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Abstract

NASA’s effort to develop a large payload, high altitude,
long duration balloon, the Ultra Long Duration Balloon,
focuses on a pumpkin shape super-pressure design. It has
been observed that a pumpkin balloon may be unable to
pressurize into the desired cyclically symmetric equilib-
rium configuration, settling into a distorted, undesired state
instead. Hoop stress considerations in the pumpkin de-
sign leads to choosing the lowest possible bulge radius,
while robust deployment is favored by a large bulge radius.
Some qualitative understanding of design aspects on un-
desired equilibria in pumpkin balloons has been obtained
via small-scale balloon testing. Poorly deploying balloons
have clefts, but most gores away from the cleft deploy uni-
formly. Mechanical locking may be a contributing factor
in the formation of such undesired equilibria. Long term
success of the pumpkin balloon for NASA requires a thor-
ough understanding of the phenomenon of multiple stable
equilibria. This paper uses the notion of stability to classify
balloon designs. When we applied our model to a balloon
based on the NASA Phase IV-A pumpkin design, we found
the fully inflated/fully deployed strained equilibrium float
configuration to be unstable. To explore the sensitivity of
this particular design and to demonstrate our general ap-
proach, we carry out a number of parametric studies that
are variations on the Phase IV-A design. In this paper, we
will focus on analytical studies, but we also compare our
results with experimental and flight data whenever possi-
ble. We will discuss the connection between stability and
the generic deployment problem.�

Senior Member AIAA
†Member AIAA

1 Introduction

The pumpkin shape balloon concept for a super-pressure
balloon seeks structural efficiency in a heterogeneous bal-
loon structure by assigning the global pressure confining
strength primarily to a system of load tendons with the
load-carrying role of the skin being primarily the trans-
fer of the pressure load to the tendons. Within this rather
broad description of the pumpkin shape balloon, designs
can differ in a number ways, depending on: (1) the na-
ture and the relative stiffness of the structural materials
(both skin and tendons), (2) on considerations given to fab-
rication, (3) on measures taken to ensure proper deploy-
ment and pressurization at altitude and the maintenance of
that proper equilibrium configuration throughout service-
life pressure-cycling. For clarity of exposition, we use the
pumpkin gore shape generation process as presented in [1]
to generate families of balloon design shapes that we ana-
lyze. The model in [1] includes an improvement over the
standard natural-shape assumption of zero hoop stress by
taking into account hoop-wise forces that are generated by
skin stress resultants and the local half-bulge angle. For
practical reasons, gores are made of flat sheets, but it is
conceivable to use molded gores if fabrication difficulties
and fabrication costs are of no consideration. The equiva-
lent of a molded gore could be achieved by fabricating such
a super-gore from several flat sheets that, when seamed to-
gether and inflated, approximates the desired shape. See [2]
for more on the molded super-gore construction. A doubly-
curved representation of a pumpkin gore is shown in Fig-
ure 1. The “spine” (centerline) of the deformed pumpkin
gore is isometric to the centerline of the lay-flat pattern. A
“rib” in the deformed pumpkin gore is isometric to the cor-
responding segment that is transverse to the centerline in
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Figure 1: Pumpkin gore with lay-flat configuration.

the lay-flat pattern. Hence, the edge of the lay-flat gore is
significantly longer than the edge of the doubly-curved de-
formed pumpkin gore. By fore-shortening the tendons, the
proper pumpkin gore geometry can be achieved once the
balloon is deployed and fully inflated (see [3]).

At full inflation and pressurization of the pumpkin bal-
loon, there is only one desired equilibrium state, and that
is a cyclically symmetric state where all gores are fully de-
ployed. This state is, however, not guaranteed for an arbi-
trary design of a pumpkin shape balloon. In fact, by design,
the pumpkin shape balloon has excess balloon skin relative
to minimum volume enclosure, which may provide an op-
portunity for the existence of multiple equilibria at full in-
flation and pressurization. The undesired equilibria can be
of two types. Either type must be avoided by the design
throughout the service life of the balloon. Only the cycli-
cally symmetric configuration is acceptable at full pressur-
ization.

The first type of undesired equilibria appears to be in-
flation path independent or nearly so. In that case, config-
urations exist in the vicinity of the desired equilibrium that
have equal or lower total potential energy than the desired
equilibrium. Vulnerability of a design to this threat can be
investigated by a stability analyses of the desired equilib-
rium configuration. In a long-duration balloon flight, this
can occur even if the balloon deployed initially into a cycli-
cally symmetric configuration. Subsequent straining alters
the configuration so that the cyclically symmetric configu-
ration is no more a minimum energy state. In that case, mi-
gration from the cyclically symmetric equilibrium occurs
spontaneously, possibly rapidly.

