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Abstract

Voronoi tessellations generated by Poisson point processes in n-dimensional Euclidean space
are studied. Formulas for the expected measure of the k-dimensional skeleton of the tessellation
are developed, along with formulas for q-dimensional cross sections. As n goes to infinity with
q fixed, there is a limiting tessellation process, which is intuitively a finite dimensional cross
section of an infinite dimensional tessellation.
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1 Introduction

One way to divide a space into convex polyhedra is to start with a set S of points and associate with
each point P of S the set of points of the space that are closer to P than to any other point of S.
The closure of this set is the Voronoi polyhedron of P. All the Voronoi polyhedra together form the
Voronoi tessellation of the space generated by S. A random Voronoi tessellation is one generated by
a random set S. In this paper, S will be assumed to be generated by a Poisson point process with
unit density. The polyhedra will also be called cells, and the points of S will be called seeds due to
their role in generating cells.

The k-dimensional skeleton of the tessellation is composed of points that are in the intersection
of n−k+1 polyhedra, that is, points that have n−k+1 nearest neighbors in S. The expected values
of the measures of the skeletons of 2 and 3 dimensional tessellations were derived by Meijering [1]
and Gilbert [2]. This paper finds the expected values for arbitrary dimension, and for cross-sections
of arbitrary dimension. In the case of a fixed-dimensional section, it is possible to make sense of the
limit as the dimension of the parent space goes to infinity.
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2 Main result

The method employed here is the same as that developed in Brakke [3]. Each type of point (interior,
vertex, boundary, etc.) is characterized as being part of a configuration of seeds. The expected
measure of such configurations can be expressed as an integral, which can be evaluated (analytically,
in this paper) to give the expected measure of a type of point.

Each point T of the k-skeleton is the center of a ball with n−k+1 points of S on its boundary and
none in its interior. Refer to these points as S0, S1, . . ., Sm, where m is the codimension, m = n−k.
The ball will be called simply the void of T. Let M be the m-ball determined by S0, . . ., Sm, in the
m-plane determined by S0, . . . , Sm, and let Y be the center of M.

The configuration for T may be parameterized by S0, . . ., Sm, and a k-dimensional parameter
~y giving the location of T on the k-plane through Y and perpendicular to the m-plane containing
M. From general results in [3], it follows that the expected measure of the k-skeleton of the cell
generated by S0 is

E(n, k) =
1
m!

∫
e−V dS1 . . . dSmd~y, (2.1)

where V is the n-dimensional measure of the void of T. This essentially says consider all possible
configurations, multiply by the Poisson factor e−V for the probability the void of T being empty
of other seeds, and divide by m! to correct for multiple counting of T by different labellings of
S1, . . . , Sm.

Note that the quantities needed for the calculation of V are the radius r of M and the distance y
of T from the center of M. Convert coordinates (S1, . . . , Sm) to coordinates (Ω, r), where Ω is a set
of dimensionless parameters. Also convert ~y to (Φ, y), where Φ is dimensionless. Then dimensional
analysis shows that

E(n, k) =
1
m!

∫
dΩ ·

∫
dΦ ·

∫ ∫
exp(−V (y, r))rmn−1yk−1drdy. (2.2)

Define the quantity Q(n, m) by

Q(n, m) =
∫

dΩ. (2.3)

We also have ∫
dΦ = α′(k), (2.4)

where α′(k) is the (k − 1)-measure of the boundary of a unit k-ball, and

V (y, r) = α(n)(y2 + r2)n/2, (2.5)

where α(n) is the n-measure of an n-ball. Thus

E(n, k) =
α′(k)Q(n, m)

m!

