm
model is calculated as follows: Each vertex v has a
star of facets around it of total area Av. The force
on the vertex is

~Fv = −∂Av

∂v
.

Since each facet has three vertices, the area associated
with v is Av/3. Hence the average mean curvature at
v is

~hv =
1
2

~Fv

Av/3
,

and this vertex’s contribution to the total integral is

Ev = h2
vAv/3 =

3
4

F 2
v

Av
.

Ev can be written as an exact function of the vertex
cooordinates, so the gradient of Ev can be fed into
the total force calculation.

The alternative to locating curvature at vertices
is to locate it on the edges, where it really is, and
average it over the neighboring facets. But this has
the problem that a least area triangulated surface
would have nonzero squared curvature, whereas in
the vertex formulation it would have zero squared
curvature.

Squared mean curvature is also implemented for
the string model, but not for quadratic models. In
the string model, let Lv be the sum of the lengths of
the edges adjacent to v, so the force on a vertex is

~Fv = −∂Lv

∂v
.

Each edge has two endpoints, so the length associated
with v is Lv/2, so the curvature is

~hv =
~Fv

Lv/2
,

and this vertex’s contribution to the total integral is

Ev = h2
vLv/2 =

2F 2
v

Lv
.

4.8 Gaps

Figure 6: Surface in a ring, showing the gap problem.
A. The initial surface. The vertices are free to move
along the boundary wire. B. After one iteration, the
gaps have grown and the surface area shrunk.

Consider a soap film spanning a circular wire. The
Evolver must approximate this surface with a collec-
tion of facets, as shown in Figure 6. The straight
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edges of these facets cannot conform to the curved
wire, and hence the computed area of the surface
leaves out the gaps between the outer edges and the
wire. If the vertices are free to move along the wire,
then the Evolver will naturally try to minimize area
by moving the outer vertices around so the gaps in-
crease, as in Figure 6 right, ultimately resulting in a
surface collapsed to a line. This is not good. Some-
times the vertices can be fixed on the wire, but other
times this is not possible, for example when the sur-
face is spanning the inside of a cylinder. Therefore
there is provision for a “gap energy” to discourage
this. A constraint of the type defined in §5.1 may be
declared convex in the datafile. For an edge on such
a constraint, an energy is calculated

E =
k

6

∥∥∥~S × ~Q
∥∥∥

where ~S is the edge vector and ~Q is the projection of
the edge tangent to the constraint at the tail vertex of
the edge. The constant k is a global constant called
the gap constant. A gap constant of 1 gives the best
approximation to the actual area of the gap. A larger
value of k minimizes gaps and gets vertices nicely
spread out along the wire.

Another way to handle gaps is to define an edge
integral (see §4.5) that is zero on the constraint and
positive on the convex side of the constraint. Edge
integrals are evaluated on interior points of the edge,
so the bigger the gap, the bigger the integral. This
encourages the edges to be equal length.

Of course, any addition of energy changes the
problem slightly. But this energy decreases quadrat-
ically with the fineness of the triangulation, and so
should not change the solution significantly. By chang-
ing the constant associated with this energy, one can
see whether the problem is being significantly altered.

In actual practice, gap energy would seldom be
used with a wire boundary, since it would be much
simpler just to declare the vertices on the wire fixed.
The real use for gap energy comes with surface edges
on walls, where the vertices cannot be fixed.

5 Constraints

Energy minimization takes place subject to con-
straints of two types: constraints on the motion of
vertices and constraints on the value of surface in-
tegrals. Vertices can be individually constrained by
declaring them fixed, by confining them to level sets
of functions (which is Evolver’s narrow meaning of
the term constraint), or by defining their position
in terms of parameters (Evolver boundaries). Sur-
face integrals in general are called quantities, and the

particular case of body volumes is implemented in-
ternally.

5.1 Level-Set Constraints

A vertex may be confined to the zero level set of
one or more functions. Such a function is called a
constraint in Evolver terminology. It should be clear
from context when the term constraint is used in this
narrow sense or in the broader mathematical sense
in this paper. The default is the narrow sense. Con-
straint functions are defined by the user in the initial
datafile and numbered for reference. Vertices may be
declared to be on one or more constraints simulta-
neously, but it is the user’s responsibility to ensure
that the constraint function gradients at a vertex are
linearly independent. There are also one-sided con-
straints, which means a vertex is restricted to the
region where the constraint function has nonnegative
(or nonpositive) values.

When a vertex is moved for whatever reason, New-
ton’s method is used to project it back to its con-
straints. There is a global constraint tolerance pa-
rameter the user can set to control the accuracy of
constraint satisfaction. The coordinates of a vertex
in the initial datafile do not have to exactly satisfy its
constraints; it will be automatically projected. A ver-
tex on constraints may also be declared fixed, which
means that it will not move after its initial projection.
If a constraint is modified during runtime by chang-
ing an adjustable parameter, all vertices are projected
again so as to satisfy the new constraint.

Edges and facets may be declared to be on con-
straints, which means that all vertices generated by
subdividing them will be on the same constraints.

A single constraint is the best way to attach a free
edge of a surface to a wall. Two constraints confine
a vertex to a curve; but if a one-dimensional wire is
desired instead of a two-dimensional wall, then it may
be better to use the parameterized boundary feature
described below.

5.2 Boundaries

Evolver boundaries are one or two dimensional pa-
rameterized manifolds; they are an alternate way
to constrain the position of vertices. A vertex on
a boundary cannot also have constraints. Vertices,
edges, and facets may be deemed to lie in a bound-
ary. For a vertex, this means that the fundamen-
tal parameters of the vertex are the parameters of
the boundary, and its coordinates are calculated from
these. When a vertex on a boundary moves, the mo-
tion is projected back to parameter space and applied
to the parameters. Edges and facets on a boundary
bequeath the boundary to descendant vertices.
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A delicate question is how to handle wrap-arounds
on a boundary such as a circle or cylinder. Sub-
dividing a boundary edge requires a midpoint, but
taking the average parameters of the endpoints can
give nonsense. Therefore the average coordinates are
calculated, and that point projected on the bound-
ary parameters as continued from one endpoint. The
rings in the catenoid example in §2.1 are represented
as one-parameter circles and show a case where the
endpoint extrapolation is nexessary in the refining
operation.

A general guideline is to use constraints for two-
dimensional walls and boundaries for one-dimensional
wires. If one uses a boundary wire, the vertices and
edges on the boundary can probably be declared to
be fixed. Then the boundary becomes just a guide
for refining the boundary edges.