The second type of undesired equilibria is clearly infla-
tion path dependent. It occurs during ascent when three or
more layers of film get mechanically locked and the locking

is robust, preventing dislodging of the locked gores by the
hoop-wise tension forces that are generated by the flattened
gores. In this case, a robustly stable equilibrium is reached
that, in configuration space, is far removed from the desired
equilibrium state. To picture this flawed configuration, one
can envision a Z-fold of 3K gores (K an integer). K gores
are folded back behind the outer layer of K gores, then K
more gores are folded behind the second layer. By locking
under the internal pressure, this K gore wide Z-fold resists
the horizontal forces that are generated by the hoop-wise
tension in the film. Earlier work (see [4]) indicated that
in a pumpkin balloon with several gores swallowed up, the
hoop-wise restoring forces are relatively small, especially
when compared with the response in a similarly sized zero-
pressure natural shape balloon.

It appears that for a given class of balloon designs, both
threats to proper deployment and pressurization increase
with the number of gores in the balloon and both the distri-
bution and amplitude of gore-width excess relative to min-
imum volume enclosure. These observations will be af-
firmed with numerical simulations in this paper.

To avoid the first threat, a design must be such that
the cyclically symmetric configuration at full inflation and
pressurization is stable. We say that an equilibrium shape S
is stable if all the eigenvalues of the Hessian of the balloon
potential energy are positive (see Section 3). If the film is
linearly elastic then analysis of this threat can be limited
to the stability analysis of the fully inflated/fully deployed
strained equilibrium configuration.

Existing data on 48 gore test balloons has shown that
a 48 gore constant bulge radius balloon with a bulge an-
gle at the equator near 180 degrees will fully deploy into
a robustly stable cyclically symmetric equilibrium even for
a test vehicle that has fabrication imperfections, while a
constant bulge angle design at a rather modest bulge angle
was clearly on the threshold between proper and improper
deployment. The sensitivity to both amplitude of excess
gore-width and its distribution along the gore length has
been further demonstrated on other test vehicles. To quan-
tify this sensitivity, we considered a number of parametric
studies where the width of the nominal lay-flat pattern was
altered, and the stability of the corresponding fully inflated
shape was determined. See [5] for a further discussion on
experiments involving small test vehicles or [4] for more
on deployment related issues.

In this paper, we will focus on fully inflated shapes
arising from a class of pumpkin designs that are related
to the NASA Phase IV-A ULDB. Flight 517NT, a Phase
IV-A 0.6 million cubic meter pumpkin balloon launched
in March 2003 experienced a deployment problem. A
cleft that was present in the launch configuration persisted
throughout the ascent phase and was maintained once the
balloon reached float altitude (see, Figure 2). The sec-
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Figure 2: Cleft in Flight 517. Photograph provided by the

NASA Balloon Program Office.

ond Phase IV balloon (Flight 496NT in March 2001) also
had deployment problems, assuming an anomalous config-
uration at maximum altitude. In our concluding remarks,
we discuss the connection between stability and undesired
equilibria. The reason for first focusing on the fully de-
ployed configuration is clear. If a balloon design leads to
an unstable equilibrium configuration at float, then one is
inviting trouble. If the balloon design leads to an unstable
cyclically symmetric equilibrium configuration at full in-
flation and under pressurization any time during its service
life, then at such instant the configuration will likely de-
part into an undesired shape with stress resultants far larger
than anticipated by the design. The balloon is doomed. The
existence of an equilibrium with a lower total potential en-
ergy than the cyclically symmetric equilibrium is similarly
troublesome, even if the cyclically symmetric equilibrium
is at a local minimum of the total potential energy. Through
numerical studies, we hope to gain some insight into those
factors that promote proper deployment as well as those
factors that inhibit proper deployment.

We implemented a model for a strained pumpkin bal-
loon into Surface Evolver, an interactive software package
[6] for the study of curves and surfaces shaped by energy
minimization. If E is the total potential energy of a bal-
loon configuration S , and HE

�
S � is the the Hessian of E

evaluated at S , the eigenvalues of HE
�
S � determine the sta-

bility of S (see Section 3). In [7], we explored stability as a
function of the design parameters

�
ng � rB � and the uniform

tendon slackness parameter εt . However, other parameters
are equally important. In a long duration flight, the balloon
will experience many diurnal cycles, where the constant
pressure term will vary from a maximum value during the
day to a minimum value at night. In the present paper, we
further explore the stability of equilibrium configurations

as a function of these and other parameters. We use the
stability plot associated with the

�
ng � rB � -parameter space

and nominal parameter values as a baseline defining stable
and unstable regions. Sensitivity to parameter change is
best illustrated by how the interface between the stable and
unstable region changes from the nominal state.