∫ ∞

0

∫ ∞

0

exp(−α(n)(r2 + y2)n/2)rmn−1yk−1drdy. (2.6)

The double integral may be done analytically to yield

E(n, k) =
α′(k)Q(n, m)

m!
α(n)−(mn+k)/n Γ

(
mn+k

n

)
Γ
(

mn
2

)
Γ
(

k
2

)
2nΓ

(
mn+k

2

) . (2.7)

The special cases k = 0 and k = n work out correctly if one takes Γ(0) = 2. The values of Q(n, m)
may be found by induction on m. It is convenient to let rm be the radius of M, and to define

dµ(n, m) = Q(n, m)rnm−1
m drm, (2.8)

2



that is, dµ(n, m) is dS1 . . . dSm integrated over all dimensionless parameters. For m = 1, for S1 at
radius R from S0, after integrating over angular variables,

dµ(n, 1) = α′(n)Rn−1dR. (2.9)

Substituting r1 = R/2 gives
dµ(n, 1) = 2nα′(n)rn−1

1 dr1. (2.10)

so
Q(n, 1) = 2nα′(n). (2.11)

Assuming we have dµ(n, m), for m + 1 we want

dµ(n, m + 1) =
∫

dµ(n, m)dSm+1, (2.12)

where the integration is over all angular variables, and rm+1 alone remains. Relative to the center
of M, let Sm+1 have component ~z in the m-plane of M and ~y perpendicularly. Integrating over the
angular coordinates of ~z and ~y leaves

µ(n, m + 1) =
∫

dµ(n, m)α′(m)zm−1α′(k)yk−1dy, (2.13)

where z and y are the magnitudes of ~z and ~y. Make the change of variables

rm = rm+1 cos γ,

z = rm+1 cos β, (2.14)
y = rm+1(sinβ − sin γ),

−π/2 < γ < β < π/2

The Jacobian of the transformation is

∂(rm, R, y)
∂(rm+1, γ, β)

= r2
m+1(sinβ − sin γ). (2.15)

Hence

dµ(n, m + 1) = Q(n, m)
∫ π/2

−π/2

∫ π/2

γ

cosnm−1 γ · α′(m) cosm−1 β · α′(k)(sinβ − sin γ)k

× dβ dγ r
n(m+1)−1
m+1 drm+1. (2.16)

Thus

Q(n, m + 1) = Q(n, m)α′(m)α′(k)
∫ π/2

−π/2

∫ π/2

γ

cosnm−1 γ · cosm−1 β · (sinβ − sin γ)kdβ dγ. (2.17)

A little exercise in mathematical induction shows that∫ π/2

−π/2

∫ π/2

γ

cosa γ · cosb β · (sinβ − sin γ)cdβ dγ =
√

πΓ
(

a+1
2

)
Γ
(

b+1
2

)
Γ
(

c+1
2

)
Γ
(

a+b+2c+2
2

)
2Γ
(

a+c+2
2

)
Γ
(

b+c+2
2

)
Γ
(

a+b+c+2
2

) (2.18)
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So we have

Q(n, m + 1) = Q(n, m)
mπm/2

Γ(m+2
2 )

kπk/2

Γ(k+2
2 )

√
πΓ(nm

2 )Γ(m
2 )Γ(k+1

2 )Γ(nm−1+m−1+2k+2
2 )

2Γ(nm−1+n−m+2
2 )Γ(m−1+n−m+2

2 )Γ(nm−1+m−1+k+2
2 )

= Q(n, m)
mπm/2

Γ(m+2
2 )

(n−m)π(n−m)/2

Γ(n−m+2
2 )

√
πΓ(nm

2 )Γ(m
2 )Γ(n−m+1

2 )Γ(nm+m+2n−2m
2 )

2Γ(nm+n−m+1
2 )Γ(n+1

2 )Γ(nm+n
2 )

= Q(n, m)
π(n+1)/2m(n−m)Γ(nm

2 )Γ(m
2 )Γ(n−m+1

2 )Γ(nm−m+2n
2 )

2Γ(m+2
2 )Γ(n−m+2

2 )Γ(nm+n−m+1
2 )Γ(n+1

2 )Γ(nm+n
2 )

= Q(n, m)
π(n+1)/2(n−m)Γ(nm

2 )Γ(n−m+1
2 )Γ(nm−m+2n

2 )
Γ(n−m+2

2 )Γ(nm+n−m+1
2 )Γ(n+1

2 )Γ(nm+n
2 )

(2.19)

= Q(n, m)
π(n+1)/2(n−m)

Γ(n+1
2 )

