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Summary. We consider an eversion of a sphere driven by a gradient flow for ela-
stic bending energy. We start with a halfway model which is an unstable Willmore
sphere with 4-fold orientation-reversing rotational symmetry. The regular homo-
topy is automatically generated by flowing down the gradient of the energy from
the halfway model to a round sphere, using the Surface Evolver. This flow is not
yet fully understood; however, our numerical simulations give evidence that the
resulting eversion is isotopic to one of Morin’s classical sphere eversions. These
simulations were presented as real-time interactive animations in the CAVET™ au-
tomatic virtual environment at Supercomputing’95, as part of an experiment in
distributed, parallel computing and broad-band, asynchronous networking.

1. A History of Sphere Eversions

To evert a sphere is to turn it inside out by means of a continuous deforma-
tion, a regular homotopy, which allows the surface to pass through itself, but
forbids more serious singularities where the curvature becomes locally infi-
nite. There have been many eversions since Smale [30] proved the possibility
of this phenomenon forty years ago. The extraordinary difficulty in visuali-
zing an explicit eversion has made it an effective challenge for a succession
of both mathematical and graphical innovations.

Our sphere eversion differs from all previous ones in that it proceeds au-
tomatically through an optimization procedure. We use the Surface Evolver,
a computer program which is designed to solve variational problems, like fin-
ding the shape of soap films. We needed only to specify the starting point
and a general strategy of energy minimization to the program. The resulting
minimaz eversion is optimal in that it requires the least bending at any stage.

As in all good experiments, we did not know a priori that the evolver
would be successful in producing a sphere eversion. To our great pleasure,
it not only succeeded, but also produced an eversion which turned out to
be among those designed by Bernard Morin three decades earlier [28]. That
an optimal geometry for the eversion would match one envisioned by a pure
topologist is an eloquent confirmation of mathematics.

The sphere eversion story has been told many times from a variety of
viewpoints. Chapter 6 of [9] discusses most of the work through 1986 primarily
from the viewpoint of how to draw pictures of a process. For an update
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as well as a good review of the topological fundamentals, see Silvio Levy’s
supplement [22] to the video Outside In [23].

Here we focus on computer animations, beginning with Nelson Max’s
epic 16mm film [25]. It was generated as a frame-by-frame animation from
a database of coordinates in R® which had been entered manually [26]. The
coordinates were taken from wire-mesh models made by C. Pugh, which de-
pict, in eleven stages, what is to be perceived as a continuous surface moving
through itself from a highly convoluted halfway model to a round sphere.
This halfway model is an example of a Morin surface, an immersed sphere
which has a 4-fold rotational symmetry that switches its orientation. (Thus
if the two sides of this sphere were painted different colors, the quarter-turn
would bring the surface back to its original position, but with the colors ex-
changed.) Morin recognized that a homotopy from a round sphere to such a
surface automatically gives a sphere eversion; the second half of the eversion
can be obtained from the first by reversing the temporal order, rotating the
models 90° and switching colors. The resulting eversion has one kind of tem-
poral symmetry; a fundamentally different kind figured in the first explicit
sphere eversion (by Arnold Shapiro [12]) and the first illustrated publication
of an eversion (by Tony Phillips [29]). These use the double cover of a Boy
surface as a halfway model, and thus the symmetry exchanges only time and
color.

In 1977, Morin created an analytic parametrization [27] of his eversions.
While it was conceptually correct, its implementation on a computer was
visually unrecognizable. The first real-time, interactive computer animation
was produced by John Hughes on a Stardent [19]. He fit spherical harmonics
to polyhedral models of key stages in Morin’s eversion, obtaining a global
parametrization by trigonometric polynomials. Morin and Denner developed
a minimally polyhedral eversion [2], and Apéry [1] calculated harmoniously
scaled algebraic formulas for its smooth companion. Both of these eversions
were implemented as real-time interactive animations [11].

A truly new idea for an eversion, Bill Thurston’s corrugations [22], was
expertly realized and stunningly rendered in the 1994 Geometry Center vi-
deotape, Outside In [23]. Unlike the earlier eversions, this method furnishes a
general recipe for creating regular homotopies between surfaces whenever this
is known to be theoretically possible. However, for all of these eversions, their
designers had to know a priori what they should look like, and then search
for formulas capturing this behavior. This limits the usefulness of their soft-
ware tools in cases when one does not already know the whole story. We set
about to build tools that were exploratory as well as explanatory. Our mini-
max eversion is generated automatically, with even the topological structure
being chosen by the optimization procedure.