2 Finite element model

In this section, we formulate the problem of determining
the equilibrium shape of a strained balloon. We have ap-
plied this model to pumpkin balloons and we refer the
reader to [8] for a more detailed exposition. We will as-
sume that a balloon is situated in such a way that the center
of the nadir fitting is located at the origin of a Cartesian co-
ordinate system. If a balloon has ng gores, then we assume
that y � 0 is a plane of reflectional symmetry and we model
ng � 2 gores. The boundary conditions are y � 0 for nodes
that lie on the boundary of one-half the balloon. The nadir
fitting is fixed, and the apex fitting is free to slide up and
down the z-axis. The nadir and apex fittings are assumed to
be rigid. The total potential energy E of a strained inflated
balloon configuration S is the sum of six terms,

E
�
S ��� EP � E f � Et � Etop � S 	t � S 	f (1)

where

EP
�
S �
� ��

S

� 1
2 bz2 � P0z � k � d �S � (2)

E f
�
S �
� �

S
w f zdA � (3)

Et
�
S �
� �

Γ � S
wt τ

�
s ��� k ds � (4)

Etop � wtopztop � (5)

S 	f � S �
� �
S

W 	f dA � (6)

S 	t �
S �
� �

Γ � S
W 	t ds � (7)

EP is the hydrostatic pressure potential due to the lifting
gas, E f is the gravitational potential energy of the film, Et
is the gravitational potential energy of the load tendons,
Etop is the gravitational potential energy of the apex fit-
ting, S 	t is the relaxed strain energy of the tendons, and S 	f
is the relaxed strain energy of the balloon film, P0 is the
differential pressure at the base of the balloon where z � 0,
b is the specific buoyancy of the lifting gas, d �S � ndS, n
is the outward unit normal, dS is surface area measure on
the strained balloon surface, w f is the film weight per unit
area, wt is the tendon weight per unit length, τ � IR3 is a
parametrization of a deformed tendon Γ � S , wtop is the
weight of the apex fitting, ztop is the height of wtop, W 	f
is the relaxed film strain energy density, W 	t is the relaxed
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tendon strain energy density. Relaxation of the film strain
energy density is a way of modeling wrinkling in the bal-
loon film and has been used in the analysis of pumpkin
shaped balloons in [8].

To determine a strained equilibrium balloon shape, we
solve the following:

Problem � : min
S � C

E
�
S ���

For the purpose of the analytical studies in this paper,
we assume the differential pressure is in the form P

�
z ���� bz � P0 where P0 is known. We follow the convention

that � P
�
z ��� 0 means that the internal pressure is greater

than the external pressure. C denotes the class of feasi-
ble balloon shapes. Here, the continuum problem is cast
as an optimization problem. This approach is particularly
well-suited for the analysis of compliant structures. In pre-
vious work, such as [8] and [9], Problem � was solved
using Matlab software (fmincon). However, even when
using the large-scale option and sparse matrices to con-
serve computer memory, we were unable to use fmincon
to analyze more than 10 gores with an appropriately sized
mesh. For this reason, Problem � was implemented into
Surface Evolver. In the past, Surface Evolver was used
to model natural-shape zero-pressure balloons where wrin-
kling was represented by a virtual fold (see [10]).

3 Stability

The degrees of freedom (DOF) in a faceted balloon shape S
are the coordinates of the facet nodes that are free to move.
Let x � �

x1 � x2 � ����� � xN � be a list of the DOF. Let E
�
x � be

the total energy of a balloon configuration S � S
�
x � .

The gradient of E evaluated at x is the N � 1 vector

∇E
�
x ����� ∂E

∂xi

�
x ��� � i � 1 � 2 � � ��� � N �

The Hessian of E evaluated at x is the N � N matrix,

HE
�
x ��� � ∂2E

∂xi∂x j

�
x � � � i � 1 � 2 � � ��� � N � j � 1 � 2 � ��� � � N �

(8)
When a volume constraint is imposed, Eq. (8) must be
modified. Depending on the mesh size and number of
gores, N is between 85,000 and 350,000 in our studies.
However, HE is sparse. The lowest eigenvalue of HE was
calculated by inverse iteration. The matrix HE � tI was
sparse Cholesky factored, with the shift value t chosen to
guarantee positive definiteness. The factored matrix was
then used to iteratively solve

�
HE � tI � xn ! 1 � xn, start-

ing with a random vector x0, until the iteration converged,
almost certainly producing the eigenvector of the lowest
eigenvalue. See [13, Section 11.7, p. 493].

Table 1: Input parameters for pumpkin shape finding. In para-

metric studies ng and rB will be varied.

