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Abstract. Small bubbles in an experimental two-dimensional foam between glass plates regularly undergo
a three-dimensional instability as the small bubbles shrink under diffusion or equivalently as the plate
separation increases, and end up on one of the plates. The most recent experiments of Cox, Weaire, and
Vaz are accompanied by Surface Evolver computer simulations and rough theoretical calculations. We
show how a recent second variation formula may be used to perform exact theoretical calculations for
infinitesimal perturbations for such a system, and verify results with Surface Evolver simulations.

PACS. 82.70.Rr Aerosols and foams – 47.20.Dr Surface-tension-driven instability

1 Introduction

Experiments with two-dimensional soap films, as between
two wet, parallel glass plates (see [1] and references
therein), exhibit three-dimensional instabilities, in which
small bubbles fatten at one plate and shrink at the other,
eventually moving entirely to one plate. The simplest ex-
ample is a variant of the classical Rayleigh-Plateau insta-
bility, in which a cylindrical soap bubble of decreasing vol-
ume V between two plates at increasing separation H be-
comes unstable (without gas exchange or further changes
of volume) when H = 3

√
πV ≈ 1.46 3

√
V and ultimately de-

forms to a hemisphere on one plate ([2,3]). Cox, Weaire,
and Vaz [1] considered such “wine-bottle” instabilities for
cylindrical bubble clusters consisting of a central bubble
surrounded by N “petal” bubbles, as in Figure 1. Inspired
by their experiments, simulations, and rough theoretical
computations, we use the recent exact second variation
formula of [4] for an accurate theoretical computation of
such instabilities for infinitesimal perturbations. We also
make a small correction to one of the formulas of [1] (see
our Remark 1).

There are three modes of instability that affect differ-
ent parameter ranges:

1) A central Rayleigh-Plateau instability, in which the
central bubble fattens at one end and shrinks at the other.

2) An alternating Rayleigh-Plateau instability of the
petals, as in Figure 1. The sides of the central bubble
undergo alternate expansion and contraction. This mode

a e-mail: brakke@susqu.edu
b e-mail: frank.morgan@williams.edu

must be suitably modulated for an odd number of petals;
here we consider only N even.

3) An essentially two-dimensional buckling of the ring
of petals, as in Figure 5 below.

Mathematica [5] was used to solve equations numeri-
cally to obtain theoretical predictions of instability. The
Surface Evolver software [6] was used to verify many of
the results to five significant figures and provide convinc-
ing evidence that we have found all modes of instability.

Theorem 1 – A cylindrical bubble cluster of N identical
petals of volume Vp surrounding a central bubble of volume
Vc as in Figure 1 has its onset of instability at the height
typified by those listed in Table 1 and shown in Figure 2.

The proof, a computation for each mode by the sec-
ond variation formula, occupies the rest of this paper,
with more detailed results in Sections 5 through 8. As
for the classical Rayleigh-Plateau instability, optimal vari-
ations are sinusoidal in the height, and take the form
v(t) sinπz/H, where t denotes arclength along the inter-
faces of the two-dimensional foam. The form of the second
variation formula (Sect. 2) implies that the optimal v(t)
are piecewise linear or trigonometric (see Lemmas 1-3)
and makes exact computation possible.

This paper is concerned only with the existence of un-
stable modes. It does not attempt to determine which may
be dynamically dominant, which determination is often
subsumed by the phrase “Rayleigh-Plateau instability”.

Remark 1 – The rough theoretical computations of equa-
tion (8) in [1] shown in our Table 1(6) should have the
cube root instead of the square root of 6

6−n , yielding the
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Fig. 1. Symmetric cluster with N = 6 petals at its critical height and the petal Rayleigh mode instability.

