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v
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Table 1: Notation.

Varifold, representing a surface.

Time-varying varifold, representing a surface moving by its mean curva-
ture.

Dimension of the surface under consideration.

Dimension of the ambient space.

Ambient Euclidean space.

Radius of a sphere.

Time-varying radius of sphere.

Mean curvature vector of varifold V at point x, corresponding to the sum
of the sectional curvatures, without the usual 1/2 factor.

nonnegative reals, { € R : t > 0}.

Open k-dimensional ball, {x € R : |x —a| < r}.

Open n-dimensional ball, {x € R" : |x—a| < r}.

Closed k-dimensional ball, {x € R¥ : |x—a| < r}.

Closed n-dimensional ball, {x € R" : |x—a| < r}.

k-dimensional Lebesgue measure.

Volume of unit k-ball, L¥B(0, 1).

Hausdorff k-dimensional measure.

Set subtraction.

Upper derivative of f at .

Left upper derivative of f at t.

Right upper derivative of f att.

Besicovitch number in R”, §2.2.

Homothety by factor r, §2.3.

k-dimensional upper density of measure u at a, §2.4.

k-dimensional density of measure u at a, §2.4.

Grassmann manifold of k-dimensional subspaces of R”.

k-plane bundle of R”, R" x G(n, k).

Linear maps from R” to R”.

Norm on Hom(R",R"), ||A|| = sup{|A(x)| : x € R",|x| = 1}.
Transpose of matrix of Hom(R",R").

Identity element of Hom(R",R").

Inner product in Hom(R",R"), this is Tr(A * B).

Set of functions from space A to space B with continuous order m deriva-
tives.

Set of functions from space A to space B with continuous order m deriva-
tives and compact support.

Cylinder perpendicular to plane T with center a and radius r, {x € R" :
|T(x—a)| <r}.

Space of k-dimensional varifolds in R”, i.e. Radon measures on Gy (R"),
§2.6

Weight measure of varifold V, projection of V to measure on R”. §2.6
Fiber measure induced by varifold V. §2.6

Restriction of V to subset A C G(n,k). §2.6

Varifold V multiplied by function B(x,S). §2.6
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Chapter 1

Introduction

Surfaces that minimize area subject to various constraints have long been studied. Much of the
inspiration for these studies has come from physical systems involving surface tension: soap films,
soap bubbles, capillarity, biological cell structure, and others. So far, mathematical investigations
have been mostly confined to the equilibrium states of the systems mentioned, with some study
of the evolution of non-parametric hypersurfaces [LT]. This work studies in general dimensions a
dynamic system: surfaces of no inertial mass driven by surface tension and opposed by frictional
force proportional to velocity. The viewpoint is that of geometric measure theory.

The mean curvature vector h(V, x) of a surface V at a point x can be characterized as the vector
which, when multiplied by the surface tension, gives the net force due to surface tension at that
point. For example, if V is a k-sphere with radius R centered at the origin with unit magnitude
surface tension, then h(V,x) = —kx/|x|?. Note that the magnitude of the mean curvature is larger by
a factor of k than in many other definitions.

The mathematical object we wish to study may be loosely described as a family of surfaces
V; parameterized by time such that each point at each time is moved with a velocity equal to the
mean curvature vector of the surface at that point at that time. A physical system exhibiting this
behavior is the motion of grain boundaries in an annealing pure metal. Grain boundaries represent
excess energy, and there is effectively a surface tension. it is experimentally observed that these
grain boundaries move with a velocity proportional to their mean curvature. For a fuller discussion,
see Appendix A.

The question arises: what do we mean by a surface? We do not wish to restrict ourselves to
manifolds, firstly because a manifold may evolve singularities, and secondly because systems like
grain boundaries are most interesting when they are not manifolds. For surfaces we shall take a
certain class of Radon measures known as varifolds, which are defined in section 2.6. The space of
varifolds includes anything one would wish to call a surface and has nice compactness properties.

Since it is impossible to follow a measure pointwise, how are we to describe the motion of a
surface? We do it by describing how a measure behaves on test functions. Section 2.10 derives an
expression for the rate of change of the integral of a test fuction when the velocity of a surface is a
smooth vectorfield. Section 3.3 generalizes this expression to define when a varifold is moving by
its mean curvature, even when the mean curvature is far from a smooth vectorfield.

The surfaces with the simplest nontrivial motion are k-dimensional spheres. Let R(f) denote
the radius of a k-sphere at time ¢. The magnitude of the mean curvature is k/R(z), so dR(r)/dt =
—k/R(t). Thus

R(t) = (R(0)* — 2kt)'/%. (1.0.1)
The behavior of a k-sphere turns out to be characteristic of the behavior of any k-dimensional surface

in tne following manner: By 3.7, if a k-dimensional surface at time # = 0 is contained in the exterior
of a ball of radius R(0), then at later time  the surface is contained in a ball of radius (R(0)% — 2kz)'/2



with the same center. By 3.9, the analogous statement is true of a surface contained in the interior
of a ball. An immediate consequence of 3.7 is that a surface starting in a convex set always remains
in that convex set.

Section 3.4 establishes bounds on the motion of a surface moving by its mean curvature, and
these bounds are used in 3.10 to show that the motion is continuous except for instantaneous losses
of area.

Chapter 4 addresses the problem of the existence of a surface moving by its mean curvature with
a given initial surface. We consider the k-dimensional initial surfaces to be members of a class of
rectifiable varifolds with a positive lower bound on the k-dimensional densities. This class includes
all surfaces of interest. For such an initial surface, Chapter 4 gives an approximation procedure that
yields a one parameter family of varifolds that satisfies the definition of motion by mean curvature
given in 3.3 and are rectifiable at almost all times. If the initial surface has integer densities, which
all familiar surfaces do, then the constructed varifolds are also integral at almost all tines. These
properties are proven in 4.29.

If the initial surface were a smooth manifold, then one might get a solution for a short time by
the straightforward use of the theory of partial differential equations, as briefly discussed in 3.1. My
procedure will yield the same result in such a case, as noted in 4.15.

For a given initial surface, the subsequent motion may be naturally not unique, as illustrated in
C.4. Therefore my procedure does not strive for uniqueness.

Certain modifications may easily be made at one stage to model different types of behavior (see
Remark 2 of 4.9). None of these modifications affect the results of Chapter 4.

Chapter 5 proves that the mean curvature vector is almost everywhere perpendicular to an inte-
gral varifold whenever the notion of mean curvature vector is valid. This perpendicularity is easily
proved for class 2 manifolds in differential geometry, but under our very broad hypotheses, we will
have to delve deep into the microstructure of varifolds. This result is not directly concerned with
moving varifolds, but it is essential for chapter 6.

Chapter 6 shows that a unit density integral varifold moving by its mean curvature is an in-
finitely diffetentiable manifold almost everywhere, except perhaps when there is an instantaneous
loss of area. Unit density means that the density of the varifold is the same everywhere. Without
this hypothesis, not even minimal varifolds (those with zero mean curvature) are known to be reg-
ular. Section 6.2 describes an example illustrating the problems that arise with multiple densities.
Unfortunately, the existence construction of chapter 4 has not yet been made to yield unit density
varifolds. However, the regularity proof is totally independent of the source of a varifold moving by
its mean curvature, and would apply, for example, to the non-parametric hypersurfaces of [LT].

Appendix A discusses metal grain boundaries, as mentioned above. Appendix B discusses
smooth simple closed curves in the plane moving by their mean curvature. Appendix C discusses
1-dimensional surfaces in a plane that retain the same shape but change in size as they move by mean
curvature. There are computer plots of several such surfaces. Appendix D shows the necessity of
the hypothesis of positive lower bounds on densities in Chapter 4 by describing a rectifiable varifold
with densities approaching zero that should turn unrectifiable as it moves by its mean curvature.

As for generalizations of this work, everything would still be valid on smooth Riemannian man-
ifolds, when properly interpreted. Extension to integrands much different from the area integrand
would not be as easy, because Allard [AW2] has shown that essentially only the area integrand
satisfies monotonicity theorems, such as 4.17, which are vital to the methods herein.

I thank my advisor, Professor Frederick J. Almgren, Jr., for his guidance, for many inspiring
discussions, and especially for his never-ending optimism and encouragement. I am grateful to the
National Science Foundation for support.



Chapter 2

Preliminaries

2.1 General definitions

We follow the standard terminology of [FH]. Most of the definitions regarding varifolds come from
[AW1].

We denote by N the positive integers and by R the real numbers. Throughout this paper k and n
are fixed positive integers with k < n. Define

Rt = {teR:t>0},
(a,r) = {xeRF:|x—a| <1},
(a,r) = {xeR": |x—a| <r},
B“(a,r) = {xeR*: |x—a| <r},
(a,r) = {xeR": |x—a| <r}.

Frequently, we will treat R as a subspace of R”.
We will use [ dx to denote integration with respect to Lebesgue measure L" on R”. Set

a = L'B¥0,1).

We denote by H* Hausdorff k-dimensional measure on R”.

We will often use (f,g) to denote the value of a distribution f on an appropriate test function g,
especially when dealing with convolutions.

For y € C3(R", R¥) we define

DY) /w) i) £ 0,
0

(IDvl2/w)(x) = {0 ify(r) =

It can be shown that [Dy|? /y is bounded.
If F:R — R then we define for each ¢ € R the upper derivate of F at ¢ by

_ F(S)—F(t
DF (1) zlims;lp %
S

We shall also use the upper left and upper right derivates, denoted D~ and DT respectively.

10



2.2 The Besicovitch covering theorem

There is a positive integer B(n) with the following property: If A is a subset of R” and C is a family
of closed balls in such that each point of A is the center of a member of C, then there are disjoint
subfamilics C;, i = 1,...,B(n), of C such that

ACU{UC :i=1,...B(n)}.

For the proof, see [FH 2.8.14].

2.3 Homothety and translation

For each r € R we define the homothety u(r) : R" — R" by
g(r) (x) = rx.
For each a € RN we define the translation 7(a) : R” — R” by

T(a)(x) =x—a.

2.4 Densities and tangent cones

If u is a measure on R” then we define the k-dimensional upper density and density of u at a € R”
by

0 (1) = limsup /art,
r—0+t

0 (u,a) = rli%1+yB(a7r)/grk.

The approximate tangent cone of yata € R" is

Tan*(u,a) = N{C : C is a cone in R” with vertex at @ and 8 (u[R" — C,a) = 0}

2.5 The Grassmann manifold, homomorphisms, and cylinders

Let G(n,k) denote the space of k-dimensional subspaces of R”, which can also be thought of as the
set of unit simple k-vectors. Suppose S € G(n,k). We will also use S to denote orthogonal projection
of R" onto S.

Let G¢(R") = R" x G(n,k).

For A, B € Hom(R",R"), we define a scalar product A - B by

A-B = trace(AoB).
The identity element of Hom(R",R") will be denoted by L. If ¢cC?(R",R) or gcC! (R",R"),
then we will sometimes treat Do(x) as an element of R” and D?¢(x) or Dg(x) as elements of

Hom(R",R"). The tensor product v®@ w of two vectors v,w € R" is also in Hom(R",R"). The
norm || || on Hom(R",R") is

Al = sup{|A(x)[ : x € R", |x| = 1}.



We will frequently use the following facts about S,7 € G(n,k) and A, g,a,v,w as above:

vaw-S = SW)-w=v-Sw) =S1) S(w),
D’(x)(v,w) = v@w-D*(x),

I.S =k O0<k—S-T<k|S—T|?
A-S| < K||A]],
TS W) < [IS—T]| |w],and
IT(SHT W) < [IS=TIPwl.

For T € G(n,k),a € R",and 0 < r < oo, we define the cylinder

C(T,a,r)={xeR": |T(x—a)| <r}.

2.6 Varifolds

We say V is a k-dimensional varifold in R" if and only if V is a Radon measure on G¢(R"). Let
Vi (R") be the weakly topologized space of k-dimensional varifolds in R”. Whenever V € V;(R"),
we define the weight of V to be the Radon measure ||V|| on R” given by

IVIIA = V((x,5) € Gi(R") : x € A)

whenever A is a Borel subset of R”. We let V() be the ||V|| measurable function with values in the
Radon measures on G(n,k) such that for any y € Co(Gx(R"),R)

vew) = [ [wxs)avOsdix

If B € G¢(R") — R is alocally V summable function, then yL_ B € V;(R") is defined by

(VLBIA = [ BxS)dv (x.5).

The same notation will be used with the obvious meaning even if B is only defined on R”. Similarly,
if A is a ||V|| measurable subset of R", we will use VL_A to abbreviate the restriction VL (A x
G(n,k)), and [, B(x,S)dV (x,S) to abbreviate

| BS)av(s)

AxG(n,k)

By the well-known compactness properties of Radon measures, the set of varifolda
{V e Vi(R") : [[V[|B(O,R;) < Bi,i € N}

is compact if B; < o for all i and lim;_,. R; = oo.

2.7 Rectifiable and integral varifolds

Whenever E is an H{* measurable subset of R” which meets every compact subset of R” in an (3, k)
rectifiable subset [FH 3.2.14], there is a naturally associated varifold v(E) € V;(R") defined by

V(E)A = H"{x : (x, Tan*(HL E,x)) € A}

whenever A C Gi(R").



We say a varifold V € V(R") is a k-dimensional rectifiable varifold if there are positive real
numbers ¢y, ¢, . .. and H* measurable subsets Ey, E», ... of R” which meet every compact subset of
R” in an (H*, k) rectifiable subset such that

V= Z CiV(E,').
i=1

If the ¢; may be taken to be positive integers, then we say V is a k-dimensional integral varifold. We
let
RV, (R") and IV, (R")

be the spaces of k-dimensional rectifiable and integral varifolds respectively.

2.8 Mapping of varifolds

Following [AF 1.1(13)], suppose f : R” — R" is a proper mapping of class 1 and V € V;(R"). Then
the varifold f3V € V(R") induced by f is characterized by the condition

fVA:/' A (DF(x) o T)|dV (x, T
UWVIA = | errremrompen e PSR TV T)

whenever A is a Borel subset of G;(R").
Suppose f : R" — R" is a proper Lipchitz map and V € RV;(R"). Then the induced varifold
f#V € RV (R") is characterized by

(fv)a= [ | At (@pDf ()0 T)|QV (x.T)
{(T):(f(x),apDf (x)(T)) €A}

whenever A is a Borel subset of G (IR"); here the approximate differential is
apDf(x) = (||V[|,k)apDf (x) : Tani([|V],x) — R",
see [FH 3.2.16, 3.2.19, 3.2.20]. The function f : RV;(R") — RV (IR") is not in general continuous.
One observes fi(IVi(R")) C IVi(R").
2.9 First variation
Suppose € > 0, i : (—e,€) x R" — R”, is smooth, & (x) = h(t,x) for (¢,x) € (—¢,&) x R",

ho(x) = x, and the set
{x: h(x) # x for some t € (—¢,€)}

has compact closure in an open subset G of R”. Let
g = (9h/a1)(0.-) € CH(R",R").
Then for V € V;(R") such that ||V||G < o we have by [AW1 4.1]

(d/d1)||haV||G |i—o = '/' Dg(x) - SdV (x, 5).

This motivates for any V € V(IR") the definition of a linear function

8V : CH(R",R") — R,



called the first variation of V by
5V (g) = / Dg(x)-SdV (x,S).