The Minimax Sphere Eversion 5

2. The Minimax Sphere Eversion

Kids climbing fences, along with engineers building mountain roads and scien-
tists rocketing to the moon, know that the easiest way to get from one side
to the other (and back again) is to follow the path which goes over the lowest
spot. This is so obvious to kids that they don’t have a name for (or at least
they don’t tell their parents about) this spot on a fence, but of course it is
usually called a pass or saddle on roads through the mountains.

It is precisely such a lowest-energy saddle that we encounter halfway
through turning a sphere inside-out via the minimaxz sphere eversion. In-
deed, the minimax sphere eversion might be viewed as the “easiest” path
of immersed spheres leading from a round sphere with the right side out
to one inside-out. The energy which climbing kids and road engineers care
about is the height they need to go above the surrounding territory. For ma-
thematicians interested in everting spheres, another energy is needed: the
elastic bending energy, which assigns to any immersed surface the integral of
the square of the mean curvature. This energy is often called W, after Tom
Willmore, who rekindled interest in W among mathematicians in the 1960s
[31].

In 1983, Allen Hatcher [15] proved the Smale Conjecture, which in one
formulation asserts that the diffeomorphism group of R? is homotopy equi-
valent to the orthogonal group O(3). An equivalent formulation says that
the space of embedded spheres in R® is contractible. Interested in finding an
analytic proof of this, Kusner started looking for functions with nice gradient
flows on the configuration space of embedded (or immersed) surfaces.

That W might be a good candidate follows from Robert Bryant’s [7] re-
sult: the only embedded W -critical sphere is round. The strategy for proving
the Smale Conjecture analytically would be to flow an embedded sphere down
the W-gradient until the sphere stopped changing, and thus, was round. Un-
fortunately, this flow does not preserve embeddedness.! Bryant had also found
immersed W-critical spheres with self-intersections. Understanding these va-
riationally led Kusner quite naturally to the idea of the minimax sphere
eversion, because of some further important results already known about W.

Willmore’s main result [31] was that W is uniquely minimized by round
spheres, with the value 4m; any other surface M has energy W (M) greater
than 4m. When the surface is immersed, there is a more general bound (due
to Li and Yau [24], sharpened in [20]):

If there is a point of R® through which k “sheets” of a surface M pass,
then W (M) is at least 4kw; equality can occur here only if there is a complete
minimal surface M in R® with k planar ends (“sheets at 0o0”), and a Mébius
transformation which carries M to M (and oo to the k-fold point on M ).

LA gradient flow for W would correspond to a fourth-order parabolic equation,
which unlike a second-order equation, does not enjoy a maximum principle.
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Taking k = 1 and M to be a flat plane, this implies Willmore’s original
result. The proof makes use of the fact that the quantity W + 4km (where k
is the multiplicity of the surface at co) is invariant under Mobius transfor-
mations of R? U co.

Bryant’s classification [7] of W-critical spheres? showed that the lowest
saddle point for W is at 167, realized by a certain family of immersed spheres
with one quadruple point. By the above, each such surface arises as the
Mébius transformation of some minimal surface in R? with four planar ends.

In the meantime, Tom Banchoff and Nelson Max had shown [3] (see also
[18]) that every sphere eversion must pass through an immersed sphere with at
least one quadruple point. Thus, by the Li-Yau inequality above, every sphere
eversion must pass over the W = 16w level. And if some W-critical sphere
at this 167 level were a saddle point (rather than a local minimum), then we
could simply flow to either side of the saddle (in the most negative Hessian
direction) by a W-gradient flow, and the flow would have to proceed down to
the TW-minimizing round sphere on either side. Note that if the saddle surface
halfway model has an orientation-reversing symmetry, then these two round
spheres must have the opposite orientation. So, by climbing up the (positive)
W-gradient flow, over the saddle and back down the other side, one would
get an optimal sphere eversion: the minimax sphere eversion.

In 1977 Francis circulated an illustrated manuscript, see [9, Ch. 6], about
sphere eversions equivariant under all the cyclic rotation groups, the tobacco
pouch eversions. This inspired Kusner to find an infinite family of W-critical
spheres (with even-order cyclic symmetry) and real projective planes (with
odd-order symmetry). These are Mobius images of complete minimal surfaces
with planar ends for which there is explicit, symmetric Weierstrafl data [20].
They include a W-minimizing Boy surface with 3-fold symmetry, as well as
the Morin surface of 4-fold symmetry that we use as our halfway model ho.