Description Variable Nominal Value

Number of gores p1 " ng 290

Bulge radius (m) p2 " rB 0.78

Constant pressure term (Pa) p3 " P0 130

Buoyancy (N/m3) p4 " b 0.087

Cap 1 length (m) p5 " c1 50

Cap 2 length (m) p6 " c2 55

Tendon weight density (N/m) p7 " wt 0.094

Film weight density (N/m2) p8 " w f 0.344

Cap 1 weight density (N/m2) p9 " wc1 0.1835

Cap 2 weight density (N/m2) p10 " wc2 0.1835

Payload (kN) p11 " L 27.80

Top fitting weight (kN) p12 " wtop 0.79

Definition 3.1 Let S � S
�
x � be an equilibrium configura-

tion, i.e., a solution of Problem � . We say S is stable if all
the eigenvalues of HE

�
x � are positive. We say S is unstable

if at least one eigenvalue of HE
�
x � is negative. We say that

the stability of S is indeterminate if the lowest eigenvalue
of HE

�
x � is zero.

4 Preliminaries

There are twelve parameters that go into the shape finding
process for a pumpkin balloon: number of gores (p1 � ng),
bulge radius (p2 � rB), constant pressure term (p3 � P0),
buoyancy of lifting gas (p4 � b), length of Cap 1 (p5 � c1),
length of Cap 2 (p6 � c2), film weight density (p7 � w f ),
Cap 1 weight density (p8 � wc1 ), Cap 2 weight density
(p9 � wc2 ), tendon weight density (p10 � wt ), suspended
payload (p11 � L, includes weight of nadir fitting), and
weight of apex fitting (p12 � wtop). See [1] for more on
the pumpkin model. Typically, material properties such as
film modulus and Poisson ratio do not enter directly into the
shape finding process. We define the shape finding vector,
to be

p � �
p1 � p2 � � ��� � p12 �� �
ng � rB � P0 � b � c1 � c2 � �����

w f � wc1 � wc2 � wt � L � wtop �#� (9)
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Table 2: Quantities related to the nominal pumpkin design,

Phase IV-A: $ ng % rB & " $ 290 % 0 ' 78 & .
Description Value

Volume (Mm3) 0.590

Skin weight (kN) 13.33

Cap weight (kN) 3.51

Tendon weight (kN) 0.635

Tendon length (m) 155.30

Gore seam length (m) 155.93

The shape finding parameters that were used for the Phase
IV-A design are presented in Table 1. Once a set of values
are assigned to p, the corresponding pumpkin design shape
Sd

�
p � and lay-flat pattern Ω

�
p � are determined along with

other quantities such as the total system weight, volume,
tendon length and seam length of the lay-flat gore pattern
(see Table 2). The three-dimensional shape Sd

�
p � is dis-

cretized (call it Sd
�
x;p � ), and Sd

�
x;p � is used as the ini-

tial guess for solving Problem � and determining the corre-
sponding strained equilibrium shape S . The tendon length
is the edge length of Sd

�
p � . By construction, the edge of the

lay-flat pattern is longer than the tendon. To accommodate
this lack-of-fit, the film along the seam is gathered before
the tendon is attached. Note, local lack-of-fit varies along
the length of the seam (i.e., more material must be gathered
near the equator than near the poles).

Ideally, the unstrained tendon has no slackness and so
each segment length in a tendon should match the corre-
sponding length in Sd . However, to properly model the
tendon/film mismatch, we should allow for tendon slack-
ness or additional tendon shortening and so we introduce
the tendon uniform slackness parameter εt . In particular, if
εt � 0 � 005, then a tendon segment must strain 0.5% before
it comes under tension. If εt �(� 0 � 005, then each tendon
segment length is shortened by an additional 0.5% beyond
the local lack-of-fit due to the Sd

�
p � and Ω

�
p � mismatch. In

theory, εt � 0, but to illustrate sensitivity to this parameter,
we will let εt �)� 0 � 008 for the nominal case.

We are most interested in investigating the stability of
equilibrium configurations of pumpkin designs as a func-
tion of

�
ng � rB � , and for this reason, we define the following

family of balloon designs,

Πd � *+* Sd
�
p � � Ω �

p �-, � p1 �.* 48 � 49 � ����� � 350 , �
r̄B

�
p1 �0/ p2 / ∞ � p3 � p4 � � ��� � p12

as in Table 1 , � (10)

where r̄B
�
n � is the smallest possible bulge radius for

a design with n gores. For convenience, we will re-
fer to a particular design in Πd , by indicating the
number of gores and the bulge radius. For example,* Sd

�
290 � 0 � 78 � � Ω �

290 � 0 � 78 �1, refers to the Phase IV-A de-
sign. If a parameter is not explicitly written out, it will be
our convention that it is assigned a default value given in
Table 1.