Γ(nm
2 )

Γ(n(m+1)
2 )

Γ(n−(m+1)+2
2 )

Γ(n−m+2
2 )

Γ(n(m+1)+n−(m+1)+1
2 )

Γ(nm+n−m+1
2 )

= Q(n, 1)
πm(n+1)/2(n−m) . . . (n− 1)

Γ(n+1
2 )m

Γ(n
2 )

Γ(n(m+1)
2 )

Γ(n−(m+1)+2
2 )

Γ(n+1
2 )

Γ(n(m+1)+n−(m+1)+1
2 )

Γ( 2n
2 )

=
2nnπn/2

Γ(n+2
2 )

πm(n+1)/2(n−m) . . . (n− 1)
Γ(n+1

2 )m

Γ(n
2 )

Γ(n(m+1)
2 )

Γ(n−(m+1)+2
2 )

Γ(n+1
2 )

Γ(n(m+1)+n−(m+1)+1
2 )

Γ( 2n
2 )

=
2nnπn/2

Γ(n+2
2 )

πm(n+1)/2

Γ(n+1
2 )m

Γ(n
2 )

Γ(n(m+1)
2 )

Γ(n−(m+1)+2
2 )

Γ(n+1
2 )

Γ(n(m+1)+n−(m+1)+1
2 )

Γ(n−m)

=
2n+1πn/2

1
πm(n+1)/2

Γ(n+1
2 )m+1

1)

Γ(n(m+1)
2 )

Γ(n−(m+1)+2
2 )

1
Γ(n(m+1)+n−(m+1)+1

2 )
Γ(n−m)

=
2n+1

1
π((m+1)(n+1)−1)/2

Γ(n+1
2 )m+1

1

Γ(n(m+1)
2 )

Γ(n−(m+1)+2
2 )

1
Γ(n(m+1)+n−(m+1)+1

2 )
Γ(n−m)

So

Q(n, m) =
2n+1π(m(n+1)−1)/2Γ(n−m+2

2 )Γ(nm+n−m+1
2 )

Γ(n+1
2 )mΓ(nm

2 )Γ(n−m + 1)
(2.20)
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Then from (2.7)

E(n, k) =
α′(k)Q(n, m)

m!
α(n)−(mn+k)/n Γ

(
mn+k

n

)
Γ
(

mn
2

)
Γ
(

k
2

)
2nΓ

(
mn+k

2

) (2.21)

=
kπk/2

Γ(k+2
2 )m!

2n+1π(m(n+1)−1)/2Γ(n−m+2
2 )Γ(nm+n−m+1

2 )
Γ(n+1

2 )mΓ(nm
2 )Γ(n−m + 1)

π−(mn+k)/2Γ
(

n + 2
2

)(mn+k)/n Γ
(

mn+k
n

)
Γ
(

mn
2

)
Γ
(

k
2

)
2nΓ

(
mn+k

2

)
=

k

Γ(k+2
2 )m!

2n+1π(m−1)/2Γ(n−m+2
2 )Γ(nm+n−m+1

2 )
Γ(n+1

2 )mΓ(n−m + 1)

Γ
(

n + 2
2

)(mn+k)/n Γ
(

mn+k
n

)
Γ
(

k
2

)
2nΓ

(
mn+k

2

)
=

1
m!

2n+1π(m−1)/2Γ(n−m+2
2 )Γ(nm+n−m+1

2 )
Γ(n+1

2 )mΓ(n−m + 1)

Γ
(

n + 2
2

)(mn+k)/n Γ
(

mn+k
n

)
nΓ
(

mn+k
2

)
=

1
m!