The image M of this immersion hy is a Mobius transformation of a mini-
mal surface M whose Weierstrafl representation can be integrated explicitly.
The surface M is given as an immersion I of the Riemann sphere S? with
four punctures into R?:

(P —w), (f ), 5w + 1))
h(w)_iﬁe< wh 1 o /3w? — 1 )

From this formula, we can check that if h(w) = (z,y,%), then h(w) =
(—z,y,—z) and h(i/w) = (—y, —x,—z). Thus the 4-fold symmetry of the
Riemann sphere given by the action of w + i/w appears as an orientation-
reversing 4-fold rotational symmetry ps of M around the z-axis. The poles
w = 0 and w = oo both map to the origin, and no other points map to the
z-axis. The minimal surface M has four planar ends, corresponding to the
four punctures — the values of w where the denominator vanishes.

2 Bryant’s proof can be simplified and unified using the spinor representation and
an abstract skew-form [21].
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A Mbbius transformation takes M to a compact surface M = ho(S?),
which will be a critical point for the elastic energy with W = 167. We want
our halfway model hg to still have the 4-fold rotational symmetry ps. There-
fore we use a Mobius transformation which is an inversion around a point on
the z-axis: (z,y, 2) = (z/r?, y/r?, s+(z—s)/r?), where 7> = 2% +9>+ (2 —5)>.
There is no particular reason to choose a specific value of s # 0. We chose
s = 0.35 in our experiments for aesthetic reasons. The four sheets at infinity
in M have become a quadruple point of hg at (0,0, s); the two tangent sheets
of the surface originally at the origin are now at (0,0,s — 1/s), the isthmus
point of hg.

The minimax eversion is now given by a heteroclinic orbit® for the -
gradient flow, from the saddle point hy down to the global minimum, a round
sphere. Since this gradient flow takes infinitely long, we rescale time so that
t = 0 is the halfway model and we reach the round sphere at t = 1. The
Euclidean gradient for W is given by a nonlinear fourth-order operator. Hence
our flow will certainly exist for a short time, but there is no guarantee of
long-time existence. Our experiments suggest, however, that the flow indeed
exists from our halfway model to the round sphere. The complete eversion
is a homotopy h; : S* — R?, for t € [~1,1] with the temporal symmetry
h—i(w) = ps(h,(—i/w)), and h_; and hy are round spheres that differ by the
antipodal map.

Our minimax eversion is optimal in the sense that it requires the least
bending energy at any intermediate stage. While we cannot yet construct this
eversion theoretically, we can compute it numerically. In the next section
we show how to compute an approximation of the homotopy h; described
above, replacing the halfway model by a nearby polyhedral surface Hg. The
continuous motion in time is replaced by a sequence of small steps, H,,
leading to a polyhedral approximation of a round sphere.

3. Using the Surface Evolver to Evert a Sphere

In 1986, when Kusner computed some pictures? of the possible halfway mo-
dels, there was no software available to compute the entire gradient flow.
About that time, Brakke started work on the Surface Evolver [2], an interac-
tive computer program in the public domain® for the study of surfaces shaped
by various energies and constraints. The evolver uses a finite element me-
thod, with a surface being represented as a set of triangles in space. There are
no restrictions on orientation or topology, hence complicated surfaces such

# A flowline leading from one critical point to another (in doubly infinite time)
is called a heteroclinic orbit.

4 With Michael Callahan and David Hoffman at GANG, the Center for Geometry,
Analysis, Numerics and Graphics at the University of Massachusetts, Amherst.

® Available at URL http://www.geom.umn.edu/locate/evolver/.
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as foams may also be handled. Originally available energies included surface
tension and gravity. Constraints can include fixed volumes and boundary
conditions. The usual action of the evolver is to minimize total energy by
gradient descent.’

At the 1991 Five Colleges Regional Geometry Institute, Kusner directed
the research program on computation in geometric analysis, where Brakke
and his evolver were star attractions. We urged Brakke to add features to let
surfaces minimize energies like W, instead of just surface area. Indeed, that
summer Brakke worked out, and programmed into the evolver, formulas for
several discretizations of W and their gradient flows.

Lucas Hsu, Kusner and Sullivan performed extensive experiments [4] mi-
nimizing W for surfaces of higher genus; some of the resulting surfaces were
animated in [16]. In 1992 at MSRI, Kusner and Sullivan presented this work
on Willmore surfaces, and Francis presented joint work with Apéry on the
Morin-Denner cuboctahedral sphere eversion [11, 2]. We decided then to work
on animating the minimax sphere eversion with the evolver.