5.3 Quantities

A quantity in the Evolver is a value that can be ex-
pressed as the sum of integrals of vectorfields over
surfaces and edges. Quantities can be evaluated for
informational purposes, or they can be used as con-
straints (in the mathematical sense). Body volume is
an examples of a built-in quantity. Surface area is not
a quantity in this sense, since it cannot be written as
a vector integral.

Uuser-defined quantities are supported – for ex-
ample, one might use as quantities the center of mass,
the moment of inertia, the magnetic flux, and so no.
The key to many of these is the Divergence Theo-
rem, which permits volume integrals to be written
as surface integrals. One can also use a quantity in
place of a body volume that is awkward to do with
the built-in volume mechanisms, for example, when
a background metric is used.

Each quantity is defined in the datafile by giving
the surface integrand and which facets it is to be in-
tegrated over, and an edge integral and the edges it
is to be integrated over. A quantity acts as a mathe-
matical constraint when it is declared fixed and given
a specified value. Its actual value may be displayed
and its target value changed interactively. Quantities
have the same mathematical form as surface and edge
energy integrals discussed in section 3, but are used
for constraints or information rather than as part of
the objective function.

5.4 Volumes

The term volume is used for the highest dimensional
measure of a region in n-space: area in R2, volume
in R3, etc. A body may have a volume specified in
the datafile, which then becomes a volume constraint.

The volume of a body B can be written as

V =
∫ ∫ ∫

B

1 dV,

which by the Divergence Theorem can be written a
surface integral:

V =
∫ ∫

∂B

z~k · ~dS.

This integral is evaluated over all the boundary facets
of a body.

The part of the boundary of a body lying on a
constraint need not be given as facets. In that case,
Stokes’ Theorem can be used to convert the part of
the surface integral on the constraint to a line integral
over the edges where the body surface meets the con-
straint. The line integral integrands are given as part
of the constraint definition in the datafile. These edge
volume integranls can also be used to overcome the
volume calculation problems caused by gaps between
curved constraints and flat facets.

Volumes are a special case of quantities, and are
implemented internally for Euclidean space and flat
torus domains only. In general quotient spaces or in
Riemannian metrics, it is up to the user to define vol-
ume constraints using the general quantity constraint
mechanism.

5.5 Volumes in a torus domain

The volume of a body can be automatically calcu-
lated in a torus domain, but the wrapping of the edges
across the faces of the fundamental region makes the
calculation a bit tricky. Ideally, we would like to ad-
just the vertices by multiples of the fundamental re-
gion basis vectors to get a body whose volume we
could find with regular Euclidean methods. Unfor-
tunately, all we know are the edge wraps, i.e. the
differences in the adjustments to endpoints of edges.
But this turns out to be enough, if we are a little
careful with the initial volumes in the datafile.

Let the facets of a particular body be indexed by
m, and let vmi, i = 0, 1, 2, be the vertices of facet
m. Let ~Ami be the (unknown) vertex adjustment for
vertex vmi, and ~Tmi be the (known) wrap vector (dif-
ference in endpoint adjustments) for edge i of facet
m. Then

V = 1
6

∑
facets m(~vm0 + ~Am0)

·(~vm1 + ~Am1)× (~vm2 + ~Am2)

= 1
6 (S1 + S2 + S3 + S4),

(5.1)
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where

S1 =
∑

facets m

~vm0 · ~vm1 × ~vm2,

S2 =
∑′

facets m

~vm0 · ~vm1 × ~Am2,

S3 =
∑′

facets m

~vm0 · ~Am1 × ~Am2,

S4 =
∑

facets m

~Am0 · ~Am1 × ~Am2.

In S2 and S3, the
∑′ notation means that each facet

is included three times in cyclic permutation, once
with each vertex as base point.

The first of these sums is straightforward. The
second sum can be regrouped with one term for each
edge j, pairing the two facets j and j′ for each edge
together:

S2 =
∑

edges j

~vj0 · ~vj1 × ~Aj2 + ~vj1 · ~vj0 × ~Aj′2

=
∑

edges j

~vj0 · ~vj1 × ( ~Aj2 − ~Aj′2)

=
∑

edges j

~vj0 · ~vj1 × 1
2
(~Tj′2 + ~Tj1 − ~Tj2 − ~Tj′1).

We can regroup this into a sum which can be done
facet by facet, again including each facet three times:

S2 =
1
2

∑′

facets m

~vm0 · ~vm1 × (~Tm1 − ~Tm2).

In S3, we group terms with a common vertex to-
gether, with the inner facet sum over facets with ver-
tex k as base vertex:

S3 =
∑

vertices k


~vk ·

∑

facets i

~Ai1 × ~Ai2




=
∑

vertices k


~vk ·

∑

facets i

( ~Ai1 − ~Ak)× ( ~Ai2 − ~Ak)




=
∑

vertices k


~vk ·

∑

facets i

~Ti0 ×−~Ti2




=
∑′

facets m

~vm0 · ~Tm2 × ~Tm0,

which again can be done facet by facet. The step
introducing Ak is valid since the Ai1 are just a rela-
beling of the Ai2 and so

∑
i Ai1 =

∑
i Ai2.

The sum S4 is a constant, and so only needs to be
figured once. Also, it is a multiple of the fundamental

region volume Vc, so its contribution to the body vol-
ume is a multiple of 1

6Vc by equation (5.1). Therefore,
if we assume the volume prescribed in the datafile is
within 1

12Vc of the actual volume, we can calculate
the other sums and figure out what the fourth sum
should be.

The body volume gradient at vertex v can be eas-
ily found from the above sums, since the base vertex
is dotted with other terms. The gradient is a sum
over all facets with base vertex v:

∂V

∂v
=

1
6


 ∑

facets m on v

~vm1 × ~vm2

+
1
2
~vm1 × (~Tm1 − ~Tm2) + ~Tm2 × ~Tm0

)
.

6 Iteration

The heart of the Evolver is the iteration step that re-
duces energy while obeying any constraints. The sur-
face is changed by moving the vertices. No changes
in topology or triangulation are made. The idea is to
calculate the force at each vertex and move the ver-
tex in that direction, thus using a gradient descent
method of minimization.