If 8V = 0, then V is called stationary. We define the total variation ||8V || to be the largest Borel
regular measure on R” determined by

|18V |G = sup{8V(g) : g € CH(R",R"),sptg C Gand |g| < 1}.

whenever G is an open subset of R".
If ||8V|| is a Radon measure, then there is a ||8V || measurable function n(V;-) with values in
S"~! such that

&) = [ ) Vi dIviix

forg € C(l) (R™,R"). The theory of symmetrical derivation (see [FH 2.8.18, 2.9]) implies the follow-

ing: The formula
[1BVII/IIVIIGe) = Tim|8V|IB(x, r)/[[V|IB(ax, r)

defines a real-valued ||V || measurable function on R” such that if
18V1lsing = [IBVIILAx < [[8VI[/[[V]|(x) = oo}

then
|\5V|\B=/BHSVH/IIVII(X)dHVHH|\5V|\sing3

whenever B is a Borel subset of R”. The formula
h(V,x) = —[[3V||/[|[V]|(x)n(V;x)

defines a ||V || measurable function with values in R” such that

=~ [ 800 BV |V I+ [ gx) Vi)V g

whenever g is a Borel measurable function with values in R” such that [ |g(x)|d||dV||x < eo. If
[|8V] |sing = 0, then we call h(V,-) the generalized mean curvature vector of V.

The preceding mathematics has a physical interpretation. A surface naturally corresponds to a
varifold. When a surface has a surface tension, the area is proportional to the total energy. If g is the
velocity of the surface, then the rate of change of energy (the power) is 8V (g). Since power is the
integral of the force times the velocity over the surface, clearly h(V,x) is proportional to the force
due to the surface tension. Singular first variation, ||dV| |sing’ occurs at edges, sharp corners, and
the like.

2.10 First variation with respect to other integrands

Suppose ¢ € C%(R”,R) and V, G, r, h, and g are as in 2.9. Then by [AW1 4.9(1)]
(@ /) 1V | @)li-0 = [ Dgle)-Sp(x)aV (x.5) + [ gx) DOV .
We are led to define the first variation 8(V, ) of V with respect to ¢ by setting

8(V,0)(g /Dg . S0(x)dV (x,5) +/g -DO(x)d||V]|x. (2.10.1)



whenever g € C}(R",R").
Proposition: If V € Vi(R"), ¢ € C!(R",R"), and g € C{(R",R"), then

8V (x.0)(¢) = 3V (p¢) — [ SDOL) - e(x) AV (x.5) + [ Do) g()alVIfe. (2102
Proof: From eq. (2.10.1)

5(V,0)

[Pt 50(x)aV (x.5) + [ Do) g(x)dlIV
— D(0g)(¥)-5~ (D) ©8(x)) SV (x,8) + [ Do(x)-g(x) ||V}
— = 8V(6g)~ [ S(DO))-g(x)dV (x.5) + [ D(x) - g(x) IVl

Note that we may also write eq. (2.10.2) as

3(V.0)(g) = 8V (¢g) + ( / SH(DO(x)) - g(x)dV (x,5) (2.10.3)

or if ||8V]] is a Radon measure and HBV”sing = 0, then
3(V.0)(8) = [ (V.- g0 dIVIix+ [$'DOW) g@dv(rs). @104

2.11 Compactness theorem for rectifiable varifolds

Theorem [AW1 5.6]: Suppose Gi,Ga,... are open subsets of R", R" = U |G;, M{,M>,... are
nonnegative real numbers, and 0 is a positive real valued continuous function on R". The set of

those varifolds V. € RV (R") for which
(IVI+IVING <M, i=12,...

and
ok ([|V|],x) > 8(x) for ||V|| almost all x € R"

is compact. O

2.12 Compactness theorem for integral varifolds

Theorem [AW1 6.4]: Suppose Gi,Ga,... are open subsets of R", R" = U G;, M{,M>,... are
nonnegative real numbers, and 0 is a positive real valued continuous function on R". The set of
those varifolds V € IV (R") for which

(VII+IVIN G < M;,  i=1,2,...

and
o ([|V||,x) > () for ||V|| almost all x € R"

is compact. O



Chapter 3

Motion by mean curvature

3.1 Manifold difficulties

On first considering the problem of a surface moving by its mean curvature, one is likely to try to
apply results from the theory of partial differential equations. In what is called the parametric ap-
proach, the moving surface is viewed as a family of maps F, : R¥ — R”. From differential geometry
[SM, p. 193], the mean curvature vector A (x) at F;(x) is the invariant Laplacian of the position
vector:

h(x) = AF(x). (3.1.1)

In coordinates, this is

he(X)m = i @Bx,- (g(x)gij(x) a%ijj)m) , m=1,...k, (3.1.2)

where (g'/) is the inverse matrix of the metric (g;;),

OF, (x), 3 (x),
gijx Z FI

and g2 = | det(g;;)| . Thus, the problem becomes to solve
oF;(x)/ot = AF;(x). (3.1.3)

This looks like a vector-valued heat equation, except that the operator A depends on F;.

Equation (3.1.3) is parabolic, just as the minimal surface equation AF (x) = 0 is well known to
be elliptic. The theory of systems of quasilinear parabolic partial differential equations applies. For
example, if Fp is nice enough, then [ES II1.4] guarantees the existence of F; for some short time
interval.

The non-parametric approach is to represent a moving surface as the graph of maps f; : R¥ —
R"*. Here, the equation of motion becomes

of; (x)/ot = Zg”az x)/9x;0x;, (3.1.4)

i,j=1

where the metric arises from F; = I® f;. This equation is also nicely parabolic, and it is nearly
the heat equation when f; is nearly constant. The analogy to heat will be a guiding principle in the
regularity theory of chapter 6. There we will also use the fact that solutions to (3.1.4) are infinitely
differentiable [ES I11.1.5].

16



There are many objections to these two approaches. The principal one is the topological re-
striction placed on surfaces. Real grain boundaries are full of singularities, and the topological type
continually changes. Even if the initial surface is representable parametrically, the existence of a so-
lution is guaranteed only for a short time, as the surface may develop knots and other singularities.
The non-parametric problem may have “generalized solutions” [LT] existing forever but puts even
more drastic restrictions on the type of surface.

The varifold approach places no restrictions on the nature of a surface. Anything with area and
tangent planes is a varifold. Of course, that means (3.1.3) or (3.1.4) no longer apply. Therefore,
the first task of this chapter is to provide a definition of motion by mean curvature for varifolds that
can always be applied. The starting point for this definition is the first variation with respect to an
integrand, discussed in 2.10. We see from 2.10 that if a varifold V; represents a smooth manifold,
then (3.1.3) is equivalent to requiring

(d/dr)[|Vi[[(9) = 8(Vi, ) (h(V:, ) (3.1.5)

for smooth test functions ¢. We will generalize (3.1.5) to all V, but first we must define
S(V,0)(h(V,-)) forall V € Vi (R").

3.2 Definition of 3(V,0)(h(V,-))

Suppose V € Vi (R") and ¢ € C}(R",R"). If ||3V|| is not a Radon measure, if HSVHSingI_q) =0or
if
[ 0o dlv i = o G21)
then we will set
3(V.X)(h(V,")) = —eo. (3.2.2)
Otherwise, in analogy with eq. (2.10.4), set

8(V.0)(h(V.)) =~ [ WV PodV I+ [ S (Do) h(V.)av(xs).  (323)

Remarks: To enable us to write single formulas to cover all cases, we will make the convention that

/Ih(V,x)\2¢(x)d||V||x = oo

also in case ||8V||L ¢ is not a Radon measure or HBV”sing # 0. This makes (3.2.2) formally con-
sistent with (3.2.3).

Since h(V,-) may not be bounded, even on compact sets, it is not clear a priori that the rate of
change of ||V;]|(0) should be given by 8(V,9)(h(V,-)). However, we shall see in 3.4 that unbounded
mean curvature does not lead to unbounded rates of growth on test functions.

3.3 Varifold moving by its mean curvature

We shall say that a one parameter family of varifolds V € Vi (R"),t € R, is a varifold moving by its
mean curvature if and only if

D|[Vi[[(9) < 8(V;,0)(h(V,-)) (3.3.1)

for every ¢ € C}(R",R") and for all# € RT .

Remarks: The notion of derivate is used because ||V;||(¢) may not always be differentiable,
or even continuous (see Appendix C.5), and the upper derivate gives a stronger condition than any
other derivate. We will see in 3.10(b) that (3.3.1) implies ||V;||(d) is differentiable for almost all



t € R, but it is not clear whether we should require equality in (3.3.1) for almost every . Appendix
C.4 shows an example in which Vj has zero mean curvature, yet we want D||V;||(0)];—o = —oo if
0(0) > 0. It is conceivable that there is some example in which frequent behavior of this sort leads
to

D|[V;1(9) < 8(V:,9)(h(V:,"))

for all t € R™. Condition (3.3.1) is also the condition that naturally arises out of the construction of
Chapter 4, as remarked in 4.18.

This definition does not imply anything about the uniqueness of a varifold moving by its mean
curvature for a given initial varifold. Appendix C.4 gives one example of non-uniqueness. For
general varifolds, (3.2.1) cannot ccmpletely characterize the motion because it says nothing about

the rate of change of the Grassmann manifold component V,(') of V; (see 2.6). It would obviously be
nice to use first variation with respect to a test function defined on G¢(R"), but such a first variation
could not be converted into a form like (2.10.1) which could be generalized from smooth vectorfields
g to mean curvature h(V,x) as in (3.2.3). However, for rectifiahle varifolds ||V || does determine V,
and this covers almost all interesting cases.

This chapter henceforth will deal only with consequences of (3.3.1). Existence of V; for certain
Vo will be shown in Chapter 4.

3.4 Upper bound on motion

Proposition: If V € Vi(R") and ¢ € C*(R",R") then

5(V,0)(h(V,-))

IN

1/2
- [ mRaacli | [ v Pecodlvix|  IvIIe/e)
< [IVII(IDo*/9).
Proof: If §(V,¢)(h(V,.)) = —eo then we are done. Otherwise, by (3.2.3)

A

8(V.0)(h(V,)) = = [ Ih(V.x)Pod|[Vi[x+ [ $-(Do()-h(V.x)dV (x.5)
~ [ IV 0Pe)dVie+ [ DoC) (V. dl V],

IN

from which the conclusions follow by applying the Schwarz inequality to the second term on the
right hand side and finding the maximum value of the resulting expression. O

Remark: This shows 8(V,¢)(h(V,-)) — —coas [ [h(V,x)[>¢(x)d||V||x — oo for a bounded value
of ||V||(|D0|?/4), justifying definition (3.2.2).

3.5 Time varying test functions

Proposition: IfV, is a varifold moving by its mean curvature, 0 < r < s < oo, and
v € Ci([r,s] x R",R"), then

DFVill(w(r, ) < 8(Vi,w(t, ) (h(V,, )+ [[Vi| (Qw(z,-) /r)

fort €t,s) .
Proof: Let y € C3(R",R") be such that y(x) > 1 if x € spty(z,-) for any t € [r,s].



Suppose ¢ € [r,s). It follows from (3.3.1) and 3.4 that there are M < o and & > 0 such that
[|Vul|(¢) < M fort < u < ¢+ 8. We may write

DV —1][(y(t,-)) = lhftfgp [[Viad|(w(t +At, ) — |[Vi] | (w(z, )] /At
limsup [ |[Viarl [(w(t, ) — Vil (w(z,))] /At
At]0

+limsup |[V; || (Qy(t,-)/or)
At]0

IN

At
+limsup(1 /A1) / / QW (7 +0,x) /3 — d(1,x) /AdOd| Vi ay .
At]0 0

By the definition of motion by mean curvature,

liIAntil)lpH|Vt+At||(W(ta')) = |[Val[Cw(z,-))] /At < 8(Vi, (2, ) (h(V,, ).

By approximating oy (¢, -)/or with class 2 test functions, we see from 3.4 that

linglp\IVz+ArH(a‘P(L')/3[) < [[Vill(Qw(z,-) /or).
t
Finally, by the continuity of dy/dt, compactness, and the boundedness of ||Vi1a,||(¥) for At < §,

At
timsup(1/A) [ [ 0w(r+6.)/0r — w(t,)/]dOd Ve
At]0 0

< limsup [M sup{|oy(t +0,x)/dt —oy(t,x)/0t| : x € R",0 < 0 < At}]
At]0
= 0.

Remark: The proposition is also true for D™, but 3.6 is needed first to provide an upper bound for
[|Visar|| (W) for Az < 0. However, D™ will be sufficient for all our needs.

3.6 Barrier functions

A class 2 function  : RT x R” — R™ will be called a barrier function if there exist
¢ € C2(R,R") and @ € R" such that

w(t,x) = 0(|x —al* +2k)
for all (,x) € Rt x R" and
(do(r) /dr)* < 49(r)d*y(r) /dr*
forall r € R.
Theorem: IfV; is a varifold moving by its mean curvature and \ is a barrier function with

compact support, then
DF|[Vi[[(w(z,-)) <0

fort € RT.
Proof: Letz € RT. If §(V;,y(z,-))(h(V;,-)) = —oo, then we are done. Otherwise, letting V =V,
we may rewrite (3.2.3) as

8(V,w(z,-))(h(V,x)) = /*lh(V,X)lzllf(t,X)*h(V,X)'S(Dx‘lf(M))dV(x,S)

+ / h(V,x) - Doy (t,x)d||V]|x. (3.6.1)



Completing the square in the first integral, noting that Dy(#,x) = 0 when y(#,x) = 0, and using

[ BV) Doyl dIVx = 8DV (1)

= 7/D2\|I(t,x) -§dV(x,S)

gives

3(V,y(r,-))(h(V,x)) < / —[h(V,0)w(t, %) + (1/2)S(Daw(t,x) (e, x) /2
{(r8):w(r,0)>0}
+(1/4)|S(Dwy(,2)) [ /w(t,x) AV (x,S)
— / DAy(z,x) - SV (x,S). (3.6.2)

Since W is a barrier function, we have for appropriate ¢ : R — R™ (assuming a = 0 without loss of
generality)

w(t,x) = o(|x|> + 2ke), (3.6.3)

oy (t,x) /ot = 2k¢' (|x|* + 2kz), (3.6.4)

Dy(1,x) = 20/ (|x|? + 2kt)x, and (3.6.5)
D2y(r,x) = 40" (|x|? + 2kt)x @ x + 20 (|x|* 4 2ke) L. (3.6.6)

Hence, dropping the negative square from (2) and using (3), (5), and (6), we get

3(V,y(r,-))(h(V,)) < / [SCo) 20 (e[ +2k0) 2 /9| + 241)
{(r8):w(r,0)>0}
—41S(x)|20" (|x|* 4 2kt ) — 2k¢)' (|x|* 4 2kz) dV (x, S).

Since a barrier function is defined so that [y/|? /y < 4y, we have by (4)
3(V,w(z,-)h(V,)) < /*2k¢'(\x\2 +2kt) dV (x,S)
< —[VII(ow(z,-)/or).

The theorem now follows from 3.5. ]

3.7 Sphere barrier to external varifolds
Theorem: If V, is a varifold moving by its mean curvature, R > 0, and ||Vy||U(0,R) = 0, then
VAU, (R? — 2k1)'/2) = 0

for 0 <t<R?/2k.
Proof: Define ¢ : R — R by
R?—r)* for r < R?,
oy =3 =7 :
0 forr > R”.
Since ¢/(r)? < 40(r)¢" (r) for all r € R, we can define a barrier function y(z,x) = ¢(|x|*> +2kz). By

3.6,
DTV |(w(,-)) <0



for each t € R*. Since |[Vp||(w(0,-)) = 0 by hypothesis, we have ||V;||U(0, (R? — 2kt)'/?) = 0 and
thus
IV/I[U(0, (R* —2k1)'/2) = 0

for0 < t < R*/2k. O
Remark: Obviously, by time and space translation invariance, the theorem remains true for
initial times other than # = 0 and centers other than the origin.