2m+1πm/2Γ(nm+n−m+1
2 )

Γ(n+1
2 )mΓ(n−m+1

2 )

Γ
(

n + 2
2

)(mn+k)/n Γ
(

mn+k
n

)
nΓ
(

mn+k
2

) (2.22)

It follows from (2.5), (2.8), (2.17), and (2.18) that, with m = n− k still the codimension,

E(n, k) =
2m+1πm/2Γ

(
n+2

2

)m+k/n Γ
(

mn+n−m
n

)
Γ
(

mn+n−m+1
2

)
nΓ(m + 1)Γ

(
n−m+1

2

)
Γ
(

n+1
2

)m Γ
(

mn+n−m
2

) . (2.23)

Each point of the k-skeleton is in n − k + 1 cells, so the expected density of the k-skeleton per
unit n-volume is

ρ(n, k) =
E(n, k)
m + 1

. (2.24)

3 Cross-sections

Consider a random q-dimensional cross section of a random n-dimensional tessellation. The density
ρ(n, p, q) of the p-dimensional skeleton of the cross-section will be proportional to the density of the
(n + p− q)-dimensional skeleton of the tessellation:

ρ(n, p, q) = ρ(n, n + p− q) ·K(n, q, n + p− q), (3.1)

where K(n, q, k) is the expected density of q + k − n dimensional measure of the intersection of
random unit density k-planes with a q-plane in n-space:

K(n, q, k) =
Γ
(

q+1
2

)
Γ
(

k+1
2

)
Γ
(

n+1
2

)
Γ
(

q+k−n+1
2

) . (3.2)
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With m still the codimension, m = q − p,

ρ(n, p, q) =
2m+1πm/2Γ

(
n+2

2

)m+1−m/n Γ
(

mn+n−m
n

)
Γ
(

mn+n−m+1
2

)
Γ
(

q+1
2

)
nΓ(m + 2)Γ

(
n+1

2

)m+1 Γ
(

nm+n−m
2

)
Γ
(

p+1
2

) . (3.3)

One quantity of interest not derived above is the number density D(n, q) of cells in a cross
section. In general, numbers of features are not expressible as measures and so are not accessible
to the techniques used here. But for q = 1, the number density of cells is the same as the number
density of vertices, so

D(n, 1) = ρ(n, 0, 1). (3.4)

and for q = 2, by Euler’s formula the cell density is half the vertex density, so

D(n, 2) =
ρ(n, 0, 2)

2
. (3.5)

4 Asymptotic values

There are some interesting asymptotic values as the dimension n approaches infinity. The number
of vertices per cell is asymptotically

E(n, 0) ≈ 2(n+1)/2e1/4π(n−1)/2nn/2−1, (4.1)

which grows rather rapidly.
The ratio of the measure of the boundary of a cell to that of a ball of unit volume has a limit:

lim
n→∞

E(n, n− 1)
nα(n)1/n

=
√

2, (4.2)

so cells do not become wildly unspherical as the dimension increases.
The average edge length asymptotically is

2E(n, 1)
nE(n, 0)

≈ 1
n
√

e
. (4.3)

Most interesting are asymptotic values for cross-sections. For fixed p and q, there is a finite
asymptotic value:

ρ(∞, p, q) = lim
n→∞

ρ(n, p, q) =
2mπm/2em/2Γ

(
q+1
2

)
(m + 1)1/2Γ

(
p+1
2

) . (4.4)

5 Infinite dimensional tessellations

The finiteness of the limit in (4.4) would seem to imply that we have cross-sections of tessellations of
infinite dimensional space. The definition of a Voronoi tessellation in an infinite dimensional space
runs into severe problems. It is natural to try to apply the finite dimensional definition to Hilbert
space. Unfortunately, a ball of finite radius in Hilbert space has zero volume, so Hilbert space itself,
as a union of finite radius balls, has zero volume. Hence a unit density Poisson process produces no
points and no tessellation.

R∞ does have infinite volume, and so it can support a nontrivial Poisson point process. But the
Euclidean distance between almost all pairs of points is infinite, so the concept of nearest neighbor
becomes rather meaningless. Alternately, one could define the cell of a point of S as bounded by
all hyperplanes that are perpendicular bisectors of the segments between the point and the other
points of S. But the notion of perpendicularity is also unavailable. Only the affine properties of R∞

are useful, but the definition of Voronoi tessellation requires metric properties.
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6 Random tessellation processes

It may not be possible to define a Voronoi tessellation of infinite dimensional space, but it is in a
sense possible to strictly define a cross-section of a random infinite dimensional space.