6.1 Force Calculation

The first step in an iteration is the calculation of the
forces on the vertices. The total energy of the sur-
face is viewed as a function of the coordinates of the
vertices. The negative gradient of the energy as a
function of the position of a single vertex gives the
force on that vertex. Collectively, all the forces on all
the vertices make up the negative of the total gradi-
ent of energy. No new approximations are introduced
by the force calculation; the energy may be an ap-
proximate energy due to numerical integrations, but
the gradient is the exact gradient of the approximate
energy.

Vertices on constraints have their forces projected
to the tangent spaces of the constraints. Vertices on
boundaries have their forces mapped back to forces on
the boundary parameters. Fixed vertices have their
forces set to zero.

6.2 Volume and Quantity Constraints

The second step in an iteration is to enforce con-
straints on body volumes and other integrated quan-
tities. This has two parts. The first part consists of
correcting for any errors in the current values of the
quantities. The second part consists of projecting the
vertex forces to be orthogonal to the quantity gradi-
ents. Both parts use the gradients of the quantities
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as functions of the vertices. Let ~Wvk be the gradient
of quantity k as a function of the position of vertex
v. These gradients are projected on constraint level
sets or boundaries or set to zero in the same manner
as forces.

The value correction consists of applying a sin-
gle step of Newton’s method. Let the current excess
value of quantity k be δk (which may be negative,
of course). We assume the correcting motion ~Rv at
vertex v is of the form

~Rv =
∑

k

ck
~Wvk

such that
∑

v

~Rv · ~Wvk = −δk for each k.

This leads to the following linear system for the ck:
∑

k

ck

∑
v

~Wvk · ~Wvk′ = −δk′

for each quantity k′. This system is solved for the
ck, and hence for the motions ~Rv. This motion is not
done immediately, but is done as part of the over-
all motion described below. The quantity values are
not perfectly corrected by this step, but over several
iterations they should converge to the target values.

The second part is the projection of the forces.
Let ~Fv be the total force at vertex v. We want a
projected force ~Fv,proj of the form

~Fv,proj = ~Fv −
∑

k

ak
~Wkv

such that
∑

v

~Fv,proj · ~Wvk = 0 for each quantity k,

which leads to the linear system for ak

∑

k

ak

∑
v

~Wvk · ~Wvk′ =
∑

v

~Fv · ~Wvk′

for each quantity k′. The coefficients ak are the La-
grange multipliers for the quantity constraints, and
can be interpreted as pressures for body volume con-
straints. Whenever the user asks for body volumes
to be displayed, these pressure values are also shown.

6.3 Motion

Each vertex is moved by the quantity correction mo-
tion plus a scale factor times the force at the vertex.
The scale factor is a global constant, the same for
all vertices. The user may set the scale factor ex-
plicitly, or let the Evolver seek the optimal value. In

the latter mode, Evolver will successively double or
halve the scale factor until a minimum in energy is
bracketed. Then quadratic interpolation is used to
estimate the optimum scale factor, and that value is
used in the final motion.

Each time a motion is done, all vertices on con-
straints are projected back to their constraints by re-
peatedly applying Newton’s method until the con-
straint function value is smaller than the constraint
tolerance factor, which the user may set. If vertices
subject to one-sided constraints are on the wrong side
of the constraint, they are projected to the constraint.
If such a vertex wants to move to the proper side of
the constraint, it is freed from the constraint.

From experience, it seems that for two-dimensional
surfaces driven by surface tension that the optimum
scale factor is around 0.2 independent of the fineness
of the triangulation as long as the surface is evolving
without problems. The universality the scale factor is
expected in this case since the scale factor is unitless
in length for two-dimensional area only. When the
scale factor dives toward zero, it is usually a sign of
problems like an edge length becoming zero, or a facet
area becoming zero. Unfortunately, the 0.2 value ap-
plies best to minimizing area; other models, such as
the string model and squared mean curvature, have
“normal” scale factors that vary with triangulation
size and other factors, so it is hard to tell when the
surface is evolving properly and when it is getting
into trouble. In these circumstances, other methods
have to be used, such as watching the surface visually
and checking edge length and facet area histograms.

6.4 Motion by mean curvature

The mean curvature vectorfield ~h of a surface S is
defined to be the gradient of the area of S, in the
sense that if S is deformed with an instantaneous
velocity ~u, the rate of change of surface area is

dA

dt
=

∫ ∫

surface

~u · ~h dA.

By definition, ~u = −~h under motion by mean curva-
ture, so that

dA

dt
= −

∫ ∫

surface

h2 dA. (6.1)

By default, the gradients of quantities like energy
and volume are calculated simply as the gradient of
the quantity as a function of vertex position. THis
gives the force on a vertex, for example. But to sim-
ulate motion by mean curvature, it is necessary to
have force per unit area instead. In the triangulation
formulation, let Av be the area of the star of facets
around vertex v and let

~Fv = −∂Av

∂v
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be the force on vertex v. Then
dA

dt
=

∑
v

~u(v) · −~Fv.

Take the area associated with a vertex to be one-third
of the total areas of the facets surrounding the vertex,
dA = 1

3Av. Since each facet has three vertices, this
allocates all area. Hence as approximation to ~h, we
take

~h = −3~Fv

Av
.

If the Evolver is operated in “area normalization”
mode, then the vertex motions are calculated using
this formula. In this mode, the user should set the
scale factor, which is the timestep for the evolution,
to a constant small enough for the iteration to be
a good approximation to the continuous evolution.
Using an optimizing scale factor makes the time step
too large.

The string model is more amenable to close
scrutiny of how the Evolver does motion by mean
curvature. In §2.3 an example was given of grain
boundaries evolving in two dimensions. In approxi-
mating motion by mean curvature, there are two dis-
cretizations that must be made, in space and in time.
The space discretization here consists of represent-
ing the grain boundaries as a set of line segments,
and the time discretization consists of the iteration
steps. There is an intermediate stage of discretiza-
tion, that of the continuous time evolution of the dis-
crete boundaries. The equation of motion for this
problem has been chosen to approximate the contin-
uous problem in a certain respect. Two-dimensional
grain evolution has the property that the rate of
change of area of a grain depends only on the number
of its sides. If ~h is the mean curvature of a grain G, so
the boundary velocity is −~h, then the rate of change
of area of a grain is

dA

dt
=

∫

∂G

−hds = −
∫

∂G

dθ

ds
ds = −

∫

∂G

dθ.

The total turning angle around the boundary of a
grain is 2π, but each triple vertex contributes a turn-
ing angle of π/3, so for a grain of N sides, so

dA

dt
= (N − 6)

π

3
.