0.5 1 1.5 2 2.5 3 3.5 4
Central volume

0.5

1

1.5

2

2.5

C
rit

ic
al

he
ig

ht

8 Petals

PR

Bu

Stable

Unstable

0.5 1 1.5 2 2.5 3 3.5 4
Central volume

0.5

1

1.5

2

2.5

C
rit

ic
al

he
ig

ht

10 Petals

PR

Bu

Stable

Unstable

0.5 1 1.5 2 2.5 3 3.5 4
Central volume

0.5

1

1.5

2

2.5

C
rit

ic
al

he
ig

ht

6 Petals

PR

Stable

Unstable

0.5 1 1.5 2 2.5 3 3.5 4
Central volume

0.5

1

1.5

2

2.5

C
rit

ic
al

he
ig

ht

4 Petals

PR

CR
Stable

Unstable

Fig. 2. Summary of instabilities for unit volume petals and varying central bubble volume. PR denotes the petal Rayleigh
mode instability, CR denotes the central Rayleigh-Plateau instability, and Bu denotes petal buckling instability. The tick mark
on the right edge is the critical height at the maximum central volume (where the septum length is zero), which is too large to
reasonably show here. Note that for N = 4, petal Rayleigh mode has a small upturn as the central volume goes to zero.

improved estimates in Table 1(7), meant to be accurate
only for single symmetric unstable bubbles, lines (a) and
(c). Even then, there is a small error due to approximation
in the second, tilt term of equation (2) of [1]. Our compu-
tations of column (8) do not assume such bubble symme-
try. They also vary all petals simultaneously, rather than
varying a single petal, the latter yielding a later instabil-
ity. Similarly, equation (9) in [1] should have an exponent
of 1 instead of 3/2.

2 The second variation formula

The following formula gives the second variation of area
for an equilibrium bubble cluster of prescribed volumes.

Theorem 2 – Second variation formula for equilib-
rium bubble clusters (Ref. [4], Prop. 3.3)

Let S be an equilibrium bubble cluster of prescribed
volumes in R3, possibly with free boundary along planes,
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Table 1. Comparison of previous and current results for the height of instability of cylindrical clusters of N bubbles of volume Vp

surrounding a central bubble of volume Vc. Column (4) gives the Evolver simulations, column (5) the experimental results, and
column (6) the rough theoretical results of [1]. Column (7) corrects for a mistake in equation (8) of [1] (see Remark 1). Column
(8) gives results from this paper. Row (a) is classical. Row (b) is a cylinder over the classical double bubble; see Section 8. Row
(c) is a central Rayleigh-Plateau instability. Rows (d)-(l) are petal Rayleigh instabilities. Petal buckling instability does not
occur for six or fewer petals. Dimensions are in any consistent system of units.

(1) (2) (3) (4) (5) (6) (7) (8)
cor’d

N1 Vp Vc [1] [1] [1] [1] New
petals sim. exp. theo. theo. theo.

(a) 0 1 1.47 1.46 1.46 1.46
(b) 2 1 0 1.572 1.68 1.57
(c) 4 1 0.5 1.68 2.01 1.68 1.68
(d) 4 1 1 1.94 2.54 2.11 1.83
(e) 4 1 2 1.94 2.54 2.11 1.88
(f) 6 1 0.5 1.83 2.54 2.11 1.77
(g) 6 1 1 1.83 2.54 2.11 1.80
(h) 6 1 1.5 1.83 2.54 2.11 1.81
(i) 6 0.0147 0.009–0.03 0.45 0.45 0.623 0.514 0.445

(j) 6 0.018 0.004–0.05 0.48 0.55 0.663 0.554 0.475

(k) 6 0.047 0.008–0.12 0.66 0.65 0.923 0.764 0.655

(l) 6 0.056 0.014–0.077 0.70 0.60 0.973 0.814 0.685

1
[1] use N for the total number of bubbles, our N + 1;

2
private communication;

3
2.54V 1/3

p ;
4
2.11V 1/3

p ;
5
1.80V 1/3

p .