3.8 Convex set barriers

Theorem: IfV; is a varifold moving by its mean curvature, K is a closed convex subset of R", and
spt||Vo|| € K then spt||V;|| € K for allt > 0.
Proof: Suppose ||V;||(R" —K) > 0 for some ¢ > 0. Then one could find a ball U(a,r) C R" —K
such that ||V;||U(a,r) > 0 and
U(a, (r? +2kt)'/?) C K.

But by hypothesis
[IVollU(a, (r* +2k1)'/2) = 0,

so by 3.7 we have ||V;||U(a,r) = 0, which is a contradiction to ||V;|[U(a,r) > 0. O

3.9 Sphere barrier to internal varifolds
Theorem: If V, is a varifold moving by its mean curvature, R > 0, and spt||Vy|| C B(0,R), then
st [Vil| < B0, (R® — 241)"/2

for 0 <t<R*/2k.
Proof: Let ¢ : R — R be the barrier functin generated by

orr 2
q)(r):{(o f < R%,

r—R*)4 for r > R2.

By 3.8, spt||V;|| € B(0,R) for all ¢ > 0, so the support of W can be made compact for r < R?/k
without affecting its properties with respect to V;. By hypothesis we have ||Vy||(y(0,-)) = 0, and by
3.6 we have

DF|[Vill(w(r,) <0

for t < R*/k. Hence |[Vo||(w(0,-)) = 0 for t < R?/k, and the conclusion follows because
y(t,x) > 0 for all x for all # > R?/2k. O

3.10 Continuity properties of ||V;||

Theorem: Suppose V is a varifold moving by its mean curvature and € C(Z)(R”,R”). Then
a. Timgg, [IVil | (w) = [1Vil|(w) = T [[Vs] (W) for allt € R,
b. ||V;||(w) is a continuous and differentiable function of t at almost allt € R,

c. ||V;|| is a continuous function of t at almost allt € R*.



Proof: Suppose T > 0. By 2.1, |Dy|/y is bounded with compact support, and therefore we
may construct a barrier function y : [0, 7] x R” — R™ such that y has compact support and

IDY[*/y < y(t,-)
for eacht € [0,T]. By (3.3.1), 3.4, and 3.6 we have

D[[V[[(w) < 8(Vi,w)(h(V;,"))
< [[Vll(IDY[*/w)
< |vll(w(,-))

< Vol [(w(0,-)) < e

Conclusions (a) and (b) follow from the uniform boundedness of the upper derivate of ||V;||(y) in
[0,T] and the arbitrariness of 7.

Conclusion (c) follows since the space of test functions Co(IR”,R™") has a countable dense subset
from C3(R",R™"). O



Chapter 4

Existence of varifolds moving by
their mean curvature

In this chapter we construct for a certain type of initial varifold Vj a one parameter family of varifolds
V; defined for all ¢+ € R™ and satisfying the necessary conditton for motion by mean curvature given
in 3.3:

D[[Vi[[(w) < 8(Vi,w)(h(V;,-))

for any y € C(l)(]R”,RJ’) and for all t € RT. As 4.15 shows, in case Vj is a smooth manifold, the
construction given here agrees with the more straightforward mapping approach described in 3.1, as
long as the latter works. The key properties of the present construction are proven in the last section
of this chapter.

4.1 Definitions

We wish to include noncompact surfaces in our treatment. Therefore, to keep integrals finite,
we arbitrarily choose a weighting function Q € C3(R",R") satisfying the conditions [DQ(x)| <
Q(x) and ||D?Q(x)|| < Q(x) for all x € R". Note that Q is never zero. Define the Q-norm on
C(Gk(Rn)vR) by

IWlla = sup{[w(x,9)[/Q(x) : (x,S5) € G(R")}

and define the normed linear space
QC(Gx(R")) = {y € C(Gx(R"),R) : [[ylla < =}.
Then the set of positive continuous linear functionals on QC(G(R")) is
QV = {V € Vi(R") - [[V[|(Q) < eo}.

‘We shall use
QlimV, =V

m-—oo

to denote convergence in the Q topology. Note that Qlim,,_. V,;, = V implies lim,,_ V;; =V in
the varifold topology defined in 2.3. Since QC(Gy(IR")) is separable if M < oo then

{veQv:|V[[(Q) <M}

is compact.



We define

OR = QVNRV,(R"),
QI = QVNIV,(R")

and we define the set of initial varifolds Q to consist of all V € QR such that

0%(||V|[,x) > 1 for ||V|| almost all x € R" and (4.1.1)
spt||V|| is H* locally finite. (4.1.2)

Condition (4.1.2) is not an unreasonable restriction. Indeed, the second half of the proof of 6.13
shows that if V; a varifold moving by its mean curvature that satisfies (4.1.1) then the instantaneous
mass loss at 7 is proportional to the 3% measure of the set of points x € spt||V;|| with 8%(||V;||,x) = 0.
Thus V; would satisfy (4.1.2) for all # > 0. We require (4.1.2) to hold for Vj because this hypothesis
makes 4.16 much simpler.

It follows from (4.1.1) and (4.1.2) that V € Q is of the form

V=v(S)LP

where S is a closed countably (H* k) rectifiable subset of R” and B : G4 (R") — R* is a locally
v(S) summable function with values greater than or equal to 1 v(S) almost everywhere. If V is also
integral, then [ has integral values.

It follows from [AF 1.1(13)] and the properties of Q that if f : R” — R”" is a Lipschitz map with
| f(x) — x| bounded, then the induced mapping fi preserves QR, QI, and Q.

If g € C'(R*,R") and sup{||Dg(x)||/Q(x) : x € R"} < o, then we may still define for V € QV

3V (g) / Dg(x)-SdV (x,S)

[0V g dviie  (when|[3V]lging = O

and have Qlim,,_... V;, = V imply lim,,, ... 8V;,(g) = 8V (g). If y € C(R",R") and
sup{|y(x)|/Q(x) : x € R"} < oo, then we may define 3(V,y)(h(V,-)) as in 3.2.

The choice of the weighting function Q enters into the actual construction in 4.9, so for a given
initial V the later V; may depend on Q. However, there are many other places arbitrary choices
are made in this construction, and the solution V; may not be unique, as noted in 3.3. Since we are
concerned with existence here, nonuniqueness does not bother us.

Some sets of test functions used in this chapter will, be: for each i € N,

Ai = {y € CR"R") : y(x) < Qx), Dy(x)| < iy(x),

5 4.1.3)
and |[D y(x)|| < iy(x) for all x € R"}.
Some sets of test vectorfields will be: for each i € N,
B = {g € CAR"R"): |g(x)] < Q). |IDg)]] < i) e

and [|D?g(x)|| < iQ(x) for all x € R"}.

4.2 Estimates on growth of test functions

Proposition: Ifi € N, ¢ € A;, and g € B;, then for all x,y € R"
(D) 0(y) < ¢(x)exp(ilx — ),



(i) [0(y) = 0(x) =DP(x) - (v —x)| < i~ (exp(ily —x|) = 1) — |y — [0 (x),
(iii) [DO(y) —Do(x)| < [exp(ily —x[) — 1]o(x),

() |g(y) = g(x)| < ilexp(ly —x[) = 1]Q(x),

(v) ||Dg(y) —Dg(x)[| < ifexp(|ly —x|) — 1]Q(x).

Proof: These properties are consequences of the definitions of A; and B;. O
4.3 The smoothed mean curvature
In approximating motion by mean curvature, we shall need smooth approximations of the mean

curvature defined for any initial varifold.
For each 0 < € < 1/2 define &, : R" — R" by

@, = B(e)e "exp[—x?/(e* +&*|x|)], 4.3.1)
where B(¢€) is defined so that
/ De(x)dx = 1. (43.2)
Note that for x,y € R" we have
Pe(x—y) < P(e)e " exp(—|x]), (4.3.3)
DD, (x)| < & *®¢(x), and (4.3.4)
IID2®e (x)|| < & 3de(x). (4.3.5)

Hence for V € Q we may define convolutions ®g x V, @g x ||[V||, and Pg x V. The last two of these
can also be viewed as smooth functions on R” defined by

Qe+ (VI|(x) = [ @ely—)d|[V]lyand (436
De x5V (x) = / S(D®s(x—y))dV (3, 5). 4.3.7)
Eq. (4.3.7) is true because for g € C}(R",R"),

/6138*5V(x)~g(x)dx — 5V (®exg)

/ D(®, +g)- S dV (x,S)
- /(D@e)*g‘SdV(x,S)
= //bea(y—X)@g(y) -SdydV(x,S)
= [80)- [ SDPely—2)) 4V (x.5) .
Clearly @ * ||V|| = ||®e * V||, and Pg % 8V = §(Pg x V) because

(e #8V)(g) = OV(Perg)
_ /D((I)s*g)-SdV(x,S)

_ /((I)e*Dg)-SdV(x,S)
= 3(Pe*V)(g)-



From (5), (6) and (7) we get

| @e + 8V (x)|/Pe x [[V][(x)

IN

JDocix-ialvly / [ @x-naiy
< g4 (4.3.8)
Thus we may define the smoothed mean curvature of V, denoted h¢(V), to be the vectorfield
he(V) = =g % (P % OV /D x ||V ]]). (4.3.9)

When V is unambiguous, we shall write A for i (V) and he(x) for he(V)(x). Proposition 4.8 shows
that /¢ is in fact an approximation to the mean curvature.
It can be shown in the standard way that Qlim,, . V,, = V and lim,;,_,» €, = 0 imply

Q lim @, +V,, = V. (4.3.10)

m—oo

4.4 The smoothness of /.
Proposition: IfV € Q and0 < € < 1/2, then for all x € R" we have
() |he(x)| < €74,
(ii) ||Dhe(x)|| < €%, and
(iii) ||D?he(x)|| < €712,
Proof: From (4.3.9), (8), (2), (4), and (5) we get

he| < @ex|De xSV /Dex||V]|]| < Dexe™ < 74,

|ID7ze |

IN

D®g| x| De OV /D¢ # | |V]|| < 8_8, and

1D e

IN

|[D2®e||  |De %8V /D x| |V]|| < &2
O
Because of these estimates, we may use (2.10.1-2.10.3) to define 8(V,$)(he(V)) for ¢ € A,.
4.5 Some constants

Define 0 < ¢; < 1/10such thatifi € N, € < c]i’l,and(p € Ajor ¢ = 1, then for all j < i we have

Dk < 20, (4.5.1)
(e (M = 1)Pe(x)) 0 < njo, 45.2)

(e 2(eM —1)2®e(x)) %0 < nj%0, (4.5.3)

(e (M —1)2DDe(x)) x0 < 1?20, (4.5.4)

(6727 2(e/M — 1 — j|x|)?|DDe (x)|> /Pe (x)) 0 < n’j%¢, and (4.5.5)
(x| +3€%[x)* + (2e* + e 2) x> + 4[x[*)*DPe(x)) x0 < ¢ (4.5.6)

Also define
c2(i,€) = sup{Ge x0(x)/0(x) : x e R", ¢ € A} 4.5.7)



where )
o for 0 < |x| < &!/?
Gelx) = {DCI:'s(x)| for x| > €!/2.
We have
Gex0()/00) = [ 0! IDBelyDl0()dy

—y|>e!/2
Since, from (4.3.1),
[DPe (x)] < 26 2x]De(x)
and, by 4.2(i),
0(y) < ¢(x)exp(ily—x]),
we have, using (4.3.1),

ri0) < [, 26 WIBe)e " exp(—Ixf/ (€ + ) i)
X|>€

Thus for any p € R, in particular for p < 0,

limePey(i,e) = 0.
e—0
Lemma: IfV € Q,i € N, ¢ € A; and0 < & < c;i~! then

(0, P+ [[VI[) = (0, [[VI[)] < enil[V]|(0)

Proof:

[0, @e IV~ (0. V)] '//¢<y>c1>g<y—x)dy—¢<x>d||vnx

[ [ 00 ep@tr-avavis
| [ exptily=x) = ot)@ely =0y dy d||v]1x

[ [ texplity =x)) = Dely —x)dy o) IV
eni|VIi(0)  (by (452).

IN

IN

IN

4.6 Some estimates on /¢
Proposition: If V € Q,i € N, and0 < &€ < ¢i~' then for any g € B;
) ‘/hg d||V||x—|—/<I>8*6V() x)dx‘

< nig(Q, [P+ VI /e x |IVI) 2V I|(Q)'/2,

(ii) ‘/Sl ) - he(x)dV (x, ) +//sL )d(De + V) S D 5 8V (x) d

< nig(Q, [P+ 8V|? /e x ||VI])/?VII(Q)'/?, and

(4.5.8)

(4.5.9)

(4.5.10)

(by 4.3(1))

(iii) if ¢ € A; and g = D¢ then one may replace Q by ¢ in the right hand sides of (i) and (ii).



Proof: It follows from the definition of % in (4.3.9) that

[ o) g0 Vi

(&lIV], =D * (D + 8V /De [V []))
—(De x (g|[V]]), De OV /D x [|[V]]),
and we can write

/CIDS*SV(x) g(x)dx = (gDe * ||V, De # OV /®e x| |V]]).

Therefore

|/hs (VI [ eV ()-g0)ds ]s<|<1>s*<g||v|>—gd>s||V||,|d>s*|V|>. 46.0)

Now for each x € R", using 4.2 (iv) and Schwarz’ inequality,

| e (8]|V[]) (x)—8 (x) De ||V | (x >|2
2

= [t - et @ -paiviy

2
<|[iexp(y—a) - 10w @6 -alvily

< 207 [ (exp(r—y1) = 12 @ely=0)d|V[ly [ @ely=0)d|IV]ly
— 2Q(x)*(exp(-) — 1)*®e(-)) * ||V || (x) Pe*[|V]|(x).
Using Schwarz’ inequality on (4.6.1) and then using (4.6.2) gives
2

‘/hg d\|V||x+/<I>g*8V( )- g(x)dax
(Q,[@e %8V |*/@e # [[V[(Q, | De x (g][V]]) — gPe ¢ ||VI[|* /e x| |V]) 462)
(Q,[@e 8V [* /e [[V|[}(Q,7Q% ((exp(| - [) — 1)@ () * [[V]]) -
(Q, @ # 8V [* /D #[[V][)i%(((exp(| - [) = 1) Pe(-)) * 2, [[V]])
ni*e 2 (Q,|@e 8V 2 /@e x [V [)[VII(Q),

VAN VAN VAN VAN

where at the end we used (4.5.3), with j = 1. This proves (i).
For (ii) we have

/ s AV (x,8) = = [ [SH(6(0))- ely —x)Pe 8V () Be ¢ |IV]]()dydV (x.5)
(4.6.3)
//sL )d(De #V) WS- D %8V (x) dx
_/SL (x) /@ * | |[V||(x)dDPe %V (x,S)
= [ [[55(60)) - @ely = 2)@ex 8V () /e V| (3) dyaV (x.5).

(4.6.4)



Adding (4.6.3) and (4.6.4) gives

‘/Sl ) - he(x) AV (x,S) +//SL )d (D xV)X)S- D% 3V (x) dx
<[ [5G ) - e (y —x)Pe # 8V (1) /De x| [V]|(») dydV (x,S)
< [ [180) = g0)1@ely— )| V][ 58V (3)/ e V]| () dy

which can be treated exactly the same way as (4.6.1) was to give the same estimate as in (i).