For each design in Πd , it would also be of interest to
know how stability depends on variations in the width of
the lay-flat pattern. To study this dependency, we will con-
sider two additional classes of designs Π 2d which we define
in the following way. Let * Sd

�
p � � Ω �

p �-,3� Πd . Let v de-
note arc-length as measured down the center of the lay-flat
pattern. The gore half-width is a function of v and depends
on the shape finding vector p (i.e., h

�
v �4� h

�
v;p � ). The

lay-flat configuration in Πd is given by

Ω
�
p ���5* � u � v ��6 0 7 v 798 � � h

�
v �:7 u 7 h

�
v �1,;� (11)

We define

h 2δ �
v ���=<> ? �

1 @ δ � h �
v � � v1 / v /A8B� v1

h
�
v � � otherwise � (12)

In our studies, v1 C 13 m and 0 /)6 δ 6+7 0 � 015; the gore is
about 25 cm wide at v1 and 8B� v1. Eq. (12) generates new
lay-flat patterns Ω 2 �

p � , and we define

Π 2d �5*+* Sd
�
p � � Ω 2 �

p �1, � * Sd
�
p � � Ω �

p �-,D� Πd ,;� (13)

Even though the lay-flat patterns are altered in Π 2d , we
utilize the three-dimensional shapes Sd

�
p � from Πd , since

they are used only to initiate the solution process in Prob-
lem � . The nominal value of δ is assumed to be zero, unless
otherwise specified.

Once, a design has been defined, then we can carry out
a stress analysis of that design for some loading condition.
Coming into play at this stage are other properties such
as the film Youngs modulus (q1 � E f ), film Poisson ratio
(q2 � ν), Cap 1 Youngs modulus (q3 � Ec1), Cap 1 Poisson
ratio (q4 � νc1 ), Cap 2 Youngs modulus (q5 � Ec2), Cap 2
Poisson ratio (q6 � νc2 ), tendon stiffness (q8 � Et), and the
tendon slackness parameter (q7 � εt ). We define

q � �
q1 � q2 � � ��� � q8 �� �
E f � ν � Ec1 � νc1 � Ec2 � νc2 � Et � εt � � (14)

which includes parameters that were not used in the shape
finding process. Nominal values for q are presented in Ta-
ble 3. Once p and q are specified, we can proceed to solv-
ing Problem � . Note, the shape determination process and
the stress analysis process are separate processes, and so
it is possible to use one value of a parameter in the shape
finding process, and another value in the solution of Prob-
lem � . The shape finding process defines the lay-flat gore
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Table 3: Additional parameters for strained pumpkin shapes and

default Phase IV-A parameters with $ ng % rB & " $ 290 % 0 ' 78 & .
Description Variable Value

Film Youngs modulus (MPa) q1 " E f 404.2

Film Poisson ratio q2 " ν f 0.830

Cap 1 Youngs modulus (MPa) q3 " Ec1 216

Cap 1 Poisson ratio q4 " νc1 0.830

Cap 2 Youngs modulus (MPa) q5 " Ec2 216

Cap 2 Poisson ratio q6 " νc2 0.830

Tendon stiffness (MN) q7 " Et 0.650

Tendon slackness (m/m) q8 " εt E 0 ' 008

pattern Ω
�
p � and provides a three dimensional shape Sd

�
p �

that is used for initializing the solution process for Prob-
lem � . The strained equilibrium shape that is a solution of
Problem � is denoted S

�
p � q � Ω �

p ��� . After solving Prob-
lem � with a design * Sd � Ω ,F� Πd , we will then classify
the resulting strained equilibrium configuration according
to Definition 3.1.

In our stability studies, we will consider nominal param-
eter values for q for each of the three classes, Πd � Π Gd � Π !

d .
We will also consider designs classes where we change
some components of p or q from their nominal values. For
example, we let E f H 1

2 E f and P0 H 1
4 P0. We will also

consider parameter studies where both εt and δ are varied.

Remark We note that stability of an equilibrium config-
uration is investigated at an equilibrium, which is a strained
state. In general, a strained equilibrium shape is only ap-
proximately a cyclically symmetric constant bulge radius
surface. Other strained equilibrium states (due to pressure
variations or visco-elastic straining over time) depart from
the cyclically symmetric constant bulge radius configura-
tion even more. In the case of a visco-elastic film, that de-
parture can be significant. As shown in this paper by way
of looking at classes Π 2d , this shape change can have pro-
found effect on stability. While at this time we cannot look
at complications that may arise from inflation path depen-
dant locking of gores, our paper provides a step towards
developing tools that lead to deployable, structurally effi-
cient designs of pumpkin shape super-pressure balloons.