To obtain the discrete halfway model Ho, we start by evolving a sphere.
We can start with an octahedron, fix the enclosed volume, and repeatedly
refine the facets (replacing each triangle by four) and iterate the conjugate-
gradient descent for surface area. Since the sphere of course is the least-area
way to enclose that volume, the evolver quickly approaches a sphere. We
wrote a short program to read in one evolver datafile and move all the
vertices by the inverted Weierstrafl map ho. Applying this to a sphere of about
1500 facets gives a polyhedral halfway model. Next we switch to minimizing
W (or really, a discretization W), and no constraints are needed.

Because the map hg is conformal, the triangulation of this halfway mo-
del is still nearly equilateral, though globally uneven in size. We start by
using the evolver’s query language to selectively refine long edges to get
a more even triangulation; the equiangulation command, which selectively
swaps diagonals, is also helpful throughout in preserving a nice triangula-
tion. If we now iterate (with gradient-descent steps for W), we get an even
better approximation Hp to the halfway model.

We are near an unstable critical point for the energy. Repeated iteration
would drive us closer for quite some time, but eventually the unstable mode
would presumably dominate, and we would fall off the saddle and down to-
wards a round sphere. However, this would take much too long. The evolver
can instead compute the Hessian of the energy W. We could use this, in New-
ton’s method, to converge to the unstable critical point, but in practice there
are so many eigenvalues close to zero (from the Mobius degrees of freedom,
or tangential motions of vertices) that this is difficult.

The Hessian calculation confirms our suspicion that H, has Morse index
one, meaning there is only one unstable direction; if 4-fold symmetry is enfor-

6 Actually, we use the conjugate gradient method because it is better at following
narrow sloping valleys downhill in high dimensions.
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ced, we are at a local minimum for W. Since our initial sphere had octahedral
symmetry, our polyhedron #y has 4-fold symmetry. This is important, for we
want to generate the negative-time half of the eversion using this symmetry,
with no glitch in the triangulation. But it means we would have to wait until
some numerical noise crept in to see any motion away from the saddle point.
Thus, to get the evolution started, we instead use another new feature of the
evolver: it can compute the most negative eigenvalue of the Hessian, and
move in the direction of the corresponding eigenvector. Our initial step is
made in this direction. Theoretically, after one such saddle step, we could
now use conjugate-gradient descent. But in practice, since we are still in a
regime of small gradient, it seems best to repeat the following sequence: every
fifty iterations of descent are followed by another saddle command and re-
triangulation. (Note that saddle computes the Hessian, or quadratic term in
the Taylor polynomial for W; then it finds the line of the lowest eigenvector
and chooses the downhill direction along this line.)

The retriangulation just mentioned involves several commands, all under
automatic control. We refine any edges with high dihedral angle with the
notch command, and refine any long edges. We equiangulate a couple of
times, and delete (or coalesce) small edges and facets (and even slightly
larger ones in flat regions of the surface). The evolver script to do this is

define facet attribute flat integer; 1lfac:=.85; tfac:=.9;
flat_tri := {

set facet ff flat max(ff.edge,dihedral)<.18;

delete edges ee where

length<.1/tfac and min(ee.face,flat);

refine edges where length>.7*1fac and dihedral>.5;
};
trian := { n 1lfac; u; 1 1lfac; u; g;

w .001/tfac; t .05/tfac; flat_tri; u; g; V; u; };

where the constants 1fac and tfac are changed at a later stage of the evo-
lution, where fewer facets are necessary.

Once we are further from the saddle point, we can proceed without the
saddle commands, except at one later stage of the homotopy. At the gastrula
stage (described below), the surface looks like a sphere connected to a smaller
sphere by a catenoidal neck. Since spheres and catenoids are both critical
points for W, most regions of this surface see no reason to move, and would
take much too long to progress through this stage with conjugate gradient
alone; saddle (again used every fifty steps) helps the neck grow.

Usually the evolver is run with interactive three-dimensional graphics
shown in geomview.” The picture is normally updated every time the surface
changes, but this approach is unsuitable for our present purposes. On an
ordinary machine, the eversion will take hours, and is best done in batch

" Available at URL http://www.geom.umn.edu/locate/geomview/.
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mode. On a multiprocessor PowerChallenge from Silicon Graphics, we can
compute the eversion in about 10 minutes, but sending graphics of each 'step
would slow this down too much. Instead, we turn off the automatic display
and instead show the graphics only once every fifty iterations (just before
the retriangulation and possible saddle). With this choice, we get about 126
topes, the polyhedral stages of the discrete homotopy H,, which are saved
as 3-D object display lists. For n = 126 we are very near a round sphere.
The number of facets stays between 1000 and 2000 throughout; we find this
is enough to be confident we are approximating a smooth surface, while the
computation still proceeds at a tolerable speed.