If ¢ € A, and g = D¢, then in the above derivations we can substitute ¢ for 2 in the first inequal-
ity of (4.6.2), use 4.2(iii) instead of 4.2(iv) in (4.6.2), and we use (4.5.3) with j = i. The net result
is just to replace Q with ¢ in the right hand sides of (i) and (ii). O
4.7 More estimates on /¢
Proposition: IfV € Q,i € N, ¢ € A;, and0 < &€ < c1i”', then

(1) |3V (0he) + (0, @e + V| /De x| |V])]
< 3nie'/2(9, |@e + 8V|? /D¢ ||V||) +ni(2e + € Oca(i,€))[[V]|(6),

(i) [ Ve POWAIVIr < (1-+eni)(0, e 3V /e« |[V]]):

Proof: We have from 2.6
V (0he) / D(0he) (x) - SAV (x, )

/¢ x)Dhe(x) - SAV (x,S) +/D¢(x) ® he(x) - SAV (x,S)

= — [ [ 60Dy ) & By 8V () Be V| () SdyaV (x.5)
4 / [ @ely = x)e 8V ()@ [VI]() © Do) - SdydV (x.5).
and using (4.3.7),

(9, |De 8V /De x|V ]])
:/q) )P 8V () - D¢ 8V (y) /e + ||V || () dy

= [ [00)S(DDely —) - @8V (3) /e V() 4V (x.5) .

Thus
|V (Ohe)+(0, [Pe 8V /D ||V )|

< ’ / / —0(x)S(DPe(y —x)) + S(D(x) ) Pe (y — x) 4.7.1)

+0(y)S(DPe(y —x)) dV (x,5) - Pe 8V (y) /e x [|V][ (y) dy



We shall work on the inner integral, first approximating ¢(y) — ¢(x) by D¢(y) - (y —x). The maximum
error we are making is

[ [ 166) =) = Do) (=0l ID@e(y— )|V (x.5)
~|<1>s*6v<y>|/<1>a*||V||<y>dy,
which by 4.2(ii) is less than
J [ explily =)= 1) = ly= 1) 0() ID®e(y )] V|1
1+ 8V ()] /e [V]]()dy

which, using Schwarz’ inequality, is less than

1/2

L] [ tis — -1 1y—shipeces —o1alvie] oecs i)

1/2
{ 1@ o) /e V1010000 }

which, again using Schwarz’ inequality, is less than

1/2
{0 enptiy =) = 1) 22100 2y 0 /el - )V 0/ 1V )
(0, + BV 1 V)2

which, cancelling @, *||V||(y), interchanging the order of integration, and writing as a convolution,
is less than

G exp(il - [ = 1) = -2 [DDe()} 0, |VI[)/2(0, | Pe # 8V /e % |V]])/2,
which, using 4.5(5) with j = i, is less than
nie||V]](9)"/2(9, |@e 8V > /e |V||)'/ (4.72)
Next, in (1) we approximate D¢(x) by Do(y). The maximum error we are making is
[ ] 1D003) = Do) ely —x)dlIV x| x 3V () /e V]| (3)
which, using 4.2(iii) is less than
[ [ (Cexpily =) = Do) @ely— )l V- [ 8V (3) /e ¢ [[V](3)
which, using Schwarz’ inequality twice, is less than
2 1/2
{[] [t Deets - aiviis] om)/@esvioier}
1/2
{ Jaieeav o) e Vo) |
<{ [ [tesptiy—a) - 17uts -Vl

12
[ @y alvlIwow) @ Vi) o

{0, [P 8V /e x| [V ][} V2.



which, cancelling @ * ||V||(y), reversing the order of integration, and writing as a convolution, is
less than
{(exp(i] - [) = 1°@e(-)) % 0, [V I}/ (0, [Pe 8V /e x| |V']]) /2

which by (4.5.3) with j = i is less than
neil|V|(6)/2(, |@e 8V [* /e x| V[]) /2 (4.7.3)
‘We now have the inner integral of (4.7.1) converted to

[ DOG) - (5= 2)S(DDe(y =) +S(DO)Be(y —x)dV (x.5),

which is equal to, noting that D(y) is constant with respect to x,
/ S(DL(DO(y) - (y— x)Pe(y —x))) dV (x,S). (4.7.4)

Next, we approximate (y —x)®g(y —x) in (4.7.4 by —(&2/2)D®¢(y — x). It can be shown from
the formula (4.3.1) for @, that

P (x) + (€2/2)D®e(x) = (€3 /2)xx|x| (2€% x| — 1) (1 +€[x]) > Pe (),

and one can calculate

DA[DO() (v 1) Bely —1)] +DDO() - 1€ Dy —x)

< (€2/2)Do(y)| [2]y — x| + 6€3[y —x|* + (4e* +2&72) |y — x> + 4]y — x[*] De(y —x)
<ie?0(y) [y — x| +3e*y —x|* + (2e* + & ) [y — x> + 4y —x|*] Pe(y — x).

The maximum error in making this approximation comes out, using (4.5.6), to be less than
nig]|V]](0)"/2(9, e 8V /e x ||V]])/2. (4.7.5)
By reasoning as in (4.3.7), we may write (4.7.4) as

(DO(y) - 2Pe(z)) * 8V (y),

which after the preceding approximation becomes

(€/2)[D(y) - DPe(-)] + 8V (v),

which it will be helpful to write in component form as
n
(62/2) Y. D;0(y)[D;@e(-)] + 8V (y) = —(¢2/2) Z D;0(y)D; [ +3V](y).
j=1
Then (4.7.1) becomes, after these approximations, less than

2/2

Z D;0D[®e * 8V], CI>E*8V/<I>£*|V|>‘
o

n

Z D;0/®e ||V ], D;[®e 8V]?)| .

j=1

2/4




Now we integrate by parts to get

(e7/4) Z (DjD;j¢/®e * ||V || = D;-D®@ex[|V[|/(@e[[VI])?, (e +8V)?)

which is less than, using the properties of ¢ from 4.1,
€2(i0 -+ i0|DPe| x|V [|/De [V |, (De  8V)? /Do [|V]]). (4.7.6)

To estimate this we write |[D®g(x)| = F¢(x) + Ge(x), where

R@) DD, (x)| for 0 < |x| < !/
X =
¢ 0 for |x| > €!/2,
Gel®) 0 for 0 < |x| < g/
X =
¢ IDde(x)|  for [x] > €!/2.

Since [D®g(x)| < 2&72|x|Pe(x), we have
Fe(x) < 2e732®, (x).
Thus (4.7.6) is less than
ne?i(Q, (@gdV)? /Pe x ||V ||)
+neli(p2e 2D ||V || /Dg x ||V ]|, (De + 8V)? /e # ||V |) 4.7.7)
+ne%i(QGe * ||V ||, (Pg + 8V /De x [|V][)?)
Since (4.3.8) says | * 8V /P + ||V|| < £7*, we have (4.7) less than
ni(e? +2e'/2)(0, (g % 8V)? /D * ||V||) +ne(Ge * ||V||,0e7). (4.7.8)
The last part of (4.7.8) can be written as
ne?i(Ge * ||V[],0€7%) = ne ®i(||V||, Ge *9),
and by (4.5.7) this is less than
neCicy(i,€)||V|](0) (4.7.9)
Adding together (4.7.2), (3), (5), (8), and (9) gives
18V (9he) +(0, |@e 8V > /Pe x [[V]])]
< (nie+2e'/7)(9, @+ 8V 7 /Dex V)2V ]|(0)'?
+ni(€2 +28'%) (0, | @ # SV[* /De ¢ ||V [} +nie~ca(i,€)||[V]|(9)-
Applying Minkowski’s inequality and recognizing that €'/2 dominates € and €2 yields (i).
To prove (ii), note that for any convolutable function f, we have by Schwarz’ inequality

2

oI@e FF = | [ 9002000011 0)

S/q) Cpey x|f /ngx /¢()
< @ (0f) [ @ely—vexplily—x)dy by 420)
< e (0/7)(1 +eni),



where we have used (4.5.2) with ¢ < 1. Hence

(Q|Dex(PedV /Pe | V)7, V] (1 +eni)
< (Pe (9] Pe # 8V /De ¢ ||V P), [[V]1) (1 +€ni)
= (0|@e + 8V [*/|@e + ||V[||?), De | |V[]) (1 +eni)
= (14&ni)(9, | e+ 8V | /De x| |V]]).

O
4.8 Showing that /. is an approximation of mean curvature
Proposition: IfB < o, i€ N,0<e<ci”!,V € Q, (Q,|®+dV|>/De||V||) < B
[IVI|(Q) < B, and g € B;, then
’/h, x)d|V]x+ V(g )’ < 2nieB.
Proof: From 4.6(i) we have
‘/hg d\|V||x+/<I>S*8V( )-g(x )dx‘ < nieB. 48.1)
We also have
[ @er 8V a8V (6)| = I8V (0r k) -3V

— | 5% e - De) avis5)|

< [ 1@+ Dglx) ~ Dgw) dI|V]1x

<[]/ @0 00e0)r - Deto) v

< [l %(y—x)(Dg(y)—Dg(x))dy\ e

< [ [ @etr=vil(explly—x) = DO dydl V]l

< nig||V|[(Q)

< nieB, 4.8.2)

where we used (2.6.3), 4.2(v), and (4.5.2). Combining (4.8.1) and (4.8.2) gives the desired result.
O

4.9 Approximate motion by mean curvature

The basic idea is to let a varifold move in tiny steps along the smoothod mean curvature, recal-
culating the smoothed mean curvature at each step. Then we let € go to zero and take a limit of
approximations. However, this straightforward approach is inadequate to get the limit to be a solu-
tion of the original problem. Therefore I introduce a second type of step that takes care of all the
loose ends. This section describes the two types of steps.



For each m € N pick &(m) > 0 such that

e(m) < cym™n7%, mek! < 1, and

nie(m) Scy(i,e) <m™*  fori <m. (4.9.1)

Define 6(m) = m~2 and At(m) = 277, where p € N is chosen so that At(m) < g(m)%.
ForV € QV and 6,w > 0, define E(V, 5, w) to be the set of all Lipschitz functions f; : R* — R”
such that

(a) Ifi(x) —x| < ocforallx e R" and

(b) 1/1#V[1(0) < [[V][(9) for all ¢ € A,.

Note that f](x) = x satisfies (a) and (b), so E(V,6,w) is nonempty. It follows from (a) and 2.8 that
f1# preserves Q and QI. For ¢ € A, we shall denote

Aol [VII(9) = inf{[| fisF[[(9) = [IVII(0) : /1 € E(V,0,w)}.

ForV € Q and m € N define f, : R" — R”" by

f(x) =x+ At (m)he<m) (V)(x).
From 4.4 we conclude that f; is a Lipschitz map with |f,(x) — x| bounded, so fo4 also preserves Q
and QI

Remark 1: The mapping f> approximates motion by mean curvature. The mappings f| are
meant to do away with irregularities that are too small to be detected by the smoothed mean curva-
ture. Condition (b) guarantees that f; does not do too much.

Remark 2: One can model different processes by fiddling with the first type of mapping. For
example, instead of the varifold mapping defined in 2.8 one could define f4V = v(f(spt||V]])) € Q.
This definition produces varifolds with density 1 everywhere and would be appropriate for modeling
soap films and other instances with uniform surfaces. This model can be called the reduced mass
model.

One could also require that f; be a homotopy. This would be of interest if there were dimensional
obstructions to moving surfaces avoiding each other by making slight detours.

All the results of this chapter hold for all such models as long as conditions (a) and (b) are
satisfied.

4.10 Sufficient condition for belonging to E(V,c,w)

Lemma: IfV € Q, 6 > 0, w > 0, B is a closed subset of R”, and f : R" — R" is a Lipschitz map
such that

() {x: f(x) £ ULF() : Fx) # 3} C B,
(i) |f(x) —x| < o for allx € R", and
(iii) ||f4V||B < exp(—w diam B)||V||B,

then f € E(V,0,w).
Proof: Since (ii) is the same as condition (a) in 4.9, we need only check condition (b). Let
¢ € A,,. Then by (i), 4.2(i), and (iii),

V@ =VI@) = [ edlsavik— [ owaViis

sup{0(x) : x € B}||fsV||B — inf{¢(x) : x € B}||V||B

exp(w diam B) inf{¢(x) : x € B}||f&V||B — inf{¢(x) : x € B}||V||B
0.

IAINCIA



4.11 Approximation during small finite step

Proposition: IfV € Q, m € N, ¢ € A, and f, is as defined in 4.9, then
@ [(1224V11(9) = [IV11(9)) /At (m) — 8V (V,0) (hei(un) (V)] < &(m)*![[V][(9),
(i) [3(V,0) (e(m) (V) — 8(f24V,0) (he(m) (f24))] < €(m)'*[|V[|(9), and
(i) [, |De(m) * BV | /ey * ||V 1) — (R, [@em) + 824V [/ (o) * [ L4V ]]) < £(m) P[[V][(R)-
Proof: Let € = €(m) and F = At(m)he(V). Then 4.4 and 4.9 imply

IF| < e *At(m) < €°, and (4.11.1)
IDF|| < e 8At(m) < &2 (4.11.2)

One may calculate, using (1), (2), (4.9.1), and 4.2(i,ii),

| |AkDfroS|—1| < 2k||DF|| < € °At(m) < &',
| |A«Df20S|—1—DF-S| < 7k*(k!)*||DF|[?
< e2Ar(m), (4.11.3)
0(/2(x)) —0(x)| < (exp(m|F(x)]) — 1)(x) < £7(x),
0(f2(x) = 00x) = F(x)-Do(x)| < (m™ ' (exp(m|F(x)]) = 1) = |F (x))o(x)
< e0A1(m)o(x).

Therefore, recalling 2.8 and (2.10.1),
|14V 11(0) = [[VII(9)]/ At (m) — 8(V,0) (he (V)|
=| |/ o8 av ) - [ o av(es)| s

~ [ Dhe(V)(x)- S6x) + (V) ) - DO(x) 4V (x.5)

= a(m)" [ 160()) ~ 6| A Dfa() o]
+[ ADA ) 25| - 110(x) ~ DF(x) - 59(x) ~ F(x) - DO dV (x. )
< ae(m)~" [ 1160£(6)) ~ 0) [| D) 5| ~ 1]

+[0(/2(x)) = 0(x) — F(x) - DO(x)]
+[[ADfa(x) 0S| =1 =DF(x) - S]o(x)[dV (x,5)

< /(846+55°+e42)¢(x)d|\w|x
<e'|vlo,

which proves (i).
For (ii), one may calculate

IIDf2(x)(S) — || < [2||DF(x)|[]'/? < 2¢?¢

DD, (f2(y) —x)| < €8 *Pe(fo(y) —x) < € Pe(y—x),
ID®¢(fo(y) —x) — DDe(y —x)| < e D(y—x).



Therefore, recalling (4.3.7) and (4.11.3).
|De # 8(f24V) (x) — P + 8V (x)|

=| [ 108G )V 1) [ 500 05)
~| [ D0) SO0 ~0l D8] - DBV .5)

< /IDCPs L) =x)|[| AeDf2(y) 0S| — 1] (4.11.4)

+[Df2(y(S) — S||DPe(f2(y) —x)]
+[DPe(f2(y) —x) — DPe(y —x)[d[|V ||y

< / £ 3Dy (y—x)&%! + 26206 5Dy (y —x) + €YD (y — x) d||V ||y

< 20, % ||V]|(x).

Likewise,
|0 # || L5V ]| (x) — P [[V][ ()]
= | [ @:t0) -l Do - @1 -0 VI @115)
<€51CI>£>I<||VH( ).

Hence
Qe+ SfV(x)  PexdV(x) 19
D || o4V [[(x)  Dex[|V]|(x) ’

and so

e (f24V) (x) —he (V) (x)] < €',
||Dhe(f24V ) (x) —Dhe (V) (x)]| < €'5.