In a pumpkin balloon design that aims for structural ef-
ficiency, the maximum meridional stress resultant maxσM
anywhere along the gore length is at most as high as the
maximum hoop stress resultant maxσH . Since the radius

of curvature RM for the meridional direction is much larger
than rB everywhere along the gore length, any relief in the
hoop stress resultant due to a non-zero meridional stress re-
sultant is insignificant, as demonstrated by the equilibrium
equation

P � σH � rB � σM � RM � (15)

In Eq. (15), P is the differential pressure, σH is the hoop
stress resultant and σM is the meridional stress resultant.
It follows that for the case of a constant bulge radius
shape, the maximum hoop stress resultant is maxσH C
P0rB, where we use the fact that bztop /3/ P0 and P

�
z ���

bz � P0 C P0 (this is true for pumpkin ULDB’s under con-
sideration by NASA).

For strength efficiency, the designer would like to
choose the smallest possible bulge radius. Its lower bound
is roughly half the distance between adjacent tendons at the
equator. There are practical limitations that discourage the
designer from approaching this lower bound. Beyond those
limitations there are also stability considerations, which are
the subject of this paper.

For constant bulge radius designs with a fixed number of
gores, the one with the smallest bulge radius is the one that
has the most hoop-wise excess material relative to minimal
gas bubble enclosure, which for the purpose of our discus-
sion is the developable surface generated by straight lines
(chords) that span adjacent tendons. This hoop-wise ex-
cess, if sufficiently large, can be detrimental to the stability
of the cyclically symmetric configuration at float and under
pressurization.

Still, for a small enough ng, a minimum bulge radius de-
sign that approaches the lower bound is robustly stable as
has been shown in the exploratory work [5] for 48 gore test
vehicles and this is demonstrated analytically in this paper
for even larger ng. Calledine [11] showed that for constant
bulge shape designs, increasing the number of gores also
increases vulnerability to instability of the cyclically sym-
metric configuration. We demonstrate this fact analytically
for nominally constant bulge radius designs.

Clearly, there is a need for design criteria that will en-
able the designer to arrive at structurally efficient designs
while providing sufficient margins against the occurrence
of instability with full consideration of the usual uncertain-
ties, and in the case of a visco-elastic film also accounting
for the service lifetime configuration changes of the bal-
loon. Our exposition provides a description of how such
design guidelines can be derived and demonstrates its fea-
sibility.
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5 Numerical studies

To begin our analysis of the Phase IV-A design, we calcu-
lated an equilibrium shape assuming the parameter values
in Table 1. We denote this solution by S

�
290 � 0 � 78 � . We

find H
�
S
�
290 � 0 � 78 � � has at least one negative eigenvalue

and so we say that that S
�
290 � 0 � 78 � is unstable.

In the following, we consider a number of different nu-
merical studies. Beginning with designs in Πd , we de-
termined the stability of the fully inflated/fully deployed
strained equilibrium corresponding to each design. The
nominal case is presented in Figure 3. To illustrate how
the regions of stability and instability depend on various
parameters in p or q, we carried out a number of numerical
studies where we altered one or two parameters, holding all
the others at their nominal value.

In Figure 3, we present the parameter space for nominal
designs. The lower bound r̄B

�
ng � was estimated numeri-

cally for each ng. For each design * Ω � Sd ,I� Πd , we solved
Problem � and determined the number of negative eigen-
values of H

�
S � . A square is plotted if the corresponding

design leads to a stable equilibrium. A dot is plotted if the
corresponding design leads to an unstable equilibrium. For
clarity of exposition, we will consider Figure 3 as defining
a baseline that consists of a stable and an unstable regions.
Parameter sensitivity is detected by how the boundary be-
tween these regions changes for different parameter values.

Case I Consider designs in Πd for nominal parameters.
The stability results are summarized in Figure 3. We
see that the Phase IV-A design has a bulge radius that
is very close to r̄B

�
290 � and is right on the boundary

separating stable shapes from unstable shapes.

Case II Consider designs in Class Π Gd , where the nom-
inal gore widths are narrowed using Eq. (12) and
δ �J� 0 � 015. The stability results are summarized in
Figure 4. In

�
ng � rB � parameter space, we see that re-

ducing the gore width, reduces the region of instabil-
ity and increases the region of stability.

Case III Nominal design parameters and Πd are used, ex-
cept the constant pressure term is reduced from P0 �
130 Pa to P0 � 32 � 5 Pa. Stability results are presented
in Figure 5. This study is relevant to a long duration
flight that experiences many diurnal cycles. At night,
the internal gas pressure will drop, and it will be im-
portant that the equilibrium configurations for these
conditions remain stable.

Case IV Nominal parameters and Πd are used, except film
modulus E f is decreased by 50%, i.e., E f � 202 MPa.
The results are presented in Figure 6 where we see
that the region of instability has increased when the
film modulus was decreased. This case study asserts
the importance that the float equilibrium shape remain

stable for all conditions, including those at end-of-
service.