with unit normal N. Assume that S consists of smooth
constant-mean-curvature surfaces Si with unit normals Ni

meeting smoothly in threes at 120 degrees along smooth
curves Cj and meeting the boundary planes orthogonally.
Let V be a smooth vector field. Then for any smooth,
volume-preserving variation with initial velocity V, the
second derivative of area is initially

δ2A =
∫ ∫

S

|∇u|2 − σ2u2dA−
∑

j

∫
Cj

3∑
i=1

qiu
2
i ds. (1)

Here u is the normal component of the variation: u =
V · N and ui = V · Ni, and σ2 is the sum of the squares
of the principal curvatures. The last sum is taken over the
three surfaces, say S1, S2, S3 (labeled and oriented, say
counterclockwise), meeting along Cj, and the functions qi

are given by

q1 =
κ3 − κ2√

3
, q2 =

κ1 − κ3√
3

, q3 =
κ2 − κ1√

3
, (2)

where κi is the curvature of surface Si in the direction
perpendicular to Cj.

Remark 2 – The same formula holds for general soap bub-
ble clusters with tetrahedral as well as triple line singular-
ities (see [7], Chapt. 13), because the isolated singularities
are negligible by the argument of [8], pp. 2332-2333. If
the free boundary planes are replaced by more general C2
hypersurfaces, the formula requires another term.

It will be convenient to use a coordinate system (t, z)
on the surfaces, where z is the vertical coordinate and t

is a horizontal arclength measured from some convenient
origin. The second variation formula in these variables
becomes

δ2A =
∫ ∫

u2t +u2z −σ2u2dtdz−
∑

j

∫
Cj

3∑
i=1

qiu
2
i dz. (3)

The following three standard lemmas, which we state
without proof, will allow us to design each mode of insta-
bility to minimize the second variation.

Lemma 1 – The minimum value of
∫
u2t dt on an interval

of length T with boundary values u(0) = b and u(T ) = c is

(b2 + c2 − 2bc)/T, (4)

and occurs when u(t) is linear.

Lemma 2 – The minimum value of
∫
u2t − λ2u2dt on an

interval of length T with boundary values u(0) = b and
u(T ) = c is

λ((b2 + c2) cos(λT ) − 2bc)/ sin(λT ), (5)

and occurs when u(t) is of the form u(t) = A cosλt +
B sinλt.

Lemma 3 – The minimum value of
∫
u2t + λ2u2dt on an

interval of length T with boundary values u(0) = b and
u(T ) = c is

λ((b2 + c2) cosh(λT ) − 2bc)/ sinh(λT ) (6)

and occurs when u(t) is of the form u(t) = A coshλt +
B sinhλt.
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Fig. 3. Petal geometry, N < 6.
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Fig. 4. Petal geometry, N > 6.

3 Notation

We use the following notation in Sections 4-9 (see
Figs. 3, 4):

N number of petals (outer bubbles),
H height; cluster is bounded by planes

z = −H/2 and z = H/2,
Rv radius of inner triple junction from central axis,
Rp radius of outer surface,
Rc radius of inner surface,
L length of septum (wall between petals),
Vc volume of central bubble,
Vp volume of petal bubble,
σ2 sum of squares of principal curvatures,
Ti length of inner arc,
To length of outer arc,
u normal component of variation vector field,
s u on septa at inner vertex,
t local arclength parameter.

4 Geometry

This section lays out the basic geometry of a cylindrical
bubble cluster of N identical petals surrounding a central
bubble as in Figure 1. The assumption of cylindrical form
means that all surfaces are either planes or circular cylin-
ders. The pressure change across a surface is proportional
to its curvature. Since the petals are identical, the walls,
or septa, between the petals are planes.

We will consider clusters with three or more petals.
A cluster with two petals is in equilibrium, but it is only
metastable, since the central bubble can drift out along the
coplanar septa and re-arrange into a lower-energy config-
uration when it touches the outer surfaces.