Recalling (2.10.1) again,
18(V,0)(he(V)) = 8(f24V) (he(f24V))]

= /D)0 -5000) 1)) D) 0V .5)
- / Dhe(f24V)(y) - TO(y) +he(f24V)(y) -DO(y) d fosV (v, T)
/|Dhs V) —Dhe(fasV (f2(x)) - (Df2(x)(5)0(f2(x))| - [ A Dfa(x) 0 S|
+ |he(V)(x) - DO(x) — e (f24V) (f2(x)) - DO(f2(x))| Ak D fa(x) 0 S| | dV (x,5)
< &'%|v[|(9),

which proves (ii).
Conclusion (iii) follows from (4.11.4) and (4.11.5). ]
4.12 Constraints on motion

Here we deduce upper bounds on the rate of change of the integral of a test function analogous to
those of 3.4.



Proposition: IfV € Q andm € N, then
@ [ll26VI[(Q) = [V]I()] /At (m)
< (=14 m ) (Q, [ @) # 8V 2/ Doy [V ]])
+ (L m)(Q, [ D) 8V 2/ ey # V1) 2|V ]| ()
+mH|V][(Q),
(ii) ifie N, i <m, and$ € A;, then
[[1£4V11(0) = [IVI1(9)] /At(m) < 22([V[[(9)-

Proof: The proof of (i) will be a by-product of the proof of (ii).
Letting € = €(m) and he = he(V), and using 4.11(1), (2.10.2), 4.7(i), and 4.6(i,iii),

(154V 11(0) = [1V11(9)) /At (m) < 8(V.¢)(he) +€*[|V](0)
< 8(¢he)+/he(x)~SL(D¢(X))dV(x,S)+8‘“|IVII(¢)
< —(0,|®e %8V [*/De ||V ||) — (e %8V, Do)
+3nie'/2(9, | @ * 8V |? /D¢ x ||V]|)
+ [2nie+nie ®cy(i,€) +€*'||V||(0)
+2nig (9, |Pe V|7 /De x ||V [)/2[[V]](9) /2.
By (4.1.3), Schwarz’ inequality, and (4.5.1),

(|@e#8V],|DOf) < i(|Pe*8V],0)
< i{|@e xSV 2 /De x ||V ], 0) /2 (De % ||V ]|, 0)/2
< 20| @ # 8V 2 /e x ||V ], 0) 2V [ (0)/2.

Hence
(1Y 110) = [IV11(9)) /At (m)
< [—1+3nie"/?)(Q, |+ 8V * /D + ||V|])
+ (2 + 2nig] (9, |De + 8V 7 /Pe + [|V]) [V ]1(0) '/
+ [2nie+nie Cca(i,e) + €|V |(9),
which, by the properties of €(m) in (4.9.1), is less than
[—1+m (9, Pe + 8V |?/@e x| V)
+ 20+ m (0, [@e 8V /e x |IVID2(VI[(9)'2 +mH|V[(6).
Taking ¢ = Q and i = 1 gives (i). The maximum value of expression (4.12.4) is
(L/4)R2i+m P —m " w4 V]|(0),

which proves (ii).

4.13 Towards a varifold moving by its mean curvature

(4.12.1)

(4.12.2)

(4.12.3)

(4.12.4)

(4.12.5)
O

In this section we do the construction that will give us a varifold moving by its mean curvature.
The rest of the chapter is devoted to showing that we do indeed have a solution with the claimed

properties.



Let Vo € Q. For all positive integers m and P, choose the varifolds V* pht(m)? Vi pai(m) €
inductively as follows :

Vo = Vo, (4.13.1)
VorpeD)aeim) = J1#Vinpe(m) (4.13.2)
Vin,(p+1)ai(m) = fZ#VrZ,(erl)At(m)?

where fi € E(V, pa(m),©(m),m) is chosen so that
118V 1) = [IVII(Q) < (1—m)Ag(m mlV]|(Q)
and

1 ()C) =x+ At(m)hs(m) (Vnt,(erl)At(m))'

Let Q; denote the set of nonnegative dyadic rationals, and let
Q,, = {pAt(m) : p € N}.

It follows from 4.12(ii) that for fixed t € Q, we have for large enough m
[1Vine[1(€2) < €| |Vo]|(€).

By 4.1, the set
{VveQv:||V[[(Q) <[Vll(Q)}

is compact in the Q topology, so we may use a Cantor diagonal process to choose a subsequence m;,
i € N, such that Qlim;_.., V,,, ; exists for each ¢ € Q,. Without loss of generality, we may assume
Qlimy,—co Viy,s = V; for each t € Qo.

The reason for including Vn’; (p+1)At (m) explicitly instead of defining V,,, (p4 1)ar(m) directly from
Vin,par(m) 18 that later we will need to talk about smoothed mean curvature and Lipschitz deformations
of the same varifold, V,, ;. That does not fit in with the alternating nature of the procedure just
defined, but by 4.11 the properties of the smoothed mean curvature of V,, ; are well approximated
by the properties of the smoothed mean curvature of V,, . It follows from 4.12(ii) that for 7 € Q,
we have

Qlim ||V || = [|Vi]]-
m-—oo

4.14 Continuity of ||V;]

Proposition: IfVy € Q andV, is as defined in 4.13, then
(a) We may extend the domain of definition of ||V,|| to allt > 0,1 ¢ Q,, by defining measures on
Rl’l
Vil = Qlim V]|
s—t7,s€Qr
(b) Ifi € Nand ¢ € A; then forallt > 0

D[|V;]|(9) < 282(|V;[(9).

(©) ||V¢||(9) is a continuous function of t at almost every t > 0.

(d) Iftyp > 0 and ||V;||(9) is discontinuous at ty, then ||V;||(0) has a jump decrease at 1.



(e) Foranyt >0, QlimHta [|Vi|| exists and

Qlim [V, = Qlim |
-ty t—tf

T
() ||V;|| is a continuous function of t at almost allt > 0.

(g) If ||V;|| is continuous at ty and s1,s>,... and my,my,... are sequences with s; € @, and
lim; . $; = to, then
Vil = Qlim ||V, 5[]

Remark: The full, definition of V; for all # will have to wait until we can show rectifiability.
Proof: Ific N, 0 € A;,m e N,m > i,and r € Q,,, then from 4.12(ii) we have

[||Vm,r+At(m)||(¢) —|Vinr |(¢)] /At(m) < 2’.2HVm,r

1(9), (4.14.1)

which implies
[1Vsl1(9) < exp(2i®|s —r])[[V:11(0) (4.14.2)

for all r,s € Q with r < 5. Therefore for any t > 0

lim - [|V,[[(9) (4.14.3)

s—1,5€Q)

exists. Since the set of Radon measures u on R” with u(Q) bounded is compact in the Q topology,
(3) says that we may define
Vil = lim - [[V]]

s—t,5€Q)

fort ¢ Q,.
Now (b) follows from (4.14.2), and (c) and (d) follow from (b). Since a test function y €

QC(R") can be approximated by ¢ € A; for large enough i, (2) implies

lim |[Vi[|(y) = Lim [[V/[|(y) (4.14.4)
=1y

=1,

which proves (e). Furthermore, ||[V;||(¥) can have only a countable number of discontinuities, and
since the space of test functions is separable, ||V;|| is a continuous function of ¢ at almost all ¢ > 0,
which is (f). Whenever ||V;|| is continuous at zy conclusion (g) follows from (4.14.1) and the definiton
of ||V;|| in 4.13.

4.15 Agreement on smooth manifolds

If the initial varifold represents a smooth manifold, then it is clearly desirable that the approximation
procedure described in this chapter should agree with the more straightforward mapping approach
described in 3.1, at least as long as the latter works, Since the smoothed mean curvature would be
very near the mean curvature in such a case, we could say the two approaches agree if we can show
that the only eligible Lipschitz maps f; would leave the varifold fixed.

Theorem: Suppose 0 <y < 1. Then there is my € N such that if m > my, it M € Q rep-
resents a k-dimensional manifold of class C3 without boundary embedded in R" with a normal
neighborhood of radius y/5 and with all sectional curvatures of magnitude less than 1/v, and if
f € E(M,o(m),m) then

fuM =M



Proof: The theorem will follow if we can show that for large enough m there is ¢ € A,, such
that fM M implies || fsM]|(6) > ||M]](6).

Let N be a normal neighborhood of spt ||M|| of radius y/5 and let ® : N — spt||M]|| be the nearest
point retraction. Since spt||M|| is a manifold without boundary, we have wo f(spt||M||) = spt||M]]
and for any nonnegative continuous function

|l feM [ (w) = |[M]](w).

Therefore it is sufficient to find conditions on ¢ that will guarantee

|[feM|(0) = [|7ts feM]](9), (4.15.1)
if fuM # 7y faM. We cannot take ¢(x) = dist(x,M)? because ¢(x) # 0 by 4.2(i). From 2.8 we have

a1 (0) = [ |24 DR(x) o SIo(R(x)) M (x.). @152)

To calculate | Ay Dxt(x) o S|, suppose that 7t(x) = 0, spt||M|| is the graph of F : R — R¥ in a neigh-
borhood of 0, F(0) = 0, Tan*(||V||,0) = e; A...e, and x is on the x;,| axis. We may represent
S € G(n,k) by

S = Z e, N Aey
AEN(n.k)

with Y o = 1 (see [FH 1.3.2]). Thus

AD7(x) oS = Y o D7i(x)(ep,) A... ADT(x)(ey,).
A
Clearly Dnt(x) = 0 for j > k, and for i < j < k calculation shows that

k
Dri(x)(e;) = €j+xps1 Y, (97 Fiy1(0)/9x;0x; )e;

i=1
Therefore, one may compute

| Ax DTt(x) o S|

IN

|Dnt(x)(e;) A... ADm(x)(ex)|

k
L xigr Y 02 Fe1 (0) /0 + (k+ 1)1y .
=1

IN

From differential geometry, we have
n
h(M,0)= Y e 282

Jj=k+1

so in general we have
| AkDm(x) 0S| < 1+ (x = m(x)) - h(M, 7(x)) + (k+ 1)y~ —m(x) .
It now follows from (4.15.2) that if ¢ € A,, and
ID*0(y) —D*0(n(y)l| < v 'ly—n()|o(y))  fory €N, (4.15.3)

then, using Taylor’s formula on ¢(7t(x)),

|l feM|[() < /[1+(X—E(X))‘h(M»W(X))Jr(kJr1)!Y_IIX—TE(X)|2]

[0(x) — DO (m(x)) (x — m(x ))
—D?*o(n(x))(m(x) —x,7(x) —x) /2
+7 = n(x)Po(n ( ))}d||f#M||x. (4.15.4)



If we require that
Do(z) = ¢(z)h(M,z) and (4.15.5)
D2o(z)(w,w) > 4(k+1)ly! (4.15.6)
for z € M and w normal to M at z, then (4.15.4) becomes
||m# fuM|[(9) < Hf#MII(¢)+/—D2¢(R(X))(TE(X)—x,n(X)—X)/2
+(k+1)'v’1¢( (X))\%*x)—x|2+V—1|x—E(X)I3¢(n(x))dl\f#MHx

< 1fs11(0) — [ o)) () Py dl| o .
Clearly, for m depending on Y and &, there exists 0 € A,, satisfying (4.15.3), (4.15.5), and (4.15.6).
Thus (4.15.1) holds unless w(x) = x is true || fxzM|| almost everywhere. O

4.16 Towards rectifiability

The next few sections show that if a sequence of varifolds in Q have bounded rates of mass loss,
then their limit varifold will be rectifiable. The main tasks are to prove a lower density bound and
that the limit has bounded first variation, since these conditions by [AW1 5.5(1)] imply rectifiability.
This first proposition states that for small balls of low density there are Lipschitz maps reducing
mass drastically.

Proposition: There is a constant ¢3 > 0 such that if V € Q, 0 € spt||V||, and |[V||B(0,1) < ¢3
then there exist 0 < R < 1 and a Lipschitz map f : R" — R”" such that

(i) f(x) =x forx ¢ B(O,R),
(ii) f(x) € B(0,R) forx € B(O,R), and
Gii) ||V |[B(0.R) < (12)|[V|[B(0.R).

Proof: For r > 0 let u(r) = ||V||B(0,r). By [AF1.9(2)], for almost all r > 0 there exists a
Lipschitz map f, : R" — R” satisfying conclusions (i) and (ii) such that

4V B0, r) < 20202/ (r)]H/ D).
If conclusion (iii) were false, then for almost all 0 < r < 1

20207 ()Y > () /2. (4.16.1)

, we have u(r) > 0 for r > 0, so (4.16.1) may be integrated to
u(1) > [2n2k]7k2(k—1)4—k-

Thus we need only choose c3 = 4~k[2n2K]~#*/(k=1) | O

4.17 Monotonicity

This lemma [AW1 5.1(3)] says that the rate of decrease of density ratios as a function of radius is
limited by the amount of curvature present.
Lemma: SupposeV € Vi (R"),0 <M < o,0 <R] <R <o,a € R" and

|18V[[B(a,r) < M||V||B(a,r)

whenever Ry < r < Ry. Then
exp(Mr)r~¥||V|[B(a,r)

is nondecreasing inr for Ry < r < R;. O



4.18 Curvature of limit

Proposition: IfV),V,,...... € Q Qlim, ..V, =V € QV,i € N, and ¢ € A, then

[ IB(V.) o) IV b < Taing (9, 1Dy Vi /@ * 1V

Proof: Suppose C > 0 and
[ b Po)dvie > €.
Then there exists a smooth g : R” — R” such that
sup{[D(0g) ()| /Q(x) : x € R'} < e
[0V g(0) VIl = 8V(6g) > €2 and
[1e@Potdvi <

By 4.1 and (4.3.10) we have
8V (0g) = lim gy 3V (09),

hence, using Schwarz’ inequality,
C? < 1lim D¢,y * 8V, (08)
m—oo
< iminf(|Pe() + 8Vinl>/Peimy * V1], 0)' 72 - (Pegmy * |Vl 057) /2

< CHmin(| g % 3Vin[2 /By %]V ], 0) /2.

Thus
C? < Himinf(, | Pe(p) * SVl /Pe(my * V)

and the conclusion follows. O
Remark: The possibility of inequality in this proposition is good evidence that we do not want
to require equality in (3.3.1).

4.19 Rectifiability

Now we show that if a sequence of varifolds has a common bound on the rate of mass loss, then a
limit varifold is rectifiable. This is not yet talking about V; being rectifiable. That will be discussed
after we prove the corresponding result on integrality.

Theorem: IfB > 0,V|,V,,... € Q, Qlim,_..Viy =V € QV, ||V,||(Q) < B and

<Qv |q)£(m) *8Vm|2/q)£(m) * HVH> *Ac(m),m

[Vl [(Q) /At (m) < B (4.19.1)
for allm € N, then

0°(||V||,x) > ¢3/16g for ||V || almost all x € R", and (4.19.2)
V is rectifiable. (4.19.3)



Proof: For 0 < R < (4B)~! define
Fr={x € R" : R¥||V||B(x,R) < c3/16}.

If |x — y| < (1—2'/%)R, then
B(y,2"/*R) C U(x,R),

and so
QYRR TH|VI[B(y, 274 R) > 27'R7K||V||U(x,R).

Since Qlimy—.e0 Viy = V and Qlimyy—.co Py *V =V by (4.3.10), for each x there must be
M(x) € N such that m > M (x) implies that for [x —y| < (1 —2~'/%)R we have

(27 VER) || @e() + VI[B(,27/R) < ¢3/8. (4.19.4)
Choose M; € N such that
[IVI[(Q{x € Fr: M(x) < M1}) > (1/2)[|[VI[(Q[Fk).

Define
Gr = {y € R" : dist(y, {x € Fr : M(x) < M;}) < (1—2"YF)R}.