The space-disrete problem preserves this property.
The motion of each vertex is such that the area
change of the grain due to the motion of that vertex
is proportional to the turning angle at that vertex (or
to the excess turning angle at triple vertices).

A property that is not exactly preserved is that
the rate work is done sweeping out area is propor-
tional to the rate of length loss,

dW

dt
=

∫

∂G

~v · ~F ds =
∫

∂G

h2ds = −dL

dt
.

The last equality is the string version of equation
(6.1). To preserve this property would require solv-
ing a system of linear equations linking together the
motions of all the vertices.

The space-discretized evolution is guaranteed dis-
sipative, but the time-discretized evolution can suf-
fer from instabilities. Consider a boundary made up
of segments of length L zigzagging about a straight
midline with small amplitude y. The velocity of a
vertex will be 4y/L2, and if the time step is ∆t, then
the amplitude will grow if 4∆ty/L2 > 2y. Hence
the maximum timestep allowable is ∆t = L2/2, or,
conversely, the minimum edge length is L =

√
2∆t.

Exact damping of the zigzag occurs when ∆t = L2/4.

6.5 Conjugate gradient

For minimizing a quadratic function, there is a tech-
nique called the conjugate gradient method [Press et
al. 1988 §10.6] that can minimize much faster than
gradient descent. With exact arithmetic, it minimizes
an n-dimensional quadratic function in at most n it-
erations. This method does not follow the gradient
downhill, but makes an adjustment using the past
history of the minimization.

The Evolver uses the Fletcher-Reeves variant of
the conjugate gradient method. At iteration step i,
let Si be the surface, Ei its energy, ~Fi(v) the force at
vertex v as described above, and ~hi(v) the “history
vector” of v. Then

~hi(v) = ~Fi(v) + γ~hi−1(v)

where

γ =
∑

v
~Fi(v) · ~Fi(v)∑

v
~Fi−1(v) · ~Fi−1(v)

.

For the actual motion, a one-dimensional minimiza-
tion is performed in the direction of ~hi, using the
bracketing method described in §6.3. It is important
that all volumes and constraints be enforced during
the one-dimensional minimization, or else the method
can go crazy.

the energy function of a surface is not exactly
quadratic, but the method can stil be applied, and
sometimes it yields very good results. But some-
thimes it’s worse than regular iteration. The saddle
point of energy in the catenoid example of §2.1 seems
to confuse the conjugate gradient method. With con-
jugate gradient in effect, the saddle point is passed at
iteration 17 and the area decreases again until itera-
tion 30, when it reaches 6.4486. But at this point fur-
ther iteration produces no change, and the conjugate
gradient mode has to be turned off and on to erase the
history vector. Once restarted, another 20 iterations
will get the area down to 6.4334. This shows that the
conjugate gradient mode can work much better than
ordinary mode, but it can also have problems.
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6.6 Hessian minimization

Minimization by gradient descent or even conjugate
gradient can take many iterations. A more direct
way to try to minimize is to calculate the Hessian
matrix of second derivatives of energy and solve for
the motion that gives zero gradient. This method is
currently implemented only for the case where sur-
face tension is the only energy and there are no con-
straints of any kind except fixed vertices. It assumes
that the surface is close enough to a local minimum
for the Hessian to be positive definite, which is not
always true. When the method works, it can find the
minimum energy to 15 decimal places in three or four
iterations. But if the Hessian is not positive definite,
the method blows up. It is easy to find examples
with a saddle point of energy; see the catenoid exam-
ple below. There are checks in place to ensure that
the calculated motion does indeed reduce energy.

6.7 Diffusion

In real soap-bubble clusters, air can diffuse across the
soap films, driven by pressure differences. Smaller
bubbles tend to have higher curvature and hence
higher pressure, so tend to shrink. One can watch
a foam evolve over the course of minutes, changing
its topology as bubbles disappear. The Evolver can
simulate diffusion. If the diffusion mode is on, then at
the start of an iteration target volume is transferred
across each facet, in the amount equal to the area of
the facet times the difference in body pressures times
the global diffusion constant. The iteration step then
corrects the actual volumes to the target volumes and
does its normal energy minimization step. Topology
changes are not done automatically yet; those are up
to the user to do using the operations described in
Section 7.

7 Surface Operation

This section describes the main commands available
to the user, aside from the iteration step described in
the previous section.

7.1 Refining

To refine a triangulation is to subdivide each facet to
create a finer triangulation. THe Evolver does this
by creating new vertices at the midpoints of edges,
which it then uses to subdivide each facet into four
new facets, each similar to the original.

The first stage of refining is to subdivide all edges
by inserting a midpoint. Hence all facets temporar-
ily have six sides. For an edge on constraints, the

midpoint gets the same set of constraints, and is pro-
jected to them. For an edge on a boundary, the
parameters of the midpoint are calculated by pro-
jecting the vector from the edge tail to the midpoint
back into the parameter space and adding that to the
tail parameters. This avoids averaging parameters of
endpoints, which gives bad results when done with
boundaries that wrap around themselves, such as cir-
cles. In the second stage, each facet is subdivided into
four facets by connecting the new midpoints.

Certain attributes of new elements are inherited
from the old elements from which they were created.
The new facets inherit the surface tension of their
parent facets. Fixity, constraints, and boundaries are
always inherited by offspring of all dimensions. In a
quotient space, some, but not all, new edges inherit
symmetry group wrapping, so that the surface is cor-
rectly embedded.

Refinement can change surface area, energy, and
volumes if there are curved constraints or boundaries.

In seeking the minimum energy, it is best to evolve
with a coarse triangulation as far as possible. Each
iteration can propagate a position adjustment only
one edge at a time, so the finer the triangulation, the
longer adjustments take to travel across the surface.

7.2 Equiangulation

b c

a

d e

θ1

θ2

Figure 7: The two adjacent facets on the left violate
the equiangulaton criterion, since we have θ1 + θ2 >
π. Equiangulation flips the quadrilateral diagonal,
making the triangles more nearly equilateral.