The geometry for N < 6 is given by the following
formulas (Fig. 3). The equations are valid also for N > 6,
with Rc negative (Fig. 4).

The inner cell area, OAB:

R2c

( π

N
− π

6

)
−RvRc sin

π

6
=

1
H

Vc
N

. (7)

Length relations from the Law of Sines:

Rc
sin π

N

=
Rv

sin
(

π
N − π

6

) , (8)

providing an equation solvable for Rc and thence Rv:

R2c

( π

N
− π

6

)
−R2c

sin
(

π
N − π

6

)
sin π

N

sin
π

6
=

1
H

Vc
N

, (9)

except that when N = 6:

Rc = ∞, R2v sin
π

6
cos

π

6
=

1
H

Vc
N

. (10)

The outer cell area, ABDC:

R2p

( π

N
+

π

6

)
+ (Rv + L)Rp sin

π

6
− 1

H

Vc
N

=
1
H

Vp. (11)

Length relations from the Law of Sines:

Rp
sin π

N

=
Rv + L

sin
(

π
N + π

6

) , (12)

providing an equation solvable for Rp and thence L:

R2p

( π

N
+

π

6

)
+ R2p

sin
(

π
N + π

6

)
sin π

N

sin
π

6
− 1

H

Vc
N

=
1
H

Vp.

(13)

5 Petal Rayleigh mode

The petal Rayleigh mode is antisymmetric in z, with N
petals (N even) alternately bulging at top or bottom. Due
to the antisymmetry in z, volume preservation is assured.
Surface Evolver simulations show that the lowest eigen-
mode has multiplicity one, and therefore the eigenvector
must share the DN symmetry (rotational and reflectional)
of the cluster.

Theorem 3 – For even N , the second variation of petal
Rayleigh mode can be expressed in closed form as a func-
tion of N , Vc, Vp, and H, given by the sum of contribu-
tions (17,19,21,25,27,29,30), with critical heights partially
tabulated in Table 2.
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Table 2. Petal Rayleigh mode critical heights for various num-
bers of petals and various central volumes. The petal volume
is 1.

N Vc = 0.5 Vc = 1.0 Vc = 1.5
4 1.79655 1.82512 1.85534
6 1.77121 1.78948 1.80816
8 1.70967 1.73929 1.75815

10 1.56989 1.66913 1.70135

Proof: The second variation will be calculated for one
fundamental region of the cluster consisting of one sep-
tum, one inner wall, and one outer wall. By separation
of variables, we will take the normal component u of the
perturbation to be of the form

u = v(t)w(z). (14)

The second variation (Eq. (3)) becomes

δ2A =
∫ ∫

v2t w
2 + v2w2z − σ2v2w2dtdz

−
∑

j

∫
Cj

3∑
i=1

qiv
2
i w
2dz,

which can be rewritten as

δ2A =
∫ H/2

−H/2

[∫
v2dt

]
w2z

+


∫

v2t − σ2v2w2dt−
∑
Cj

3∑
i=1

qiv
2
i


w2dz.

For δ2A to be zero, the coefficient of w2 must be negative,
so the antisymmetry of w(z) and Lemma 2 tell us that the
second variation is minimized when w(z) is of the form

w(z) = sin
πz

H
. (15)

The second variation with z integrated out is

δ2A =
∫

H

2
v2t +

π2

2H
v2 − H

2
σ2v2dt− H

2
Σiqiv

2
i . (16)

On a septum the curvature is zero, so we want to minimize

δ2Aseptum =
∫

H

2
v2t +

π2

2H
v2dt

=
H

2

∫
v2t +

π2

H2
v2dt,

over a segment of length L with boundary conditions
v(0) = s and v(L) = 1. By Lemma 3 the minimal value is

δ2Aseptum =
H

2
π

H

(
(1 + s2) cosh

πL

H
− 2s

)/
sinh

πL

H
.