Case V Consider designs in Class Π !
d , where the nomi-

nal gore widths are widened using Eq. (12) and δ �
0 � 015. Stability results are presented in Figure 7. We
see that adding “additional gore width” increases the
region of instability in

�
ng � rB � parameter space.

Case VI Nominal design parameters and Πd are used, ex-
cept the slackness parameter is set to εt � � 0 � 005.
This means that the tendons have about 0 � 5% slack-
ness. This plot suggests that a balloon with additional
fore-shortening is more likely to be unstable than one
without additional tendon fore-shortening. One must
keep in mind that the local lack-of-fit is still enforced
in both designs. If we assume that the fabricator has
accounted for all the effects of tendon slackness but
the local lack-of-fit is not done accurately, the chances
for an unstable design are increased.

Case VII Nominal design parameters and Π !
d are used,

but two parameters, εt and δ are changed,
�
εt � δ ���� � 0 � 006 � 0 � 01 � . See Figure 9.

Case VIII Nominal design parameters and Π !
d are used,

but two parameters, εt and δ are changed,
�
εt � δ ����

0 � 0 � 0 � 015 � . See Figure 10.

Our analytical notion of stability is consistent with the
observational based notion of stability. However, the an-
alytical definition of stability allows us to quantify the
boundary between stable and unstable designs and provides
guidelines to the balloon designer to avoid designs that can
lead to unstable equilibria when fully inflated and full de-
ployed. For example, if tolerances are known for the fabri-
cated lay-flat gore pattern, stability curves similar to those
presented in Figures 3-7 can be generated.

It is important to keep in mind, there are many other fac-
tors that the balloon designer must take into account. For
example, to avoid over-stressing the film, designs with too
few gores or designs with bulge radii too large may be re-
jected by the balloon designer, regardless of their stability.
Most of the designs we consider are not practical. How-
ever, analyses of these cases allow exploration that aid our
understanding of the causes of the instabilities that are of
concern.

6 Experimental and flight data

Much of the available experimental data related to pump-
kin balloons is presented in the format of chord ratio ver-
sus the number of gores. The maximum chord ratio is the
maximum ratio of true gore width (rib length) to tendon-
to-tendon width (chord length) (see [5, Figure 5]). For
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Table 4: Stability Case Studies

Case Design Class Variation

I Πd None

II Π Kd δ " E 1 ' 5%

III Πd P0 " 32 ' 5 Pa

IV Πd E f " 202 MPa

V Π Ld δ "NM 1 ' 5%

VI Πd εt "NM 0 ' 5%

VII Π Ld $ δ % εt & " $ 1 ' % % E 0 ' 6% &
VIII Π Ld $ δ % εt & " $ 1 ' 5% % 0 ' 0% &

each rib, we calculate the ratio of the rib length (an arc
of a circle of radius rB) to the tendon-to-tendon (chord)
length and then take the maximum of these ratios (denoted
by max S/C). See Figure 1.

Calledine’s work (see [11]) applied to the Endeavour
balloon was the first analytical treatment that grappled with
the deployment problem of a pumpkin-like balloon, and so,
it has attracted much attention in the NASA ULDB cir-
cles. The Endeavour balloon was based on the dubious
constant bulge angle pumpkin. However, constant bulge
radius pumpkins were considered later by Lennon and Pel-
legrino (see [12]) using the Calledine definition of stabil-
ity. Calledine’s model is limited to hydrostatic pressure
only, but his approach to stability is appropriate. Being
limited by computational capabilities of the time, Calle-
dine cleverly observed that in his semi-empirical approach
he could ignore the variation in the strain energy contri-
bution to the corresponding variation of the total potential
energy. This allowed him to approximate the principle of
the minimum total potential energy by a maximum volume
rule. The computational simplification afforded by this ap-
proximate rule is significant. Calledine’s approximation,
even though formulated on the basis of a two-dimensional
proxy-problem seems to be remarkably accurate. We in-
clude a comparison of our stability results with the Calle-
dine results on a common grid in Figure 11. The curve in
Figure 11 is reproduced from the paper by Schur and Jenk-
ins (see [5, Figure 5], a figure reproduced from a plot pro-
vided by Mike Smith/Raven Industries). Note, Figure 11
plots the maximum chord ratio (max S/C) versus the num-
ber of gores. We computed max S/C for each design in
Figure 3 and reproduced the stability results as a function
of

�
ng � max S/C � . We added additional members to Πd , by

calculating equilibria for ng � 48 � 60, and 75 and included
these in Figure 11.

Remark Figure 11 includes a comparison of Calledine
stability results and our stability results based on Defini-
tion 3.1 (indicated by BBS-stability in Figure 11). The
reader should be reminded of two fundamental differences
between the results. First, our stability criteria, Defini-
tion 3.1, includes strain energy, but the Calledine definition
of stability does not. Second, our stability analyses are of
constant bulge radius pumpkin designs, but the Calledine
stability curve is based on analysis of constant bulge shape
designs.