The evolver saves topes in the common file format OFF, and these can
be viewed in geomview and other viewers. We have, however, written a spe-
cial purpose viewer, i11iVert.? This application of our evolving illiView®
prototype of a real-time interactive CAVE animation (RTICA), can display
actual or saved evolver output either on an Iris console, or in one of the
immersive virtual environments described below. It has special features for
coloring and shrinking facets, which make it easier to view the homotopy,
especially in binocular stereo.

One theoretical difficulty with the W-gradient flow is that the usual ver-
sions are not Mobius-invariant. This means that if we started with a halfway
model differing by some Mobius transformation, the resulting flow would
be truly different; it might even have different topological stages. This dif-
ficulty also appears in our evolver experiments: because the discretization
W is Mébius-invariant, the evolver might compose the gradient motion at
any stage with some Mobius transformation. Thus, especially towards the
end, where large portions of the surface are spherical, and have little reason
to move, we sometimes see jumps or drifts in our animation, due to added
Mo&bius transformations.

We plan next to improve the computation of the eversion by making use
of new symmetry features of the evolver [6]. These will allow us to enforce
2_fold rotational symmetry throughout the evolution, making computations
with just half of the surface. Furthermore, by enforcing 4-fold symmetry, we
can get an even better halfway model Ho. We could start with any surface of
this symmetry, like the halfway model!® from the cuboctahedral eversion [2]

& See URL http://new.math.uiuc.edu/laterna/ for a copy of illiVert that
shows the minimax eversion on any Iris.

9 The illiView collection of real-time interactive computer animations is pro-
duced and maintained by Francis and his students in courses taught in the
Renaissance Experimental Laboratory, a donation from SGI to NCSA. Tts soft-
ware design philosophy, its niche within mathematical visualization, and its
pedagogical implications were discussed in [14, 10]. The principal feature of an
illiView prototype, which facilitates rapid adaptation to new hardware inno-
vations, is its simplicity and conceptual optimization.

10 This polyhedral model of Morin’s surface is minimal in the sense that it has the
fewest possible vertices, 12, and faces, 14.

~
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mentioned above; by minimizing W, we would approach hg (up to the choice
of the parameter s in the M&bius transformation). '

Enforcing symmetry throughout the eversion will also tend to reduce the
jumps we see from added Mobius transformations; the surface is only free
to drift along the transformations that preserve the z-axis. With the extra
speed and quality of this symmetric evolution, we plan to create a high-
quality narrated video, using a significantly finer triangulation and storing
many more topes.

4. A Topological Description of the Eversion

As we have seen, the evolver produces a sequence of polyhedral sphere
immersions H,, the topes of the minimax sphere eversion. This sequence
starts with the triangulated approximation #g to the smooth halfway model,
ho : S = R? obtained by inversion from the Weierstrafl representation of
an immersed minimal surface. We imagine that the #, approximate a re-
gular homotopy, h;. However, we do not know a formula for any such hy,
and changing the script used by the evolver might approximate an isotopic
deformation of h;. Thus we shall let h; denote the hypothetical regular ho-
motopy we think we are seeing when watching the animation of the #,,; here
n=20,1,..., N is assumed to be injected monotonically into 0 < ¢ < 1.

We next describe Hg and its set of self-intersection curves, also called the
double locus, in terms of what can be discerned from Color Plates 1 and 2,
pp- 360, 359 in the Appendix, and from the line drawings here. However, we
also intend this description to be a guide to a real-time interactive session
with i11iVert.

The top row of Color Plate 1 shows three views of the halfway model. In
the left image, we look straight down the symmetry axis at the origin in R?,
which we call the pole point on the minimax halfway model, since hg maps
both poles, z = 0, co of S? there. Directly below this, also on the z-axis, is the
quadruple point, which is of considerably greater interest; the middle image
shows the halfway model from the bottom, with the quadruple gzﬁﬁm view.
The right image shows a cut-away view from the side, demonstrating how
convoluted the halfway model really is.