(17)

On the inner arc the curvature is 1/Rc, so we want to
minimize

δ2Ainner =
∫

H

2
v2t +

π2

2H
v2 − H

2
1
R2c

v2dt

=
H

2

∫
v2t +

(
π2

H2
− 1

R2c

)
v2dt,

over a segment of length

Ti = 2Rc
( π

N
− π

6

)
(18)

with boundary conditions v(0) = s/2 and v(Ti) = s/2. By
Lemma 3 the minimal value is

δ2Ainner =
H

2
s2

2
λi((cosh(λiTi) − 1)/ sinh(λiTi), (19)

where

λi =

√
π2

H2
− 1

R2c
. (20)

Technically, this still works if λi turns out imaginary; in
that case we can stay real with Lemma 2 and

δ2Ainner =
H

2
s2

2
λi((cos(λiTi) − 1)/ sin(λiTi), (21)

where

λi =

√
1
R2c

− π2

H2
. (22)

For the special case of N = 6,

Ti = Rv/2 (23)

with other formulas the same.
On the outer arc, the curvature is 1/Rp, so we want

to minimize

δ2Aouter =
∫

H

2
v2t +

π2

2H
v2 − H

2
1
R2p

v2dt

=
H

2

∫
v2t +

(
π2

H2
− 1

R2p

)
v2dt,

over a segment of length

To = 2Rp
( π

N
+

π

6

)
, (24)

with boundary conditions v(0) = 1/2 and v(To) = 1/2.
By Lemma 3 the minimal value is

δ2Aouter =
H

2
1
2
λo (cosh(λoTo) − 1) / sinh(λoTo), (25)

where

λo =

√
π2

H2
− 1

R2p
, (26)

or

δ2Aouter =
H

2
1
2
λo (cos(λoTo) − 1) / sin(λoTo) , (27)
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where

λo =

√
1
R2p

− π2

H2
. (28)

For the triple junctions, the contribution for the inner
triple junction is

δ2Aitriple = −H

2
1√
3

[
−

(
1
Rc

+
1
Rc

)
s2

+
1
Rc

(s

2

)2
+

1
Rc

(s

2

)2]
,

or

δ2Aitriple =
√

3s2H
4Rc

. (29)

The contribution for the outer triple junction is

δ2Aotriple = −H

2
1√
3

[(
1
Rp

+
1
Rp

)
12

− 1
Rp

(
1
2

)2
− 1

Rp

(
1
2

)2]
,

or

δ2Aotriple = −
√

3H
4Rp

. (30)

�	

Remark 3 – If there are an odd number of petals, the petal
Rayleigh mode is frustrated. Instead, the low mode is the
petal Rayleigh mode modulated by a sin θ/2 factor, so that
in going once around, the sign of the perturbation makes
a change, in addition to the sign changes in going from
petal to petal. It turns out that the phase of the modu-
lation is irrelevant, so the eigenspace is two dimensional.
This means that individual eigenvectors do not have to
share the DN symmetry of the cluster, which consider-
ably complicates the analysis. A future paper will address
this case and the case of general clusters.

Remark 4 – Answering a question of R. Kusner, for clus-
ters with outer radius of curvature Rp, the critical height
is sometimes less and sometimes greater than πRp, the
value suggested by a single bubble.

6 Petal buckling mode

As a cylinder, the cluster inherits all the eigenmodes of its
two-dimensional cross-section. Clearly, instability here is
independent of height, and simply depends on the bubble
size ratios. These “buckling” modes, as in Figure 5, were
studied by Weaire, Cox, and Graner [9], with the con-
clusion that instability sets in when the pressure in the
central bubble becomes negative, which can happen only
for N ≥ 7. The reason is very simple: when the central
pressure is zero, the inner and outer radii are of the same
magnitude and each petal is a section of a disk. Adjacent
petals can slide along one another without changing their

Fig. 5. Symmetric but unstable ten-petal cluster and one of
the possible buckling modes.