Since Gg is open, there is an M, > M| such that if m > M> then
Vil [(QIGR) > (1/2)[[V[|(R|Gr) > (1/4)[|V[[(Q|Fk). (4.19.5)
Choose M3 > M, such that 6(M3) < R/2, and let m > M3. Define

E1(R,m) = {x € GrNspt||V,u|| : 6(|[Vin|,x) > 1 and

(4.19.6)
S(m) || Pem) * V|[B(x, 0(m)) > c3/4}
and
E>(R,m) = {x € GrNspt||Vu|| : 6%(|[Vi|,x) > 1 and
S(m) || @e(uy * V[[B(x,0(m)) < c3/4} @
By the definition of Q, we have 8%(||V,,||,x) > 1 for ||V|| almost all x € R" so
Vil [(QIE1 (R,m) UE2(R,m)) = |[Vin[(Q|Gr)- (4.19.8)

Suppose x € Ej(R,m). It follows from (4.19.4) , (4.19.6), and 4.17 that there is 6(m) < r(x) <
2~ '/kR such that

|[8DPg 1) * Vim| B (x, 7(x)) (27l/kR —o(m))"(In2)| | P ) * Vim| B (x, 7(x))

>
> (1/2R)||De(m) * Vin| B(x, (x)).-
Since 8Pg(,,) * Vin = Dg(n) * 8V;, by 4.3 and Q(y) < Q(z) exply —z| by 4.2(i), we have

|| @ () * V| [ (B (x,7(x) > (exp(—2R)(1/2R)|[Pe(m) * Vin| [(QUB(x,7(x))). (4.19.9)

By the Besicovitch covering theorem 2.2, we may choose a family of disjoint balls B(x, r(x)) such
that, if we denote their union by W, then

|| De(m) * Vin| (W) > B(n)71||d>£(m) * Vi | (QIU{B(x,r(x)) : x € E;(R,m)}). (4.19.10)



Since r(x) > o(m), it follows from the definition of €(m) that
|| @e(m) * Vinl[(QUAB(x,r(x)) : x € E1(R,m)}) > (1/2)||Via||E1 (R, m). (4.19.11)
Putting (4.19.9), (4.19.10) , and (4.19.11) together givee
[[Pe(on) * 8Vinl[(2) > B() ™" exp(—2R)(1/4R)||Viu||E1 (R, m)
or, by Schwarz’ inequality,
(€, [ Pe(m) # 8Vinl* / Pemy [Vl ) [Py # Vinl[(Q) > [B(n) ™" exp(—27R) (1/4R)| |Vl | E1 (R, )],
Hypothesis (1) now implies that

limsup ||V,u||E1 (R,m) < B(n)exp(2R)4R(B||V||(Q))"/%. (4.19.12)

m-—oo

Now suppose that x € E>(R,m). It follows from the definition of €(m) that
1Vl B(x, 27 A6 (1m)) < 2||@egyn) * Vinl B(x, 5(m)),
so (4.19.7) implies that
(2726 (m)) [Vl B(x,2~Ao(m)) < c3.

It follows from 4.16 that there exists 0 < r(x) < 2~ '/*o(m) and a Lipschitz map f, : R* — R” such
that

fL(y) =y fory¢ B(x,r(x)),
() € B(x,r(x)) fory e B(x,r(x)), and
|| StV [B(x, r(x)) < (1/2)[[Vin|[B(x, ().

By the properties of Q and 6(m),
[ £t Vinl [ (QUB(, () < 27172 |Vi [ (QUB (). (4.19.13)

By the Besicovitch covering theorem, we may choose a subset {x) : A € A} C E>(R,m) such that
all the B(x), r(x)) are disjoint and

[Vl [(QIU{B (x5, (x2)) : & € A}O
> B(n) |Vl (QIU{B(x,r(x)) : x € E2(R,m)}) (4.19.14)
> B(n) ! ||Viul|(QUE(R,m)).

Define the Lipschitz map f : R” — R” by

f(y) _ {fxx(y) if ka(y) 7& y for some A € A

y otherwise.
By (4.19.13) and 4.10, we have f € E(V,,,6(m),m). Therefore, by (4.19.13) and (4.19.14),
Aol Vil () = (1=2712)BOR) [V, || (QUE2(R,m)).
Hypothesis (1) and A¢(m) — 0 imply that

limsup ||Vin||(Q|E2(R,m)) = 0. (4.19.15)



Combining (4.19.12), (4.19.15), (4.19.8). and (4.19.5) yields
IVI|(QFx) < 4B(n) exp(2R)4RB.

This implies
Jim [[V(@1F) = 0.

Hence
0"k (||V[|,x) > ¢3/160

for ||V|| almost all x in R”, which proves (4.19.2).
By 4.18 and hypothesis (1), we have
[ hvsPawavii < 5.

Hence ||8V|] is a Radon measure, and we may apply [AW] 5.5(1)] to conclude that V € RV, (R"),
which proves (3). O

4.20 Towards integrality

A sequence of integral varifolds will converge to an integral varifold under the same hypotheses as
we had for rectifiable varifolds in 4.19. To prove this is the purpose of the next several sections. The
proof follows the same ideas as the proof of the compactness theorem for integral varifolds in [AW1
6.4], but is necessarily more complex. We want to show that the densities of the limit are integers.
Knowing already that the limit varifold is rectifiable, we show that non-integral density ratios in the
approximation varifolds come from “holes” and therefore lead to large rates of mass loss. This first
lemma is analogous to 4.16 and handles holes too small for the smoothed mean curvature to detect.
Lemma: IfveN,0<pu<1,and0 < { < 1 then there isy > 0 such that if

(D) VeEIVi(R"), >0, w>0, 0<R<o, 0<2p<o,
(1-0)/2v > 1 —exp(—4ws), p/R> u;

) T =elA...Aex € G(n,k);
(3) Y C T, diamY < o, andv = Y {6*(||V||,y) :y € Y};
(4) forr > 0 and& > 0 we define
E(rE) = {x e R": |T(x)| < r,dist(T*(x),¥) < &}

(5) if0 < r < R then
/ IS — ||V (x,S) < york; and
E(r,2p) -

(6) if0 < r <R then
Aswl[VIE(r,p) > —yaR";

then
IVIIE(R,p) > (v—C)oR". (4.20.7)

Proof: Define

r=inf{s > 0:||V||E(s,(1+s/R)p) < (v—{)as'}. (4.20.8)



Hypothesis (3) guarantees that » > 0. If » > R, then we are done. Otherwise, we look for a contra-
diction to (6). Letting p; = (1 + r/R)p, the properties of Radon measures imply

IVIECp1) = (v— Q.

For the rest of this proof, we shall suppose that V = VI_ E(r,p). Noting that T3V is an integral
varifold, we define the set of “holes” Ay C R" to consist of all a € U¥(0, r) such that

0k (||TxV||,a) < Vv—1.
Since
(v—0)art > v(a— 3" (A0)),

we have
H*(Ag) > C\Flgrk.

Let 0 < & < pr/R and 1 > 0 be arbitrary. By the definitions of induced mapping and density, there
are d > 0 and A € A such that

FH4A) > (1-v)Ev ar” (4.20.9)
and for each a € A we have |a|+3 < r,
/ , | ADT 081V (58) < (v—1 ok, and (4.20.10)
JC(T,a, -
IVI|C(T,a,8) < nad* . (4.20.11)

For each a € A we will now construct a Lipschitz map f(a) : R” — R” that essentially expands
a hole to fill up E(r,cy), replacing V by a varifold whose mass we can estimate by (10) and (11).
Define a* = (1 —39/r)a,

Ei(a) = {x e R": |T(x) —a*| <285 (p1 —dist(T*(x),Y)),
IT(x)—z| <8, anddist(T*(x),Y) < p1},

Ex(a) = {x e R": |T(x) —a*| < 2/~ (py — dist(T* (x),Y)),
IT(x)| <r, anddist(T*(x),Y),< p1} ~ Ei(a),

Es(a) = {x € Ex(a) : dist(T*(x),Y) < p; =&}, and

E4(a) = Ex(a) ~ E3(a).

Let f(a) : R" — R" be the Lipschitz map which leaves R" ~ (E|(a) UE>(a)) fixed, projects E»(a)
radially from {a*} x R" ¥ to 9(E;(a) UE(a)), and expands E; () radially from {a*} x R" ¥ by a
factor of r/3(a).

Next we calculate the mass of f(a)4V. At each x € R" define the orthonormal vectors

dy radial to {a*} x R"k,

@, . ..,dy parallel to R x {0},
G4 radial to R* x {0}, and
Gyy2,...,ay parallel to {0} x R"*,

Then one may calculate

5! if1 <i<k andk € E|(a),

0 ifi=1 and x € Ex(a),
IDf(a)(x)(d;)] < < 2r/|T(x) —a*| if2<i<k andx € Ex(a),

1 ifi=k+1 and x € E4(a),

0 otherwise.



Thus, recalling 2.8,
|IF (a)sV[|(R") = / | Ak Df(a)(x) o S[dV(x,S)

< / r*&K| A DT o8] + 8%k dv (x,S)
Ei(a)

+ [ I8 TIR/P/ITC) —a [ V(e
[ @IS TR/ 1T () a0V (x,5)
+[|VI[(R" ~ Ei(a) UE2(a)].-
Using (4.20.10) and (4.20.11) and various simplifications gives
[1F @4V II(R") < (v—1+2v)or*
+(2r+8g! /IIS* T||[2r/IT (x) —ax || dV (x,S)
+IIVIIE(rP1) ~ E(r,p1—&)].
Integrating this over all a in A yields
[ @Il azta
< 3HA) (v —1+2v)art

(4.20.12)
+@ra8E ! [1Is= 71| [2r/1T @) - a' | d3a av(x.S)
+H AIIVIIE(rp1) ~ E(rp1 —&)]-
Now, since a* = (1+08/r)a and A € B;(0,r — 3), we have for fixed x
/' 2r/|T (x)—a* | dItka
Ja
</ 20/ IT () —a" [ (1 -+ 8/) 3 (420.13)
|T (x)—a*|<2r
< k2kgrk.
It follows from (8) that
IVIIE(p1) ~ E(r,p1 —€)] < k(v— o' ~'ER/p. (4.20.14)

Plugging (5), (4.20.13), and (4.20.14) into (4.20.12) yields

/A [ (@)s]|(R") dFtha = FC(A) (v — 1+ 2n)ar* + (2r +E)E yaurkk2 ark
+ Ak —L)ar*'ER/p.
Therefore, using (4.20.9), we conclude that there is an a € A such that
1/ (@#VI(R?) < [v—1+2n+ (14T v(2r + & yk2" + k(v — ()ER/priar.

Recalling that 1| and & were arbitrary and R/p < u~!

onV, u, k, and { so that (1 —{)/2 > yand

, we may choose M, §/r, and y depending only

I f(@V|IR" < [[V[[R" =27 (1 —y)r*. (420.15)



By 4.10 we shall have f(a) € E(V,c,w) if
[ (@)sV[|R" < exp[—w diam E(r,p1)]||V||R".

This is implied by
27 (1-Q(v=0)" > 1 —exp[—4wo],

which is implied by hypothesis (1). Since (1 —&)/2 > v, (15) contradicts hypothesis (6). O

4.21 Larger radii

The next two lemmas handle the case where the holes are large enough to be detected by the
smoothed mean curvature. This first lemma is a slight modification of [AW1 6.1], having rg as
the lower bound of radii instead of 0.

Lemma: Suppose

(DVeEN, 0<&<1l, 1<M<o, 0<rg<R<eo, TeG(nk)),and
V € Vi(R");

(2) Y is a subset of T+ with no more than v + 1 elements;

(3) (M+1)diamY =R

) ro < (3v)"'diamY

(5) R||8V|B(y,r) <E||V||B(y,r) whenevery € Y and ry < r < R; and

(©) [y IS=T||dV(x,S) < ||V|[B(y,r) whenevery € Y andrg < r <R.
Then there are Vi,V, € Vi (R") and a partition of Y into subsets Yy,Y1,Y» such that

(7)) V>V+1+V42;

(8) Neither Y| nor Y> has more than v elements;

(9) (M diamY)||8V;|/B(y,r) < 2M(v+1)(3vM)**Lexp(E)E||V|B(y,r) whenever j = 1,2,
yeYjandry <r <M diamY;

(10) [g,n)|IS—TI|dV (x,S) < M(3vM)* exp(§)E||V;|[B(y,r) whenever j = 1,2,y € Y; and
ro<r<MdiamY;

(1) V; > VL {x e R": dist(T*(x),Y;) < ro} whenever j = 1,2, and

(12)
[IV][{x - dist(x,y) < R}
oR¢
> Y {IIVIB(y.ro) /au(k)r§ : y € Yo}
n [|Vi]|{x : dist(x,Y)) < M diamY'}
o(M diam Y )k
n [|Va||{x : dist(x,Y>2) < M diam Y}
o(M diam Y )k

[(1+1/M)*+(v+1)/M]exp(&)




4.22 Density ratios

This lemma corresponds to [AW1 6.2]. It shows that a nearly flat varifold passing through several
vertically separated points must have either several layers or a high rate of mass loss.

Lemma: Corresponding to each 1 <A <2 and v € N, there is y > 0 with the following
property: Suppose

() VeQTeG(nk),Y CT,Y has no more than v elements, 6*(||V||,y) € N foreachy € Y,
0 <0 <R<o, diamY < YR, & < y°6, ® > 0 and
1/4v > 1 —exp(—400);

(2) R||®e+3V||B(y,r) < Y||Pe +V|B(y,r) and
(3) [y [IS=T||dDPe +V (x,S) < v||Pe+V||B(y,r) whenevery € Y and Y6 < r <R;

@) J{esy 7)< dist(r (0.7) <o) IS = TV (x,) < yar* and

(5) AsollVI{x:|T(x)| <r, dist(T*(x),Y) < 6} >=york for0 < r <.
Then

(6) M| ®eV||[{x: dist(x,Y) <R} > aR* Y {6 (||V|[,y) : y € Y}

Proof: It follows from repeated application of 4.21 and 4.17 to @, + V' that there is a'y; > 0 such
thatif 0 <y < 1, 79 = Y0, and (1), (2) and (3) are satisfied, then there is a partition Yy, Y1,Y2,...,Y;
of Y such that

diamY; <o fori=1,2,... and (4.22.7)

AR || @ « V|| {x : dist(x,Y) < R}

> Y {rg"l|ex VIB(y,r0) : y € Yo} (4.22.8)

+ ic_kH@g*VH{x L dist(T+ (x),Y;), 70, T (x)| < o}
From the definition of &g *l\_/land geometry, it follows that there exists ¥, > 0 depending only
on A and v such that if Y < ¥, and € < ¥?G then
A4 @e % VIB(rY0) = (V][ [T (x)] < yoh 4 |TH () =y <yo(1-271*)} - 4.22.9)
fory € Yy, and
A3 | @e V|| {x ¢ dist(T*(x),Y;) < vo,|T(x)] < o}
> |[VI[{x s dist(T (x),%;) < yoA™'/4|T(x)| < oA~ /%) (#2210

fori=1,2,...,].
It follows from (7) and 4.20 that there is a y3 > 0 depending on A and v such that if ¥ < y3 and
(4) and (5) are satisfied, then

MANVI{x T @)] < yoh 4%, |74 (x) — | < yo(1 -1~ 14)}
> oAk (V] y) (4.22.11)
fory € ¥y and
A4V Hx s dist(TH(x),Y) < Yo~ V4 |T(x)| < od~ /4
[[VI[{x = dist(T~(x),Y;) < T(x)| < } 422.12)
> Y {ac* A A (V] ],y) v € Vi

fori=1,2,...,].
Letting y = min(y;,y2,y3) and combining (4.22.8), (4.22.9), (4.22.10), (4.22.11), and (4.22.12)
gives the desired result. O



4.23 Integral density ratios

This lemma is analogous to [AW1 6.3]. It shows that a nearly flat integral varifold must have a nearly
integral number of layers all over.
Lemma: Suppose V;,Va,... € QL 0 < d < oo, T € G(n,k), 0;,€;,®; >0 fori =1,2,3,...,

limV; = limi — oo®y, x V; = dv(T), (4.23.1)
limeg;/o; = lim w;0; = 0, (4.23.2)

and for some neighborhood W of 0

lim ||8Pg, + V||W = 0, and (4.23.3)

lim Ag, o ||Vi|[W = 0. (4.23.4)

Then d is a nonnegative integer.