In Color Plate 2 we show three stereo pairs'! of cut-away views of the
halfway model from the top. In the top pair, we have moved the horizontal
clipping plane just past the pole point and can see the quadruple point. The
missing piece of the surface consists of two identical elongated bowls, their
rims artfully bent (like integral signs) to fit, and oppositely colored. Note
that even the slightest perturbation will destroy the pole point. However any
generic motion of one bowl through the other passes through a singularity in

11 These can be viewed by crossing the eyes so that the left image is seen with the
right eye and vice versa.
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Fig. 4.1. Generic cross-sections of the halfway model below (left) and above
(middle) the four saddles, below (middle) and above (right) the four pitchfork
bifurcations.

the double locus which is isotopic to the present one. The canonical model
for this type of generic catastrophe in a regular homotopy, denoted by Dy, is
the pair of surfaces z = zy — t, z = 0. Since this looks like the inundation of
a saddle sinking below the water table it is known as an isthmus event [25].

The quadruple point, on the other end, is formed by four bowls in 4-fold
symmetry, as seen in the bottom stereo pair of Color Plate 2. Since there
are four minima and two maxima for this height function on our sphere,
elementary Morse Theory predicts four saddle points, which are visible in
the middle pair, near 11, 2, 5 and 8 o’clock. We have traced the three generic
levels of Hp in a line drawing, Fig. 4.1, to emphasize the salient features.

To trace the curves of self-intersection, or double locus, follow the 12
curves emanating from the quadruple point.!? Before we reach the pole point,
eight of them have disappeared pairwise, somewhere between the top and the
middle stereo pair. This occurs at four additional D; isthmus events of the
sphere eversion. We describe these in terms of the customary visualization of
the classical pitchfork bifurcation shown in Fig. 4.2.

The wavy surface in the middle image is the cubic y + 2 + zz = 0; the
planar one is y = 0. The horizontal slices as z varies show an S-shaped curve
crossing a line three times at first, and later just once. Even the slightest
perturbation, like y = ¢, breaks the pitchfork in one of two ways, as in the
left or right pictures. Hence a regular homotopy passing through a pitchfork
suffers a generic D;-catastrophe. What cannot be seen, but perhaps imagined,
is the way the four pitchforks break as H; evolves off the minimax saddle.'?

In the evolver and in illiVert, we intentionally preserved 2-fold spatial
symmetry about the axis, and temporal symmetry, in the sense that H_; =

2 There are two, one above the other, in each of the four principal directions, as
well as one in each diagonal direction.
Our experimental polyhedral approximation to the eversion shows these pitch-
forks happening in pairs, two near tope H_4 and two near tope H4. However,
as pointed out by Nick Schmitt, our smooth halfway model ho has four double
tangencies, so in the true minimax eversion, these four D; events happen si-
multaneously at ¢ = 0. The intersection behavior of minimal surfaces indicates
that the two sheets at each double tangency must disagree to second order. This
makes the events look more like the quadratic isthmus than the cubic pitchfork.

13
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Fig. 4.2. A planar surface patch crosses a cubic patch along a double locus that
looks like a 3-pronged pitchfork. Even the slightest perturbation breaks the pitch-
fork into two curves, one bent into a hairpin, the other more or less continuing
vertically.

psH;. So one bowl is bound to expand while the other bowl contracts. The
D, pitchforks break oppositely and reveal two orifices (as in the second row
of Color Plate 1) on opposite sides of the object. With illiVert you can fly
into those orifices and look around the interior of the model.

Perhaps it is appropriate here to explain why we did not say “the inside
of the model” at the end of the previous paragraph. A simplicial complex
embedded in 3-space is perceived as a model of something. If the facets are
small enough, their dihedrals are close enough to a straight angle, and they
are rendered with smooth shading,'* then we are tricked into seeing an object
composed of continuously bending surface patches. But we cannot be expec-
ted to see immediately that these patches are logically connected in such a
way as to admit a parametrization (even if hypothetical) by a sphere.

To orient ourselves let us begin at the end of the eversion, ¢ = —1, when
the model looks undeniably like a sphere, painted yellow-orange on one side
and purple-cyan on the other.!® The first part of the eversion is an isotopy
that results in a shape that is best described as two concentric spheres connec-
ted by a hyperbolic neck. With Apéry, we find the embryological metaphor
apt, whereby a spherical blastula invaginates to form the gastrula, third row
right of Color Plate 1. The ‘hole’ or stoma ultimately becomes the mouth
(neck) of the organism. At this stage, the embedded, non-convex sphere has
elastic bending energy approximately twice that of the round sphere. The
neck contributes little or no energy, as it is close to a catenoidal minimal
surface. The inside of the blastula has become the thin space between the
inner and outer sheets of the gastrula. Also, there is now an nterior and an
exterior in the colloquial sense, connected by the single orifice.