Triangulations work best when the facets are as
close to equilateral (that is, equiangular) as possible
for a given set of vertices. Given a set of vertices,
how does one make a triangulation for those vertices
that has triangles as nearly as possible equilateral? In
the plane, the answer is the Delaunay triangulation,
in which the circumcircle of each triangle contains
no other vertex [Sibson 1978]. It is almost always
unique. It can be constructed by local operations be-
ginning with any triangulation. Consider any edge as
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the diagonal of the quadrilateral formed by its adja-
cent triangles. If the angles of the two vertices off of
the diagonal add to more than π, then the circum-
circle criterion is violated, and the diagonal should
be switched to form a replacement pair of triangles
(Figure 7. When no more switches can be done, we
have a Delauney triangulation.

Now suppose now we have a triangulation of a
curved surface in space. For any edge with two adja-
cent facets, we switch the edge to the other diagonal
of the skew quadrilateral if the sum of the angles at
the off vertices is more than π. As in Figure 7, let
a be the length of the common edge, b and c the
lengths of the other sides of one triangle, and d and
e the lengths of the other sides of the other triangle.
Let θ1 and θ2 be the off angles. Then by the law of
cosines,

a2 = b2 + c2 − 2bc cos θ1, a2 = d2 + e2 − 2de cos θ2.

The condition θ1 + θ2 > π is equivalent to cos θ1 +
cos θ2 < 0. So we switch if

b2 + c2 − a2

bc
+

d2 + e2 − a2

de
< 0.

The equiangulation procedure over the whole surface
may have to be repeated several times to get complete
equiangulation, but almost never more than three or
four times. The process is guaranteed to terminate
since a switch reduces the radii of the circumcircles
and a finite number of vertices has a finite number of
triangulations.

Equiangulation can have an almost magical effect
in improving a triangulation, and I highly recommend
its regular use. It may temporarily increase area and
change volumes, but the magnitudes of these effects
are within the approximation error of using flat facets
for a curved surface. A use of equiangulation is shown
in Figure 1.

7.3 Vertex averaging

An evolving surface can get into trouble if some of
the vertices of the triangulation get too scrunched
together, as shown in Figure 3 B. To get vertices to
spread out, there is an operation called vertex averag-
ing. For each vertex, this operation computes a new
position as the area-weighted average of the centroids
of the facets adjoining the vertex. Fixed vertices or
vertices on boundaries are not moved, nor are ver-
tices on triple or higher edges. Also, to keep the new
surface as close as possible to the old one, volumes on
both sides of the surface are preserved. If vertex v is
on facets fi with centroids ~xi, then the new position
is calculated as

~vavg =
∑

i area(fi) · ~xi∑
i area(fi)

.

The volume on one side of all the facets around the
vertex calculated as a cone from the vertex is

V =
∑

facets f

~v · ~Nf ,

where ~Nf is the facet normal representing its area.
The total normal ~N is

~N =
∑

facets f

~Nf .

To preserve volume, we subtract a multiple λ of the
total normal from the average position:

(~vavg − λ ~N) · ~N = ~v · ~N,

so

λ =
~vavg · ~N − ~v · ~N

~N · ~N
.

Then the new vertex position is

~vnew = (~vavg − λ ~N).

Constrained vertices are then projected to their con-
straints.

Vertex averaging may slightly increase area, but
this is usually offset by its benefits. It is useful in get-
ting the vertices spread out evenly. Evolution can be
awkward when facets are of very different sizes, since
the same scale factor applies to the whole surface.

7.4 Notching edges

A surface can be locally highly curved, resulting in
facets forming pronounced ridges along edges. One
way to selectively refine the surface is to just refine
around those edges whose adjacent facets are too far
from parallel, putting a notch in the edge to make it
more saddle-shaped. There is a command that lets
the user do this with a cutoff angle of his choosing.
The refinement is actually done by subdividing each
adjacent facet by putting a new vertex in the cen-
ter. Equiangulation then completes the process. For-
merly, the Evolver did notching by just subdividing
the offending edges, but that tended to create lots
of long skinny triangles and not always help matters.
The new method seems to work better.

7.5 Edge and facet operations

One way to improve a triangulation is to simply elim-
inate all edges that have become too short. This op-
eration is known as tiny edge weeding. Every edge
shorter than a user-set cutoff length that can legiti-
mately be removed is deleted by identifying its end-
points.

16



Sometimes there are very skinny triangles that
should be eliminated, but which don’t have a short
edge to be found by tiny edge weeding. Therefore
there is an operation called area weeding that removes
triangles whose area is smaller than some cutoff. This
procedure finds the shortest edge of a triangle and
eliminates it by the same process as the regular tiny
edge removal.

There is a command that will bisect all edges
longer than a user-chosen length. All facets adjoining
the edges are also subdivided into pairs of facets. If
the new edges are still longer than the cutoff length,
they are not further subdivided. It is suggested that
this step be followed by equiangulation.

Histograms of edge lengths and facet areas can be
displayed in conjunction with any of these commands.

7.6 Annealing, or jiggling

Sometimes it may be desirable to perturb the sur-
face to get it off a metastable position. There are
both random and user-definable perturbations possi-
ble. Because of its similarity to the thermal pertur-
bations responsible for annealing in metals, the char-
acteristic magnitude of the perturbation is called the
temperature.

Under a random perturbation, or jiggle, each coor-
dinate of each non-fixed vertex is moved by δx = TLg
where g is a random value from the standard gaussian
distribution (calculated from the sum of five random
values from the uniform distribution on [0,1]), T is the
current temperature, and L is a characteristic length
that starts as the diameter of the surface and is cut
in half at each refinement.

A long jiggle is a sinusoidal displacement of each
vertex v by ~A sin(~v · ~w + ψ). The amplitude ~A, the
wavevector ~w, and the phase ψ may be specified by
the user or chosen at random.

7.7 Popping Edges or Vertices

The Evolver does not change the topology of a sur-
face on its own. However, there are many times when
a naturally evolving surface will need to change its
topology. For example, a neck might pinch out in a
catenoid whose boundary rings are too far apart, or
two growing metal grains might meet. Fortunately,
the types of singularities possible in soapfilm-like sur-
faces in three-dimensional space were classified in [Tay-
lor 1976] for uniform surface tension. Three surfaces
may meet along a curve, or four triple curves may
meet at a point. The Evolver has procedures known
as edge popping and vertex popping to detect improper
singularities and reduce them to proper types. These
routines are designed only for surfaces with uniform

surface tension. There are many more types of sin-
gularities possible if the different component surfaces
meeting at a singularity have different surface ten-
sions.