Define a random tessellation process on Rn to be a stochastic method of producing tessellations
of Rn. Strictly speaking, it is a probability measure on the suitably defined set of all tessellations of
Rn.

Define V(n) to be the random Voronoi tessellation process on Rn, with probability measure on
tessellations induced from the probability measure defining the Poisson point process. This process
was the subject of section 2.

Define X(n, q) to be the cross section tessellation process induced by V(n) on Rq by the canonical
embedding of Rq in Rn. This process was the subject of section 3.

The cross section process X(n, q) may be defined in terms of a process involving only Rq+1. In
the original definition, the type of a point T in Rq depends on the number of nearest neighbors in S,
which means that a sufficient set of information is the set of distances from points in Rq to points
in S. For this, it is sufficient to know for each point of S the projection on Rq and the distance from
Rq. Map Rn = Rq × Rn−q to W = Rq × [0,∞) by

(x, y) 7→ (x, w), w = α(n− q)||y||n−q. (6.1)

Note that a unit density Poisson point process on Rn induces a unit density Poisson point process
on W . For nearest neighbor calculations, any monotone function of distance will serve. It will be
convenient to use the volume of the ball whose radius is the distance concerned. Let x0 be a point
in Rq and (x, y) a point in S that maps to (x,w) in W . Then the volume Vn(x0, x, w) of the ball
centered at (x0, 0) with (x1y) on its boundary is

Vn(x0, x, w) = α(n)

(
(x− x0)2 +

(
w

α(n− q)

)2/(n−q)
)n/2

(6.2)

Hence the tessellation process on Rq can be defined entirely in terms of a unit density point process
on W . The limiting process X(∞, q) can then be defined using the neighbor distance function

V∞(x0, x, w) = lim
n→∞

Vn(x0, x, w) = e−q/2weπe(x−x0)
2
. (6.3)

Each cell in Rq is still formed as the intersection of half-spaces, and so is a convex polyhedron.

7 Simulation algorithm

A sample X(∞, q) tessellation can be efficiently generated with an insertion algorithm that is a
modification of the one in Bowyer [4]. The modified algorithm is briefiy outlined here. The tessel-
lation is represented with some data structure that is updated as new seeds are generated. Use the
data structure of your choice to represent the tessellation, but each vertex should have its nearest
neighbor V∞ distance stored with it.

Initialization: q + 1 seeds giving a tessellation with a vertex.
Repeat as many times as desired:

Generate the next random seed in W .
Find all old vertices for which new seed is within their V∞ distances.

These vertices are to be eliminated from the new configuration.
If none, continue to next seed.

On each edge connecting an eliminated vertex and a remaining vertex, calculate a new vertex.
Add a new cell with the new vertices to the data structure.
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Figure 1 shows a sample tessellation of the plane.

Appendix. Notation.
n dimension of tessellated space.
k dimension of skeleton.
q dimension of cross-section.
p dimension of skeleton in cross-section.

m codimension of skeleton, m = n− k = q − p.
S set of points generating the tessellation.
T point of the k-skeleton of the tessellation.
Si a nearest neighbor seed of T.

Γ(n) gamma function.
α(n) measure of n-dimensional ball, α(n) = πn/2/Γ(1 + n/2).
α′(n) measure of boundary of n-ball, α′(n) = nα(n).

E(n, k) expected measure of k-skeleton per cell in n-space.
ρ(n, k) expected density of k-skeleton in n-space.

ρ(n, p, q) expected density of p-skeleton in q-dimensional cross-section of n-space.
ρ(∞, p, q) limiting value of ρ(n, p, q) as n∞.

D(n, q) number density of cells in q-dimensional cross-section of, n-dimensional space.
V(n) random Voronoi tessellation process in Rn.

X(n, q) q-dimensional tessellation process, cross-section of V(n).
X(∞, q) limiting tessellation process.

W alternate seed domain for cross-section processes, W = Rq × [0,∞).
x0 point in Rq.

(x,w) point in W .
Vn(x0, x, w) n-ball volume, used as distance function.
V∞(x0, x, w) distance function for limit tessellation process.
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