Table 3. Petal buckling mode critical central volumes Vc for
petal volume Vp = 1 and various number of petals. The cluster
is unstable for smaller values of Vc. Also listed is the petal
Rayleigh mode critical height.

Critical Petal Rayleigh
N Vc critical height
7 0.04141 1.62029
8 0.16576 1.62099
9 0.37315 1.62146

10 0.66364 1.62180
11 1.03726 1.62205
12 1.49403 1.62223
13 2.03396 1.62238
14 2.65705 1.62249
20 8.14234 1.62286

circularity, so disregarding the central-volume constraint,
the ring of petals acts as a flexible string of beads. By
counting degrees of freedom, one sees that there are N−3
modes of deformation (besides translation and rotation),
which are thus zero-eigenvalue modes of the petal ring.
These modes all preserve the central area to first order,
and since adding a constraint which is already satisfied
does not change eigenvalues of eigenmodes that preserve
that constraint, all the N − 3 modes have zero eigenvalue
with the central-area constraint. When the central pres-
sure is not zero, positive central pressure keeps the petal
ring stretched out in a circle, and negative central pressure
sucks some petals toward the center.

Theorem 4 – (Ref. [9], Eq. (2)) A cylindrical cluster of
N ≥ 7 identical petals of volume Vp surrounding a central
bubble of volume Vc has buckling instability if the volume
ratio exceeds the critical ratio,

Vc
Vp

=

(
1
3

+
√

3
2π

)[
N

2π
sin(π/6 − π/N)

sin(π/N)
+ 1 − N

6

]
. (31)

The critical central volume values are shown in Table 3,
along with the petal Rayleigh critical height for petal vol-
ume 1. The petal Rayleigh critical heights are remarkably
uniform. If the cylindrical beads were in a straight line,
then the petal Rayleigh instability would be independent
of N . Apparently, the petal Rayleigh instability of a string
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Table 4. Critical heights for central Rayleigh instability. Note
that these are independent of the petal volume.

Central Rayleigh

N critical height, ×V
1/3
c

3 1.84681
4 2.11270
5 2.66141
6 ∞

of cylindrical beads is very little affected by bending by
various degrees around the central bubble.

7 Central Rayleigh mode

In the central Rayleigh instability, the top of the central
bubble bulges out, and the bottom pinches in. The petals
are otherwise unaffected. It occurs only for N < 6, when
the central bubble bulges out.

Theorem 5 – The second variation of the central
Rayleigh mode can be expressed in closed form as a func-
tion of N and Vc, given by the sum of contributions (19)
or (21) with s = 2 and (35), with critical heights partially
tabulated in Table 4.

Proof: The second variation of

u = v(t) sin
πz

H
(32)

with z integrated out becomes

δ2A =
∫

H

2
v2t +

π2

2H
v2 − H

2
σ2v2dt− H

2
Σiqiv

2
i . (33)

On each septum, v is zero. On the inner arc, everything is
the same as in the even petal Rayleigh mode, except that
v is 1 at the ends instead of s/2, so we can use the petal
Rayleigh δ2Ainner with s = 2. On the outer arc v is zero.
The contribution for the inner triple junction is

δ2Aitriple = −H

2
1√
3

[
−

(
1
Rc

+
1
Rc

)
02 +

1
Rc

12 +
1
Rc

12
]

(34)
or

δ2Aitriple = − H√
3Rc

. (35)

The contribution for the outer triple junction is zero. �	

8 Two-bubble cluster

None of the configurations discussed so far include the
simple case of two adjacent bubbles. We will just do the
equal-volume case here for simplicity, to fill in row (b) of
Table 1.

Theorem 6 – The cluster of two adjoining identical bub-
bles becomes unstable petal Rayleigh mode at a critical
height of approximately 1.51906.