Proof: Suppose Vv is the smallest positive integer greater than d. Choose 1 < A < oo such that
M+2d < v. Let y be as in 4.22. Choose 0 < R < oo such that B(0, (A> +4iy*)R) C W.

For each i = 1,2,... let A; be the set of those x € B(0, (A — 1)R) such that 2|7 (x)| < YR and
0%(||Vi]|,x) is a positive integer. Let B; be the set of those x € A; such that

R13%, Vil B(x,r) < 7l[<be, *Vi[[B(x, )

and
Joo 15 =Tl #V(2:8) < vl «VilIBC, )
whenever 6 < r < R. From the properties of convolution,
[[Vil|(Ai — Bi) < (14¢€;/0;)||Pg, * Vi||[{x : dist(x,A; —B;) < c}.
By the Besicovitch covering theorem 2.2,

|| g, * V;||{x : dist(x,A; —B;) < o}

<y 'B(n) [R|8<1>gl. *V;||B(0,AR) +/ [|S —T||d®e, * Vi(x,5)] .
B(0,\R)
By hypotheses (1) and (3)
lim ||S —T|dDg, * V;(x,S) =0,
i—eo JB(0,AR)
lim|[Vi[|[B(0, (.~ 1)R) ~A] =0,  and
[—o0
lim ||6Pg, * V;||B(0,R) = 0.
[—00

Hence
lim ||V[|[B(0, (A—1)R—B;] = 0,
[—o0
and so
lim ViILB; = dv[T NB(0,(A— 1)R)]. (4.23.5)
[—o0

For eachi = 1,2,... let C; be the set of @ € TNB(0, (A — 1)R) such that

Ao Vil {x : [F(x—a)| < r|T+(x—a)| < 2yR} > —yar"



and

1S —=T1[dV (x,5) < your*
/{(x,S):|T(x7a)|<r,\Tl(xfa)|<2yR} =

whenever 0 < r < R.
By the Besicovitch covering theorem,

KT NB(0,(A— 1)R) =~ C]]
< ¥ B(K) [~ Ao, | Vil IB(O, (A +4v°) ' 2R)

+f IS =7]]dVi(x,5))
B(0,(\2+4v2)1/2R)

By hypothesis,
lim 8, ;|| Vi|[B(0, (A* +47")'?R =0 and
[|—00

lim IS = T||dVi(x,S) = 0,
=0 JB(0,(A2+4y2)1/2R)

so, recalling (5),
limV;LL B;NT~"[C}] = dv[T NB(0,(A— 1)R],

which in turn implies that

lim (VL B—inT~'[C)] = dv[T NB(0,(A— 1)R]. (4.23.6)

[—o0

Foreach z € T, let Y;(z) = A;N T~ '[{z} NC;]. Inasmuch as

lim ||, * Vi|[B(0,AR) = da(AR)",

[—00 -
we see that for large i

[|@g, * Vi||{x : dist(x,Yi(x)) < R} < kkﬂngk
for all z € T. By choice of A and 4.22, we see that for large i
YA (Villy) iy ey <A 2a <v

whenever z € T and Y is a subset of ¥;(z) consisting of no more than v elements. Therefore, if i is
sufficiently large,

YA (IVilly) sy € Yi(@)} <v—1
for all z € T. The definition of mapping varifolds and the properties of C; imply

ImLBNTCIR = [ T{0IVlly) :y € %) }aset

< (v—1)3[c]
< (v—Da((A—1)R)..

This combined with (6) impliesd = v — 1. [



4.24 Integrality

We conclude the first part of the proof of integrality with this adaptation of [AW] 6.4].
Theorem: Suppose 0 < B < o0, V|, V,,... € QI,

QlimV,, =V € QV, (4.24.1)
V]| (Q) < B, and (4.24.2)
(Q,[@e(m) * Vin|> /Py * [[Vinl[) = Aoy [Vinl | (R) /At () < B (4.24.3)

forallm € N. ThenV is integral.
Proof: From 4.19 we know V € RV (R"). For each pair of positive integers m and ¢ let A, , be
the set consisting of all x € R" such that

[[8DPg () * Vin|[B(x, 7) < ql[@emy * V[[B(x,7) (4.24.4)
whenever ¢ < r < 1, and
As(m) ! [Vin|[B(x, 1) >= qAt(m)|[V,|[B(x, r) (4.24.5)
whenever 0 < r < 1. By using Schwarz’ inequality, (2) and (3) yield
[18e(un) * Vinl|(R) < (R, [Py * Vinl*/ Peon) * Vin) [ Pe(m) * Vinl | ()] (4.24.6)
The Besicovitch covering theorem, (6), and the properties of Q imply
Vil (QLR" ~ A, ) < 87 'B(n)B. (4.24.7)

Let A consist of all x € R” such that for some ¢ € N there are x,, € A, 4 for infinitely many m with
X = limy e X Then (7) implies

IVI[(QLR" ~ A) = 0. (4.24.8)

Let A* consist of all x € A such that
0 < 8*([[V|],x) < o,
Tan*(||V|],x) € G(n,k), and
lim prot(—x)#V = 0*(||V||,x)v[Tan"(||V'||,x)].

Since V € RV (R") it follows from (8) and [AW1 3.5(1)] that

IVI[(QLR" ~ A*) = 0. (4.24.9)
Let a € A*, and let ¢ € N and ay,as,... be such that lim,;, .eca,, = a and a,, € A, 4. For each

positive integer j choose m(j) such that |a — am<.,-)| < j 'and

lim (u(j) 0 T(—x))4Viu(j) = }L‘g(ﬂ(i) 0 T(—x))# P (m(j)) * Vin(j)

Jj—oe

= 8“(IVIl,a)v[Tan* (||V ||, a)). (4.24.10)



With a view to applying 4.23 to p(j) 0 T(—a)#V,, ;) we calculate
limsup | ‘8¢8(m(j)> *#(1) Ot(fa)#vm(j) | |U(Oa 1)
J—oo

— timsup|[8(u() 0 T(~a))#(Pen()) * Vi |[U(0, 1)

j—»oo

= lir'nsupjk*1 18P (1)) * Vin( )| [U(a, )

j—

< limsup /" [[8De () * Vin( )| B (@), 27"

]

< limsup /' ql| P (j)) * Vin( )| B (@), 25"

j—»oo

< limsupjkflqzkjfkgekﬂ|V||aa) =0,

J—

where we used (5) and (10) at the end. Also, by (6) and (10),

Hmsup —Ajo(m(j)).m(j)/ il () 0 T(=a))#Vi(5[U(0, 1)

J—oo

= limsup —j* Ajoon())m()/ i1 Vin( [0 )

j—>oo

< Timsup — D)) m(j) /il Vin) By, 257

J oo

< timsup j*q|[Viu(j)|Blam(jy,2i ") At(m(j))

J—roe

< limsup j%q2"j*6(||V],@)At(m(j)) = 0

J—roo

Applying 4.23 to (u(j) o T(—a))svy(;) with 6; = jo(m(j)), &; = je(m(j)).and ©; = m(j)/j, we
conclude that 8(||[V||,a) must be a positive integer. Since this is true for ||V|| almost all a € R" by
(9), we have V € TV, (R"). O

4.25 Times of good behavior

As noted earlier, most of our estimates are in terms of rate of mass loss. Therefore we are very
interested in times where the rate of mass loss is small.

Suppose Vp € Q and let V,, ; and ||V;|| be as defined in 4.13 and 4.14. For every pair of positive
integers g and m define

P(q,m) = {t € Qu : (Q,|Pe(m) * Vo, |/ Pe(m) * | VimeI) (4.25.1)
—Ag(m)m! [Vin,e|[(R) /At (m) < g},

PP(g,m) = | J{[t,t+At(m)) : 1 € P(q,m)}, and (4.25.2)

PP(q) = {t€R": forallv > 0and M € N there exist m € N (4.25.3)
and s € P(g,m) such thatm > M and |t —s| <n}.

Proposition: Suppose Vp € Q. Then:

(a) Ifgom € N, and s, t € Q,, withs < t and

[Vins||(2) < (¢/16) exp(s —1), (4.25.4)



then
Ll ([s, 1] ~ PP(m,q)) <(2/q)(1—m™ )" [[|V I[(Q) = ||V, s

(@)

+2(L+m )|V (@) (1 = 5)exp(2(t —5))].

(b)
LYRT ~ U,PP(q)) = 0.

Proof: If r € [s,7] N Q,, then by 4.13 and 4.12(i)

L1V ey |1 (Q) = [V 11 (Q)] /At ()
< (=L m ), [Py * 8V o1/ Py * Vi 1])

(L) (2, [Py # 8V, PPy # 1V, 1D 2 1Vin (22

[V () 4 (1 =27 Agon) Vi 1 (R) /At ().
By 4.12(ii) and hypothesis (4) we have ||V, ,[|(2) < ¢/16. Thus whenever
(€, [Py * Vi / Pemy * [V |l) — A (), ] [Vin ]| () /At (m) > g

we can infer from (6) and 4.11(iii) that

L1V, 0 1) = 11V /(9] /At (om) < =(1 = m~)q/2.
Since by 4.12(ii) we have for all r € (s,1) N Q,,
[H m,r+At(m ||( ) ||Vntr||(Q>]/At(m) SZHVrer(Q)

< [Vinsl1(Q) exp(2(2 — 5)),
we must have, using (8) for r ¢ PP(g,m) and (9) for r € PP(g,m)

1V l[(Q)—(1 = m™*)(q/2)L" ([s,1] ~ PP(q,m))
+ (= 5)(1+m")2||Vins || (Q) exp(2(r —5))
2 [V e 1(€2).
This implies
L ([s,1] ~ PP(g,m)) < 2¢7 (1 —m ™) |V ([1(Q) = [V, 11(€)
+2(1 =) (1+m)| |V, [[(Q) exp(2(r —5))]

which proves (a).
It follows from 4.12(ii) that for any m € N with t € Q,,,

[V t[[(R) < exp(20)[[Vo[(Q).
Thus for ¢ € N such that g > 16exp(2¢)||Vo||(Q) we get from (5) that
L£([0,1) ~ PP(g,m)) < 4q'[1+2texp(21)]||Vo]|(Q)-
Recalling the definition (3) of PP(g), we see that
L([0.1] ~ PP(q,m)) < liminf L' ([0, 1] ~ PP(g,m))
< 4g 1+ 2eexp(20)] Vol |(Q).

Hence £!([0, t] ~ U,PP(g)) = 0 for all > 0, which proves (b).

(4.25.5)

(4.25.6)

(4.25.7)

(4.25.8)

(4.25.9)
(4.25.10)

(4.25.11)



4.26 Definition of V; and basic properties

We now make ||V;|| determine V; whenever possible, which we shall show is almost always.
Definition: Suppose Vy € Q and ||V;|| is as defined in 4.14(a). Let T € G(n,k) be arbitrary. For
any ¢t > 0 define V; € QV by

Vi(A) = ||Vl [{x = (x, Tan*([[V][];,x)) € A}

(4.26.1)
+ ||VIH{X : Tank(HVHhx) ¢ G(n7k> and (va) € A}7

whenever A € Gi(R").

By [Aw1 3.5(1) (a)], the second quantity on the right hand side of (1) is zero whenever V; is
rectifiable.

Theorem: (a) If V; in , then V; is rectifiable for almost all t > 0.

(b) If Vy € QI, thenV, is integral for almost all t > 0.

Proof: Suppose g € N, t € PP(g), and ||V;|| is continuous at . Then by the definition 4.25(3)
of PP(g) there exist sequences m; and t;, i = 1,2, ... such that m; € N, lim;_ocm; = oo, t; € P(q,m),
and t = lim; .. t;. By 4.14(g) we have

Vil = Qlim ||V 1] (4.26.2)

Since
{VeQv:|V|[(Q) < |Vi|(&)+1}

is compact by 4.1, any sequence {V,,, ;, }3>, will have a convergent subsequence, and the limit W
of this subsequence will be rectifiable by 4.25(1) and 4.19. Being rectifiable, by [AWI1 3.5(1)] W
is determined by ||W||, which is ||V;|| by (2). Hence all subsequences have the same limit W, so
limj—eo Vi, = W. Since ||W|| = ||V;|| and W is rectifiable, W is the same as the V; defined by (1).
By 4.25(b), almost every ¢ > 0 is in some PP(g), and by 4.14(f) ||V;|| is continuous at almost all
t > 0, so V; is rectifiable for almost all # > 0.

If Vo € QI, then the same argument as for (a) with 4.24 replacing 4.19 shows that V; is integral
for almost all # > 0. O

4.27 Motion on non-compact test functions

In this section we establish the inequality used to define motion by mean curvature on our sets A; of
test functions. Compact support test functions are the subject of 4.30.
Proposition: IfVy € Q, V; is as defined in 4.26, i € N, and ¢ € A;, then for almost all t > 0

D[|Vi|[() < 8(V;,0)(h(V;,-)). (4.27.1)

Proof: Suppose g € N,z € PP(q), d||V;||(w)/dt > —q, and ||V;||(Q) < ¢/16.
Let n > 0. Choose j € N so that

(1-50q//)(8(V2.9) ((V;,))+(2n/3) + (50q/ )37 [Vi 1(6)
<3(Vi,0)h(Vi,-)) +1

Suppose t,, € P(m, j) and lim,,_,« t,, = t. As was shown in the proof of 4.26,

QlimV,,, =V, (4.27.2)
m—oo

and V; is rectifiable.



From 4.18 and 4.7(i) we have

[ IB0V20) o) IV < Hnin (9, [P Vi /P [V ) <

) (4.27.3)
”111120 18V, (q)he(m)(vm,tm)) + (0, |CI>€(m) * Vin, | /q’e(m) * ||V, tn|[)| = 0,

and hence
- / B (Vi,.x)[*0(x) d||Vi [x > Timsup 8V, (Ohe(m) (Vim,s,,))- (4.27.4)

m-—oo

Since [S*(D¢(-)) dV,(')S is a ||V;|| measurable vectorfield, there are T € N and g € B, such that

2
/ \ [ 540 av s~ g(x)| o) dvillx < m3/16,. (4.27.5)
Since V; is rectifiable, at ||V;|| almost all x there is a unique tangent plane, so

[15- (Do) — ) Po(0) ! Vi (x.5) < /16, (4.27.6)
It follows from (2) that

lim [ |SY(Do(x)) —g(x)*0(x) " V., (x,5) < n?/16;. (4.27.7)

m—oo

It follows from (2), (3) and 4.8 that

lim [ g (Vin,1,) (%) - 8(X) [ Vi, [ = /h(Vz’X)'g(X)dIIVzllx (4.27.8)

m—oo

We may infer from (3), (5), (6), (7), and (8) that

[ 540000 h(v,2) v (x,5) +1/2

> limsup [ S(DO(x)) - ey (Vin, 1) (¥) Vi, g, (x,5).

m-—oo

(4.27.9)

Together, (3) and (9) say that

8(Vi,0)(h(V;,-)) +n/2 > limsup8(Vin,s,,,9) (he(m)))- (4.27.10)

m-—oo

It follows from the preceding argument, 4.9, 4.11(i), and 4.11(ii) that there are M; € N and
Ry > Osuch thatif m > M, |t —r| < Ry and r € P(m, j) then

L1V sy 1(9) = [V 11(9)] /At (m) < 8(V;,¢) (h(V;.-))|2n/3. (4.27.11)
and if r ¢ P(m, j) then by 4.12(ii)
11V ey 1) = [1Vim ()] /A1 (m) < 322V (9).- (4.27.12)

Since d||V;||(Q)/dt > —gq, there are M € N and R, > 0 such that if m > M, |r —t| < Ry, and
r € Q,,, then

[V, |[(©) < g/16, and (4.27.13)
Vi 1= (Vi ()] < gt — 1. (4.27.14)



Suppose M = max(M;,M;) and R = min(R;,R,,1/10), and suppose m > M, t —R <r < s <
t+R,and r,;s € Q,,. By 4.25(a), (13), and (14)

LY ([r,s) ~ PP(m, j)) < (2//)(1=m *) " g(s—r) +2(1+m *)(g/16)(s — ) exp(2(s — 1))]
< 40(s—r)q/j. (4.27.15)

Combining (11), (12), and (15) yields

Vi s[1@) = [V o111/ (s = 1) < (1=50g/j)(8(V;,0)(h(V;,-))|2n/3) + (50q/ j)3*||Vi] |(9)
<8(V:,9)(h(V,-))n.
Hence
LIVl 1(0) = IVl [(9)] /(s — ) < 8(V;,0)(h(V,, )+,

and so, since 1 was arbitrary,

DI[Vi][(9) < 8(V:,0)(h(V;,-)).