Edge popping looks for edges with more that three
facets that are not fixed and are not on boundaries
or constraints. When found, such an edge is split
longitudinally with a new facet in between. The two
old facets with the smallest dihedral angle between
them are attached to the new edge. This is repeated
until only three facets are on the original edge. Each
split is propagated along the multiple junction line
as far as possible. If it is impossible to propagate the
split beyond either endpoint, the edge is subdivided
to provide a vertex which can be split.

Vertex popping assumes that all edges have at
most three facets adjoining, so edge popping should
be done first. The facet and edge structure around
each vertex is analyzed to find which have the wrong
topology. The analysis is done by looking at the net-
work formed by the intersection of the facets and
edges containing the vertex with the surface of a small
sphere around the vertex. The numbers of sides of
the cells of the network are counted. A simple plane
vertex has two cells of one side each. A triple edge
vertex has three cells of two sides each. A tetrahe-
dral point has four cells with three sides each. Any
other configuration is popped. The popping is done
by replacing the vertex with a hollow formed by trun-
cating each cell-cone except the cell with the largest
solid angle. In case the network is disconnected, the
solid angles of all the cells will add up to over 4π.
Then the vertex is duplicated and the different com-
ponents are assigned to different vertices. This lets
necks shrink to zero thickness and pull apart.

In the string model, vertices with more than three
edges are popped by finding the pair of edges making
the least angle, pulling them out a short distance with
a new vertex, and joining the new and old vertex with
a short edge. This is repeated until the original vertex
has only three edges.

Improper vertices may exist in the original datafile,
or they may be introduced by short edge elimina-
tion. For example, the pinching neck in a catenoid
must have all the short edges around its waist elim-
inated to pinch the waist down to one vertex, which
can then be popped. The other operations described
in this section (refining,vertex averaging, equiangu-
lation, notching) do not change the global topology
and so do not introduce improper vertices. Improper
vertices are not automatically detected unless the au-
topop feature is on.
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7.8 Zooming

Sometimes the detail of a surface may require a closer
look. The graphics display can magnify a surface,
but that doesn’t change the triangulation to follow
the detail. There can be cases, as when a bound-
ary wire passes through a soapfilm, where the detail
around a point is on a scale 100,000 times smaller
than the whole surface [Brakke 1992a]. Hence the
Evolver contains a mechanism to zoom in on a vertex,
throwing away the rest of the surface to save mem-
ory and time and to keep all triangle sizes reasonably
close together.

The user specifies which vertex to zoom in on and
the radius around it to keep. All vertices beyond
the cutoff distance from the given vertex are deleted.
Then all edges and facets containing any deleted ver-
tices are deleted. Any remaining edge that had a
facet deleted from it is made fixed to anchor the cut
edges of the surfaces.

8 User Interface Details

This section describes the Evolver’s user interface, in-
cluding the initial data file, the command mechanism,
and the graphics interface.

8.1 The Initial Data File

The initial configuration of a surface is read from
a text file referred to as the datafile. The datafile
has five sections: general definitions, vertices, edges,
faces, and bodies. The catenoid datafile cat.fe is
presented here to give the flavor. This file is slightly
atypical in that none of the vertices are given directly
by their coordinates. The .fe filename extension is
a relic of early versions of the Evolver in which facet-
edges had to be explicitly listed in the datafile; I con-
tinue to use it out of habit to identify datafiles.

// cat.fe
// Evolver datafile for catenoid.

// ring radius and height
// adjustable at runtime
PARAMETER radius = 1
PARAMETER height = 0.55

// upper ring, parameterized by p1
boundary 1 parameters 1
x1: radius * cos(p1)
x2: radius * sin(p1)
x3: height

boundary 2 parameters 1
x1: radius * cos(p1)
x2: radius * sin(p1)
x3: -height

vertices // second column = value of p1
1 0*pi/3 boundary 1 fixed
2 1*pi/3 boundary 1 fixed
3 2*pi/3 boundary 1 fixed
4 3*pi/3 boundary 1 fixed
5 4*pi/3 boundary 1 fixed
6 5*pi/3 boundary 1 fixed
7 0*pi/3 boundary 2 fixed
8 1*pi/3 boundary 2 fixed
9 2*pi/3 boundary 2 fixed
10 3*pi/3 boundary 2 fixed
11 4*pi/3 boundary 2 fixed
12 5*pi/3 boundary 2 fixed

edges // given by endpoint vertices
1 1 2 boundary 1 fixed
2 2 3 boundary 1 fixed
3 3 4 boundary 1 fixed
4 4 5 boundary 1 fixed
5 5 6 boundary 1 fixed
6 6 1 boundary 1 fixed
7 7 8 boundary 2 fixed
8 8 9 boundary 2 fixed
9 9 10 boundary 2 fixed
10 10 11 boundary 2 fixed
11 11 12 boundary 2 fixed
12 12 7 boundary 2 fixed
13 1 7
14 2 8
15 3 9
16 4 10
17 5 11
18 6 12

faces // given by oriented edge list
1 1 14 -7 -13
2 2 15 -8 -14
3 3 16 -9 -15
4 4 17 -10 -16
5 5 18 -11 -17
6 6 13 -12 -18

The datafile syntax provides several features for
flexibility and ease of use. Simple macros can be de-
fined to do text substitution. Compound expressions
can be used anywhere a real number or a formula is
expected. Normal arithmetic and standard functions
are available. For functions that are evaluated during
runtime (constraints, quantities, etc.) expressions are
stored as syntax trees that are interpreted when the
expression needs evaluation. If interpretation is too
slow, user-defined functions may be written in C and
compiled into the Evolver. Named variables may be
declared and used in runtime expressions. Such vari-
ables (called adjustable parameters) can be changed
interactively during runtime, and are useful for mov-
ing constraints and boundaries around, modifying the
metric, changing contact angles, and so forth.

The definitions section describes everything not
pertaining to particular geometric elements, such as

• declarations and initial values for adjustable pa-
rameters;
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• the dimension of the surface and the dimension
of the ambient space containing the surface;

• the specification of a quotient space, or, for a
flat torus domain, the vectors defining the fun-
damental parallelpiped;

• Riemannian metric tensor components;

• for a crystalline surface energy, the name of the
Wulff vector file;

• constraint function formulas, together with en-
ergy and volume integrands for edges on con-
straints;

• boundary definitions via formulas of coordinates
in term of parameters;

• quantity integrands, with target values for con-
strained quantities;

• initial values for the gravitational constant, the
diffusion constant, the weighting factor for the
squared mean curvature in the energy, the Gaus-
sian integration order, and linear or quadratic
mode.