Proof: For bubble volume 1, the bubble radius is

R =

[
H

(√
3

4
+

2π
3

)]−1/2
(36)

and the arc length of one bubble is

T =
4π
3
R. (37)

Take the perturbation u = u(t) sin(πz/H) to have
u(t) = 1 on the septum ends and magnitude 1/2 at the
ends of the arcs. Working out the septum, arc, and triple
junction variations as before gives

δ2A =
π cosh(π

√
3R/H)

sinh(π
√

3R/H)
+

H

2
λ(cosh(λT ) − 1)

sinh(λT )
−

√
3

2
H

R
,

(38)
where

λ2 =
π2

H2
− 1

R2
. (39)

The critical height is

H ≈ 1.51906. (40)

�	
As a point of interest, the mode where both bubbles

expand at the top and shrink at the bottom turns out to
have a critical height of 1.69146.

9 Surface Evolver simulations

To verify the accuracy of these theoretical calculations
and to check that no instability modes were overlooked,
Surface Evolver simulations of various configurations were
carried out. The Surface Evolver [6] is freely available soft-
ware that is models energy minimization problems involv-
ing triangulated surfaces, and it is capable of calculating
eigenvalues numerically and displaying eigenmodes. How-
ever, calculating eigenmodes with the full three degrees of
freedom at each unconstrained vertex of the triangulation
yields many near-zero eigenvalues that involve shifting the
triangulation around laterally rather than the modes we
seek. Therefore, the Evolver can constrain the degrees of
freedom. The default mode, called Hessian normal mode,
constrains each vertex to move normal to the surface, ex-
cept that vertices on triple junctions have two degrees of
freedom perpendicular to the triple junction and tetrahe-
dral points keep the full three degrees of freedom. It is also
possible to explicitly set the direction of motion allowed
for each vertex, in what is called Hessian special normal
mode. It is also possible to put on constraints that sup-
press the trivial eigenmodes of translation and rotation.
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There are two issues to check: first, whether the criti-
cal heights calculated for the modes are in fact accurate,
and second, whether any modes of instability have been
missed. For the first issue, Hessian special normal mode
was used with the direction being that assumed for petal
Rayleigh mode. Simulations of 4, 6, 8, and 10 petals at
petal volume 1 and central volumes 0.5, 1.0, 1.5, 2.0, 3.0,
and 4.0 at the critical heights showed the lowest eigenval-
ues to be less than 3× 10−6 in magnitude. For the second
issue, the default Hessian normal mode was used, since it
does not prejudge the nature of the mode. However, it is
considerably less accurate in evaluating individual eigen-
values due to modes distorting the triangulation around
triple junctions. But it did show that the predicted modes
were the lowest eigenvalues by a comfortable margin for
the cases tested. Simulation of the double-bubble cluster
similarly confirmed predictions.

10 Conclusions

Cylindrical clusters of N petals around a central bub-
ble well illustrate two prototypical three-dimensional
Rayleigh-Plateau instabilities in two-dimensional clus-
ters, “central” and “petal” Rayleigh-Plateau instabilities.
When the central bubble is small and has fewer than six
sides, it becomes unstable first. When it is large or has six
or more sides, the petal instability occurs first. In general,
the first Rayleigh-Plateau instabilities occur with smaller,
convex bubbles of few sides. There are many other
interesting clusters that could be analyzed, such as the
energy-minimizing clusters of four or more equal-volume
planar bubbles. For large, disordered clusters of cylindrical
bubbles, as in typical two-dimensional foams, we likewise
expect that instability begins with small, high-pressure,
few-sided bubbles. In further work, we intend to analyze

the instabilities in such general clusters, and develop an
understanding of the role of disorder.

It should be possible to analyze the stability of general
cylindrical clusters systematically. Careful examination of
the second variation expressions show they are quadratic
functions of the perturbations at the triple junctions, so
the critical height problem can be reduced to determining
when a quadratic form depending on H becomes indef-
inite. Work is underway to implement this scheme in a
computer program.
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