The embryological analogy eventually fails, at some time ¢ = —t7, when,
instead of forming an orifice at the other end of the intestinal tract, the inner
sphere penetrates the outer one forming a circle of double-points and a lens

14 We did not use the standard Gouraud smooth shading precisely to emphasize
the facets, and to aid binocular stereo vision.

15 The precise color within each range is determined by the angle between the
facet and the axis, making self-intersections easier to see.
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Fig. 4.3. A model for the birth of triple points in the double locus of an immer-
sed surface. As the water table drops on two partially submerged and intersecting
convex surface patches, twin triple points are born simultaneously.

shaped chamber, as in row 3 of Color Plate 1. This type of catastrophe in a
regular surface homotopy is called the birth of a double curve and is denoted
by Dy. It is here, at the caudal end of the model, that the polar isthmus D,
catastrophe will eventually occur, at halftime, to = 0.

A second Dy occurs far removed from the first, spatially and temporally
for the minimax eversion.'® The mouth of the gastrula, bottom right of Color
Plate 1, sheds its nearly circular symmetry for a 2-fold symmetry, in row 3 of
Color Plate 1. As diagonally opposite saddles move tailward the two umbilical
patches between the saddles turn towards the axis. The Do occurs as they
penetrate each other at ¢t = —tg and form a second circle of double-points.
From the outside, the model now looks like a cashew. The erstwhile ‘inside’ of
the sphere has become a toroidal space, and a second lens-shaped chamber is
formed at the head of the model. Now there are two orifices from the exterior
to the interior of the model, but note that both the exterior and the interior
are on the same side of the immersed surface.

There is one further catastrophe between the cashew and the halfway
model, occurring at t = —t5 = —t4 and shown in the second row of Color
Plate 1. The symmetric birth of ¢riple point pairs, denoted by T+, is easy
enough to describe locally. Consider a model, shown in Fig. 4.3, consisting of
two convex patches intersecting along a vertical double-curve, and crossing
the horizontal floor at two further U-shaped double-curves making two triple
points with the vertical curve. As the floor rises, the triple points die together
in a catastrophe denoted by T, leaving two separating double-curves. The
reverse of this homotopy creates the triple point pair at a T+,

16 Clearly, the two Dy catastrophes could have occurred at the same time, t¢ = t7,
or even in reverse order. Without symmetry constraints, they could occur in
many other places on the gastrula. This accounts for some of the variation in
the historical sphere eversions based on the Morin-Froissart halfway model.
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Fig. 4.4. The double locus on either side of the quadruple point is formed by the
planes of a tetrahedron passing simultaneously through the barycenter.

Fig. 4.5. The double locus of the halfway model drawn schematically as it might
be seen from the pole point. Note the quarter-turn symmetry before (left) and after
(right) the quadruple point (center).

We can now describe the evolution of the double locus, isolating it from
the model, in purely topological terms. Two initially disjoint (and unlinked)
circles, come to touch in two places forming two triple point pairs. In a
spatially quite complicated manner, the four triple points converge to the
quadruple point. The local model of the @ catastrophe is that of the four
planes of a tetrahedron moving orthogonally through its barycenter, Fig. 4.4.
From each vertex of the tetrahedron emanate 3 double lines that join pairwise
into 6 loops. Two triplets of these pass through a pitchfork bifurcation, and
the two continuing arches go through the externally visible isthmus at the
pole point.

In Fig. 4.5 we point to the pitchfork bifurcations just before the quadruple
point, and just after. All this happens close to ty = 0. At a more remote
time the four triple points die in pairs leaving two disjoint and unlinked
unknots, which disappear at the cashew and gastrula D5 events. These curves
do, however, twist about a great deal in space; this is best appreciated in
an animation. The death of triple point pairs can be imagined from this
schematic as follows. The NW edge of the tetrahedron in Fig. 4.5(left) is the
shortest of three arcs connecting two triple points. Slide it further to the NW,
and do the same to the SW portion. This leaves two embedded, unknotted,
and unlinked closed loops.

The reader is encouraged to compare Petit’s instructive illustrations for
a similar eversion in [28]. There, the four D, catastrophes corresponding to
our pitchfork bifurcations on the halfway model occur more remotely in time.
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Two-fold rotational symmetry requires that tg = t1 and ts = t3; but ty < ta,
as Petit has it, is not unreasonable.
Using the Apéry-Morin notations [1], the minimax eversion has signature

D1 Dy D1

DODO(T+T+)(D1 Q D

) (T~T7)D>Ds.