None of these items are required. If missing, the fea-
ture is not used or has a natural default value.

The vertices section lists the vertices, one per line.
Each vertex is numbered for later reference, and is
defined by its coordinates (or boundary parameters),
which constraints or boundaries it is on, and whether
it is fixed.

The edges section lists the edges, one per line,
also numbered for reference. Each edge is defined by
its tail and head vertex numbers, the constraints or
boundaries it is on, the quantities it contributes to,
and whether it is fixed. If a quotient space is being
used, the group element for wrapping the head vertex
to the proper place with respect to the tail vertex is
also given.

The face section lists polygons forming the initial
surface. Each polygon is given by its edge numbers
in order around its circumference. Edges traversed
in opposite direction from that given in the edges
section are given as negative numbers. The poly-
gons need not be planar, and they need not be tri-
angles (which is why the section is “faces” instead of
“facets”). The Evolver will immediately triangulate
non-triangular faces by putting a new vertex at the
average position of the original vertices and putting
in edges from the new vertex to each original vertex.
Each face may be on constraints, boundaries, or be
fixed. It may be given a specific surface tension; the
default is 1.0. It may be deemed to contribute to cer-
tain quantity integrals, and to have certain surface
integrands contribute to the total energy.

In the bodies section, each body is defined by list-
ing its bounding faces by number, negative numbers
if the orientation of the face in the face list has an
inward normal. There may be any number of faces in
any order. Faces do not have to completely enclose
a body; they are used to compute volume and other
integrals, and if certain faces are not needed for that,
they may be omitted. A body may be declared to
have a fixed volume of a certain value. The actual
initial volume need not be that exact value; the vol-
ume will be adjusted during the iteration process. A
body may also be given a density, which will cause
the total energy to include the gravitational potential
energy of the body with that density.

8.2 Command Interface

The user command interface is built on a simple
terminal-type model for maximum portability. The
main prompt is “Enter command: ”. There are two
types of commands. The first consists of one let-
ter occasionally followed by a number; the second is
an embryonic query language. Currently, queries are
supported that list, display, refine, or delete elements
by various criteria. Commands may be read from a
file with the command “read filename”. The out-
put of any command can be piped to a system com-
mand. Commands that change the surface or change
the model will cause energies and volumes to be recal-
culated. Commands can be logged to a file for later
repetition with the read command.

8.3 Graphics

It is possible to run the Surface Evolver without any
graphics. The program uses the standard teletype-
style interface for maximum portability. But it’s al-
ways nice to see the surface, and often essential to un-
derstanding what is happening. Unfortunately, every
computer system has its own way of displaying graph-
ics, and there is no universal standard. The Evol-
ver isolates the system-dependent graphics to draw-
ing two-dimensional triangles. This cuts down the
effort in porting the Evolver to a new system to a
reasonable level. The Evolver’s main graphics rou-
tine calculates the triangles to display, and calls the
device-dependent subroutine to do the display. The
device could be a screen display or a graphics output
file writer.

Two classes of graphics devices are provided for:
those which can do their own viewing transforma-
tions and hidden surface removal, and those which
can’t. The former are simply provided a list of tri-
angles with vertex coordinates in three dimensions.
For the latter, the Evolver keeps an internal viewing
transformation matrix, sorts the transformed trian-
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gles from back to front, and feeds them to the display
routine (painter’s algorithm). The sorting algorithm
will not subdivide intersecting triangles. If two trian-
gles overlap, it will just find one point in the overlap
and compare depths there. This can lead to some
strange-looking displays for strange surfaces, but it
works well for the types of surfaces the Evolver is
meant for.

My favorite graphics system is the GeomView pro-
gram on Iris workstations. GeomView is an interac-
tive viewer that lets the user rotate, translate, zoom,
etc. the surface by dragging a mouse cursor over
the window in a trackball metaphor. A high-end
Iris workstation can light, shade, and smoothly ro-
tate a surface consisting of several thousand trian-
gles. The Evolver uses a shared memory interface
with GeomView, so that the display is automatically
updated whenever the surface changes. GeomView
was written at The Geometry Center, and is freely
available (see “Software Availability” at the end of
this article).

Other types of screen displays do not have such
fancy view control as GeomView. Instead, there is
a teletype-style graphics command interface that lets
the user control the viewing angle and size of the
display. This viewing transformation is also used for
the graphics output files.

There are several graphics output file formats,
most notably PostScript. There are also formats that
list transformed or untransformed triangles as text,
suitable for input to other programs.

8.4 Other Commands

It is possible to reset the values of many parameters
during runtime, including the gravitational constant,
body volumes, constrained quantity targets, the dif-
fusion constant and the user-defined variables used in
formulas for constraints, boundaries, quantities and
metrics.

The current surface can be dumped to a text file in
the same format as the datafile. This is the only way
to save a file; there is no binary save format. The
text format has the advantages that it is portable,
editable and not too much larger than a binary file
would be.

After minimizing energy at several levels of re-
finement, it is possible to extrapolate the energy to
an infinitely fine refinement. The extrapolation uses
the final energies of three successive refinements and
assumes a power law approach to the ultimate mini-
mum.

9 Application: The Hopf Cone
Conjecture

In this sectin I present an example of a conjecture
that was settled (negatively) through the use of the
Evolver.

In constrast to the situation in R3, the classifi-
cation of area mininizing hypersurface cones in R4

is unknown. Frank Morgan once conjectured that
a certain cone in R4 is absolutely area minimizing
[Morgan 1986, p. 1278]. This example shows that it
is not by having the Evolver generate a comparison
surface with less area for the same boundary. It il-
lustrates the use of a Riemannian metric to permit a
three-dimension surface to represent a four-dimension
surface by projecting out a symmetry.

Morgan’s cone is based on the Hopf fibration of
the 3-sphere S3. Let S3 be parametrized by

0 ≤ α ≤ π/2, 0 ≤ β ≤ 2π, 0 ≤ γ ≤ 2π

so that Euclidean coordinates are

x1 = cos α cos β, x2 = cos α sin β,

x3 = sin α cos γ, x4 = sin α sin γ.

Then the boundary of Morgan’s Hopf cone consists
of the three surfaces

β − γ = 0 (mod 2π),
β − γ = 2π/3 (mod 2π),
β − γ = 4π/3 (mod 2π).