7 Conclusions

In this paper we analyzed a balloon design that is very simi-
lar to the Phase IV-A pumpkin balloon. Phase IV and Phase
IV-A ULDB balloons with 290 gores experienced deploy-
ment problems. Our investigation identifies the Phase IV-
A design as unstable. The nominal designs of the Phase
IV-A balloons were identical but instructions given to the
fabricator were different. This difference manifested itself
in gore width shortfalls near both gore ends of the suc-
cessfully deploying balloon. This observation appears to
demonstrate the sensitivity of stability to bulge radius dis-
tribution. We note also that on the stability plot (Figure 11)
where maxS � C is plotted versus ng, our design for Phase
IV-A falls close to the border between stable and unstable
equilibria. The same holds true for the stability plot of Fig-
ure 3 where rB is plotted versus ng. Both our observations
and the observations made earlier in [5] are consistent with
what has been observed on these flights.

The earlier Phase IV-A mission, Flight 1580PT in July
2002, was terminated by the failure of tendon anchorage
on the nadir fitting owing to a fabrication error. We recog-
nize that had that flight continued over a longer period, the
equilibrium configuration could, as a result of creep, very
well have migrated into an undesired configuration given
the closeness of the design to the stability limit as identi-
fied by our investigation.

While much of the reporting on the stability of pump-
kin shape balloons has been done in terms of the fabricated
shape, stability is determined at the strained equilibrium
configuration. Therefore it is appropriate to investigate de-
sign classes with a certain characteristic such as constant
bulge radius in the deformed configuration and report sta-
bility limits in terms of geometric parameters of the equi-
librium configuration. The design, i.e. the fabricated shape
can be backed out using the appropriate elastic properties.
For linear elastic materials this is straightforward. The de-
sign aid needed is a stability plot similar to Figure 3 for
only one design scheme.

In the case of design schemes that use a film with visco-
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elastic properties, the situation becomes more complicated
as over time the equilibrium configuration changes due to
visco-elastic strain and creep. Fortunately this change is
systematic. For a constant bulge radius design at maxi-
mum pressure and at some elapsed time period under that
pressure (that period should be chosen longer than the pe-
riod for the transient response) the hoop-wise strain growth
is slower at locations closer to the central axis of the bal-
loon as the reduction of the length of the bulge radius due
to strain is more rapid where the arc of the bulge is shal-
lower. In addition to the design aid for the constant bulge
radius design, similar plots for configurations that reflect
the deformation history are required.

A design must of course stay well away from the sta-
bility limit for all possible service life configurations. The
work presented in this paper does not provide the requisite
design aids, but it demonstrates feasibility and method for
the generation of such design aids.

Although the stability criteria of Definition 3.1 is a state-
ment about a fully deployed/fully inflated equilibrium con-
figuration, it also says something about the likelihood of
a given design to deploy properly. For if the desired float
shape is a cyclically symmetric unstable equilibrium con-
figuration, and the real balloon corresponds, in all aspects
including the pressurization state to the analytical model,
then the balloon should not even be able to attain that
cyclically symmetric float shape through a normal ascent.
The successful deployments of the Phase II and Phase III
balloons, and the failed deployments of the Phase IV and
Phase IV-A balloons support our assertion.
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Figure 3: Case I. Regions of stability for Πd . Phase IV-A base-

line.
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Figure 4: Case II. Regions of stability for Π Kd . Lay-flat gores

1.5% narrower than nominal, δ " E 1 ' 5%.
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Figure 5: Case III. Regions of stability for Πd -designs with

reduced constant pressure term, P0 " 32 ' 5 MPa.
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Figure 6: Case IV. Regions of stability for Πd with film Youngs

modulus reduced to E " 202 MPa.
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Figure 7: Case V. Regions of stability for Π Ld . Lay-flat gores

1.5% wider than nominal. $ δ % εt & " $ 0 ' 015 % E 0 ' 008 & '
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Figure 8: Case VI. Regions of stability for Πd-designs, $ δ % εt & "$ 0 ' 0125 % E 0 ' 007 & '
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Figure 9: Case VII. Regions of stability for Πd-designs,$ δ % εt & " $ 0 ' 01 % E 0 ' 006 & '
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Figure 10: Case VIII. Regions of stability for Πd-designs,$ δ % εt & " $ 0 ' 015 % 0 ' 0 & '
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Figure 11: Regions of stability for variations on the Phase IV-A Design. Comparison of BBS-stability and Calledine stability.

Calledine stability curve is maximum chord-width ratio (max S/C) versus number of gores as reproduced from [5, Figure 5]. Additional

experimental and flight data are annotated in the figure.
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