The grouping indicates simultaneous occurrence of more than one catastro-
phe. Time reversals of a Dy is denoted by a D according to the conventions
explained in the appendix to [1].

The motion of the double locus, D; in R?, can be considered the slices of a
surface D in R* given by a Morse function ¢ : R* — R. That way, the five D,
correspond to saddles, the two Dy to minima, and the two D5 to maxima of ¢,
for a surface of Euler characteristic —1. Thus the extruded double locus of the
minimax eversion is a Dyck’s surface, a torus-with-a-crosscap [9, p. 101]. This
is not the ‘simplest’ possible such double-locus extrusion, according to Apéry
and Morin. They construct [1] an eversion whose extruded double locus D
is a projective-plane. Their eversion requires additional Do and D- events,
however.

5. Virtual Environments and Supercomputing’95

We next describe, in the briefest terms, the actual experiment in distribu-
ted, parallel computing and its real-time, interactive presentation [13] in the
virtual reality media at the joint IEEE-ACM supercomputing conference. A
detailed and fully illustrated article on the geometrical graphics we used in
our project is in preparation.

The evolver was installed in several 16-processor SGI Power Challenges
at the National Center for Supercomputing Applications (NCSA) in Urbana,
Tlinois and at the Cornell Theory Center (CTC) in Ithaca, New York. These
were connected to the convention site in San Diego via any one of several
experimental, broad-band, but highly labile network connections. Fig. 5.1.
We had to be prepared to use whatever was available, at whatever temporal
latency. Accordingly, the remotely started evolver used & processors (on the
Power Challenge of our choice) to compute the successive stages (or topes)
of the homotopy, and piped them to the translator process. This shipped the
stream to San Diego using the Data Transfer Mechanism (DTM) developed
at the NCSA, on the available line. We found that the ATM line, a vBNS
connection designed to reach 155 Mbits/sec, in fact supplied data at only four
times the speed of a regular internet connection.'” Thus our latency-proof
design paid off.

17 This did not surprise us, because the ATM networks were designed to provide
high speed and high bandwidth, intended for live TV transmission.
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Fig. 5.1. Cartoon of the I-Way connecting computing and display sites at Su-
percomputing’95. This experimental network, for the real-time interaction of su-
percomputers and virtual reality displays, was provided by commercial telephone
companies.

This data flow was sent to the real-time, interactive CAVE application
(RTICA) illiVert.!® The receiver process of i1liVert moved each incoming
tope, asynchronously, into the shared memory of the SGI Onyx running the
CAVE.' The interactive process of i11iVert animated however many topes
were currently in memory. Using the temporal symmetry of the eversion on
either side of the halfway model, we could investigate the most interesting
portion of the eversion right from the start.

Under optimal conditions, it took 7 minutes to complete the calculation
and shipment of all 126 topes for the 251-stage eversion®® There were actually
two CAVEs prepared to communicate with each other transcontinentally, as
in Fig. 5.1. But the CAVE at ARPA headquarters in Washington, DC was
not available for our demonstrations.

The CAVE [8] automatic virtual environment, Fig. 5.2, uses 96Hz shutter
glasses and a 270° seamless stereo panorama to evoke a truly immersive 3-D
illusion. The six positional and directional parameters of the viewer’s head,
and those of the control device (called a wand) are monitored by a Ascen-
sion Flock of Birds magnetic tracker. The geometrically accurate (to a few
cm) perspective on each of three walls and the floor is produced at anima-
tion speeds varying from a threshold of 10 frames/sec, to a maximum 48fps.

18 T addition to the CAVE, there were two display variants using the same soft-
ware library. The large-screen I-WallT required eight RGB projectors and as
many Reality Engines in SGI Onyxes, and the single-projector ImmersaDesk”™
only one of each.

19 The shared memory architecture is appropriate, because each wall of the CAVE
is illuminated by separate processes running in parallel on the Onyx.

20 When we first started the experiments six months earlier, it had taken overnight.
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Fig. 5.2. The arrangement of the CAVE at the National Center for Supercomputing
Applications. One projector and two speakers are omitted for a better view.

Since each wall needs its own graphics pipeline,?t two SGI Onyx computers,
connected by Scramnet and HIPPI boards, drive the CAVE. A quadrapho-
nic sound system provides stereo location and spatially accurate attenuation
and reverberation using the Vanilla Sound Server (VSS). This is a real-time,
software based sound-synthesizer developed at the NCSA [4]. It generated a
sound field whose parameters were mapped to the geometrical parameters of
illiVert.
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