These three surfaces have zero mean curvature and
meet at 120◦ angles along the two orthogonal circles
x2

1 + x2
2 = 1 and x2

3 + x2
4 = 1.

Theorem 9.1. Morgan’s Hopf cone is not absolutely
area minimizing.

Proof. The idea of the proof is to take the quotient
space of R4 modulo the Hopf fibers S1, giving R3

with a metric such that the area of a surface in R3

is the same as the 3-area of the lift of the surface
back into R4. The metric turns out to have a natural
interpretation as a cone space, leading to a simple
counterexample which can be verified by the Evolver.

The metric on R4 in Hopf spherical coordinates
(r, α, β, γ) is

ds2 = dr2 + r2dα2 + r2 cos2 α dβ2 + r2 sin2 α dγ2.

The coordinates of the quotient space R3 will be
(r, α, θ), where θ = β − γ. The orthogonally pro-
jected metric is

ds2 = dr2 + r2dα2 + r2 sin2 α cos2 α dθ2.
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The lift of a point in R3 is a circle of circumference
2πr, Hence we can make the 3-area of the lift of a
surface have the 2π times the 2-area in R3 by multi-
plying the linear metric ds by

√
r, giving an effective

metric of

ds2 = r dr2 + r3dα2 + r3 sin2 α cos2 α dθ2.

This can be made to look more like the ordinary
spherical coordinate metric by using coordinates ρ =
r3/2/2 and φ = 2α. Then

ds2 =
16
9

dρ2 + ρ2dφ2 + ρ2 sin2 φdθ2.

This is the Euclidean spherical coordinate metric ex-
cept for the factor 16/9, which is bigger than 1, mak-
ing R3 into a cone space.

Figure 8: This surface is a counterexample to Mor-
gan’s Hopf cone conjecture. The three outer edges are
equally spaced half-great-circles on the unit sphere.
Note how the surface avoids the center of the sphere.

Morgan’s Hopf cone projects to three planes meet-
ing at 120◦, which is known to be absolutely area min-
imizing in the standard metric of R3. Its area inside
the unit sphere (in the Hopf metric) is 2π. However,
the cone factor makes it more expensive for a sur-
face to go radially inward rather than go sideways.
In a two-dimensional cone, it is easily seen (by un-
rolling the cone) that geodesics avoid the origin. A
similar phenomenon happens here. The comparison
surface was made by deforming the three planes by
pushing the point at the origin out toward one of the
boundaries. This configuration was fed into the Sur-
face Evolver, which evolved the surface and produced
the surface of Figure 8 with an area of 6.14, which is
easily less than that of Morgan’s Hopf cone. The nu-
merical errors in this area are due to the numerical
integration used to calculate the area of the facets
and the gap between the curved boundary and the
facets. Both of these can easily be estimated to be
less than the improvement of 8 over the Hopf cone.

The Hopf cone that projects to the tetrahedral
cone is also not minimizing. The Evolver gives 7.44

Figure 9: Comparison surface for the tetrahedral
Hopf cone. The three outer edges lie on the unit
sphere. Again, the surface avoids teh center of the
sphere.

for the area of the comparison surface Figure 9, while
the area of the cone is 4 cos−1(−1/

√
3) = 7.6425. The

only other minimizing cone in standard R3, the flat
plane, also deforms to avoid the origin. Thus none
of the area-minimizing cones in standard R3 lifts via
the Hopf fibration to a minimizing cone in R4.

10 Future directions

The Surface Evolver is under continual development.
I welcome suggestions from users for new features.
If they are reasonable, they will be added as time
permits.

Some of the major items on my current list of
things to do are:

• How close in various senses is an Evolver mini-
mal surface to the true smooth minimal surface
for a given problem?

• The Evolver gives an upper bound for the area
of a minimal surface. The technique of cali-
brations, a generalization of the network the-
ory min-cut max-flow duality, can give lower
bounds. A near-minimal surface should be able
to generate a near-maximal calibration. Hence
a goal is to have the Evolver generate such cal-
ibrations.

• How close is an Evolver evolution by mean cur-
vature to an ideal smooth evolution? Given an
initial smooth surface, is it possible to construct
an Evolver approximation that stays close to
the ideal evolution? A more permissive notion
of approximation would say that for each Evol-
ver evolution there is an ideal smooth evolution
that stays near it.
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• The current method of approximation to mo-
tion by mean curvature needs further investiga-
tion. The gradient of energy is a covector, and
motion is a vector. The conversion from covec-
tor to vector requires a metric or inner product.
The inner product used by the Evolver is the
Euclidean inner product at vertices, weighted
by the verex star area. Other inner products
are possible and may have desirable properties.

• Instabilities of the type described in §6.4 often
limit the size of the time step in an evolution.
These instabilities need to be understood and
methods have to be developed to speed evolu-
tion.

• Automatic triangulation management. Cur-
rently, users have to closely monitor the surface
triangulation and intervene manually when it
gets fouled up. I hope to be able to have any ini-
tial surface evolve for any length of time with-
out any user intervention, as is now the case for
string evolution as described in §2.3.

• An interactive graphical interface, which will
let users select with a mouse the geometric ele-
ments (vertices, edges, etc.) they wish to work
with, and it could be an interactive tool for the
design of initial surfaces and datafiles.
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12 Availability

The Surface Evolver program is in the public do-
main, and there is no charge for it. It is written
to be portable between systems. The only require-
ment is a C compiler. So far, it has been ported to
Sun, Iris, NeXT, Xenix, and MS-DOS systems. The
major effort in porting to a new system is writing a
screen graphics interface. However, this is fairly sim-
ple, since the system-dependent routines need only
display triangles. The program can also be run with-
out any screen graphics, which makes it possible to
run remotely.

A package containing source code, manual, and
sample data files is available by anonymous ftp from
geom.umn.edu (128.101.25.31) as pub/evolver.tar.Z.
For those with NeXT computers, there is also a sepa-
rate ftp archive
pub/evolver.next.tar.Z which contains a NeXT
executable Evolver and Interface Builder files. The
Evolver is also available on floppy disk from the au-
thor. The manual in TEX dvi format is included in the
ftp archive. A hardcopy version of the manual can be
requested separately from the author, or directly from
The Geometry Center, 1300 South Second Street,
Minneapolis, MN 54554. (Later note: the previous
paragraph is obsolete. The Evolver home web page
is now http://www.susqu.edu/evolver. Geomview is
now available from http://www.geomview.org.)
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