4.28 Upper semicontinuity of (V,y)(h(V;,-)) in V

The final step in this chapter is to pass from test functions without compact support to those with

compact support. But first we prove a semicontinuity result that will be needed for that final step.
Lemma: Ify € C3(R",R"), V), Vi,... € Vi(R"), VoL y € RV, (R"),

limsup;_.. ||V;||[{s : W(x) > 0} < o and lim;_.. ;L. W = Vo, then

limsupd(V —i,y)(h(V;,-)) < 3(Vo, w)(h((Vo,-))-

11—

Proof: Suppose the conclusion were false. Then we could choose 1 > 0 and a subsequence of
V; (labeled the same) such that

1im 8(Vi, ) (h(V;.)) > 8(vo, ) (h(Vo, ) +1. (4.28.1)

[—o0

It follows from (1), 3.4, and the weak continuity of 8V in V that there is B < oo such that
B = limsup [ [h(V;.x) Pyl)dl Vi
> [ (V.0 Py dl ol . (4.28.2)

Assume also that B satisfies
limsup ||V;|[{x : w(x) > 0} < B. (4.28.3)

[—o00

We cannot prove semicontinuity for y directly. Therefore we use the finiteness of [ [h|?yd||Vy||
to choose ¢ € C3(R",R") such that ¢ < y, sptd C {x : y(x) > 0},

8(Vo,w—9)(h(V,-)) > —n/4, (4.28.4)

and
sup{IDW(x) — DO(x)[2/[W(x) — 0(x)| : x € R"} < /4B, (4.28.5)
Note that (3), (5), and 3.4 imply

limsupd(Vi, y — ) (h(V;, ) <n/4, (4.28.6)

[—00



Now we StUdy 6(‘/!7¢) (h(‘/h ))
It again follows from the weak continuity of 8V in V that

[ I(Vo,2) o) ol < timint [ (Vi) Poa) dl1vx. (4.28.7)
Since [ S+ (D¢(-)) dVO(')S is a ||Vo|| measurable vectorfield and spt¢ C spty, there is

g € CJ(R",R") such that sptg C spt¢ and

2

J| [5* @werans?s e oo aalle <168

where we take the integrand to be 0 when y(x) = 0. Since VoL y is rectifiable, at ||Vo||L v almost
all x there is a unique tangent plane, and so

2

S| [5+ @0 av?s et wie) e

— [ 15" (Do)~ g) Py() ! Vo x.5)

Now [S*(Do(x)) — g(x)|?/w(x) is a continuous function on G (R") with support in
{x e R" : y(x) > 0} x G(n,k), so

lim [15-(Do(x)) —(x) Py() ! aVi(x.S)
= [ 15" Do) ~ gy~ Vo (x.5) “288)
<n?/16B.
Since sptg C {x € R" : y(x) > 0} we have
/£ B(¥o.0dl1Volx = tim i) 4289

= lim [ g(x)-h(V;,x)d][Vi|x.

[—00



We may calculate, using Schwarz’ inequality, (2) and (8),
/ SLDO)) -h(Vo,x) dVo(x,S)

/ (3)-h(V,0)dVo(x.S)

S (DO(x)) — £()h(Vo.X) Vo . 5)

)

< lim | g(x

[—00

(V) d¥i(x.5)
[ 155 (D0) ~ g0y dvo(e.s)]
[ Ihivo. ) w<x>d||v0||x]‘/2

< hmsup/SL Do(x)) - h(V;,x) dV;(x,S) (4.28.10)

11—

+limsup / — ST (D)) -h(V;,x)dV (x,S)

i—o0

( 2/163)1/231/2
< hmsup/sL Do(x)) - h(V;,x) dVi(x, S)

[—00

Hlimsup [ [ [54(D00) — () Py Vi, )]V

[ b0 Py avitx.9)] '+ n /4

< hmsup/SJ‘ Do(x)) -h(V;,x)dVi(x,S) +n/4+n/4.

[—00

Combining (7) and (10) gives
8(Y0,9)(h(Vo,)) > limsup8(V;,0)(h(V;,-)) =n/2. (4.28.11)

Finally, combining (4), (6), and (11) gives

8(Vo, W) (h(V —0,-)) = 8(Vo,y—0)(h(Vo, ) +3(V0, ) (h(Vo, )
> —n/4+1imsupd(V;,0) (h(V;,-)) —n/2

[—o0

> —M/4+limsup[8(V;, ) (h(V;, -))

[—0o0

=8(Vi,y =) (h(V;,-))] —m/2
> —n +limsupd(V;, y)(h(V;, ")),

[—o0

which contradicts (1). O

4.29 Motion on compact test functions

Proposition 4.27 applies to almost all times and to test functions in the sets A;. We now establish
the key inequality for all times and for test functions with compact support.
Theorem: IfVy € Q,V, is as defined in 4.26, y € C%(R",R*) andt > 0 then

(a) if D||V;||(y) > —oo then V,_{(x,S) : w(x) > 0} is rectifiable,



(b) ifVy € QI and D||V;||(y) > —oo then V,L_ {(x,S) : w(x) > 0} is integral, and

(© D|[Vi[|(w) < 8(V;, w)(h(V;,")).

Proof: Suppose 0 < r < s. For any T > 0, 4.14(b) implies that D||Vy||(y +TQ) has a finite
upper bound for 0 < A < 5. Since 4.27 applies for almost all A > 0, we may calculate

Wl w)= 1V, l1w)
= lim (V1w +72) = V.| (w+ 50)

< litrg(i)gf/rSDHVxH(wnLrQ)dk
< timinf [ 8 W) 0V ) + BV B G
< [ 80w (V3. )) dh+ timintr [ |V3](2)
< [ 0wt an,
where we have used 3.4 to estimate
8V, @) (h(2,7) < [VAll(@)

For each 0 < B < w let Eg C R consist of those u € R such that V,, is rectifiable and

8(Va, ) ((Vai,)) > —B. (4.29.2)
Forn > 0, let
Wy ={xeR" :y(x) >n}. (4.29.3)
Then for 0 < u < ¢ by definition
18VulWa = [ (Ve 0ld]vx, (429.4)

n

so by Schwarz’ inequality,
[ b Py dl Vil
2 _
> ([, mvlavl /[ vt 6209
Jwy Wh
2
=N [[18ValWa ]/ 11Val W
Since y has compact support, it follows by judiciously choosing ¢ in 4.14(b) that ||V, ||Wy has a
finite bound for 0 < u < t. Referring back to 3.4, we can conclude that for each 0 < B < oo there is
a0 < C(B) < o such that if ||8V,||Wy > C(B) then
S(VLHW)(h(Vm )) <-B. (4.29.6)

Suppose D~ ||V;||(¢) > —oo. By 3.4,

8(Vi: W) (h(Vai,)) < ||ValI(IDYI* /) (4.29.7)



and since |Dy|?/y is bounded with compact support, 4.14(b) implies that there is a finite upper
bound K for ||V||(|Dy|?/y) for 0 < u < t. Hence for any 0 < B < oo we see from (1) for0 < s < ¢

t
Ve[l (w) = [[Vs] [ (w) S/ —de+/s Kd\ (4.29.8)

[S,t] —Ep

< —BL'([s,7] —Ep) + K(t —s).

Hence |
L t|—E
limsupM <B7!|
—s

s—t

D™ |[Vil|(w) — K]. (4.29.9)

Suppose u,uz,... € (0,1) NEg and lim; u; = t. By 4.14(e), lim;_ ||V;;|| | W = ||Vs]| | w. Since
||V, | Wiy < C(B), [AW1 5.6] would imply that [lim;_... Vi, ]L Wy, is rectifiable, so

[lim V,,, ] W, (4.29.10)

[—o0

and V;L Wy, would be rectifiable. Now (9) implies that there is some 0 < B < oo such that [s, 7] NEp
is nonempty for all s < t, so v.L W, is rectifiable.
Similarly, if Vj is integral, [AW1 6.5] in place of [AW1 5.6] implies V;L_ W, is integral. The same
basic arguments hold if DT ||V;||(y) > —eo. Since 1 was arbitrary, conclusions (a) and (b) follow.
In regard to conclusion (c), if D||V;||(y) = —oo, we are done. Suppose D~||V;||(y) > —oo, and
letm > 0. It follows from the first part of this proof and 4.28 that there is0 < B < wcand 0 < s <t
such that whenever s < u < ¢ then

LY([u, 1] —Ep) < (t —u)n/2K, (4.29.11)
and if A € [s, t] N Ep then

3(Va, W) (h(Wy,-)) < 8(Vi, w)(h(V;,-)) +n/2. (4.29.12)

using (1), (7) , (11), (12) and the definition of K,
[Vl (w) = [Vl [(w) < / 3(Vi,w)(h(V;,-)) +m/2dA+ KdA
[u,t]NEp [u,t]—Ep
< (t—u) MV, ¥)(h(V;, ) +1/2
< (t=uw)[3(Vi, W) (h(V,,-)) .
Hence
D7{[Vi[[(y) < 8(Vi, W) (h(V;,)) +7.

Since 1 was arbitrary, conclusion (c) follows. The same argument works if D ||V;||(y) > —e. [



Chapter 5

Perpendicularity of mean curvature

We shall show in this chapter that if V' is an integral varifold and ||8V/|| is a Radon measure, then the
mean curvature vector h(V,x) is perpendicular to the varifold at ||V|| almost all x. This says nothing
about singular first variation, but there will be no singular first variation present in our applications
in chapter 6.

One may think of the mean curvature vector as pointing in the direction of increasing mass. On
a smooth manifold, mass does not increase in any tangential direction because of the local flatness;
hence the mean curvature vector is perpendicular to the manifold. We shall show that the varifolds
under study have a certan amount of local flatness, and then the integral density hypothesis will
imply that there is very little tangential variation in mass.

By definition, integral varifolds are locally flat in the sense that they have approximate tangent
planes almost everywhere, but this is not quite flat enough. Therefore we have adapted the method
of [AW1 chap. 8]: first we show that a nearly flat piece of varifold can be approximated with a
Lipschitz function, and then we show that this function is nearly harmonic if the first variation is
not too badly behaved. Well-known properties of harmonic functions give the desired additional
flatness.

The Lipschitz approximation theorem 5.4 will be used frequently in chapter 6 and promises wide
application in future studies. Therefore it is proved in fairly broad generality.

5.1 Definitions

Let A(n, k) be the family of affine subsets S+ a corresponding to S € G(n,k) and a € R".

Let  : R" — R* be an infinitely differentiable function such that % (x) is a decreasing func-
tion of |x|, spty C B(0,1), and x(x) = 1 when |x| < 1—1/100k. If 0 < R < oo, define (R,x) =
X(x/R). If T € G(n,k), define 7 (R,x) = X (T (x)/R). Set x(R,x) = x(x/R). f T € G(n,k), define
%7 (R, %) = 2(T(x)/R). Set

p = sup {[Dx(x)|, [[D*x(x)], [Dx(x)*/x(x)}

xeR"

B= /sz(x) dFkx.

Note that f > (99/100)c.. We will often use x? as an approximation to the characteristic function
of the unit ball. The square is technically convenient.
In several of the following theorems, there will occur the expression

[ b a Vi (5.1.1)
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where 1 < p < oo and ¢ is nonnegative. We extend the meaning of (1) when ||8V||sing > 0 by

18]/(¢)  when p =1
oo when p > 1.

[ oo dvix = {

5.2 Multiple valued Lipschitz functions

A nearly flat piece of an integral varifold may be essentially multi-layered. To approximate varifolds
with this behavior, we shall consider Lipschitz functions f : R¥ — M, where v € N and M, is the
quotient space of (R"~%)" under the equivalence relation (wy,...,wy) = (z1,...,zy) if and only if
(w1,...,wy) is a permutation of (z1,...,zy). Fory € R¥ we let (f(y)1,...,f(y)y) be any representa-
tive of f(y), and if f is differentiable at y, then we must understand Df(y); in the sense of [Df(y)];
rather than D[f(y),]. If we define F : R¥ — R* x My by F(y) = (y, f(y)), then we also define

DF(y); = Dy®Df(y), for j=1,...,V.
‘We further define

*.image F = {x € R" : x = F(y), for some y € R¥
and some j =1,...,v}.

The quotient metric on My is

. Y 1/2
w—z| = ngg(i; Wi = za(i) )

where IT is the set of permutations of v elements. There is a bi-Lipschitz imbedding of My in a
higher dimension Euclidean space, and the image of My is a Lipschitz retract of the whole space.
Therefore Kirszbraun’s theorem [FH 2.10.43] on the extension of Lipschitz functions applies to My,
but the Lipschitz constant of the extension may be greater than that of the original map by some
factor ¢(Vv).

5.3 Multilayer monotonicity

This lemma shows that if a nearly horizontal varifold passes through v vertically separated points
and has small first variation, then the varifold has at least v layers in a neighborhood of those points.
Lemma: : Corresponding to each A, § and v such that0 < A < 1,1 < & < e, andv € N, there
isy > 0 with the following property:
IfV € IVi(R"),Y CR", cardY <V, T € G(n,k),0 <R< oo, b €T, |b| <R,

ly —z| < E|T*(y—2z)| whenevery,z € Y, (5.3.1)
0“(|Iv]],y) € N fory € Y, (53.2)
Yio(Vily) :yer}>v, (5.3.3)
Jo 18TV (5.8) < 7IVIBOR) (5.34)

whenever 0 <r <R+ 1bl,y€Y,andb#0orv > 2, and

r|[3|[B(y,r) < ¥I[VI[B(y,r) (53.5)



whenever 0 <r <R+ |b|andy €Y, then

IV|[{x: dist(x—b,Y) < R} > AvoR*. (5.3.6)

Proof: Because of the behavior of the various quantities under homothety and translation, we
nay assume 7 =e; A...egand R = 1.

Suppose the lemma were not true. Then for each m € N in there would be V,,, € IV (R") and
Y, € R" and b, € T satisfying

ly —z| < E|T*(y—z)| whenever y,z € Y, (5.3.7)

0(|[Viul,y) € Nfory € Y, (5.3.8)

cardY <v, Y {6 (|[Viull.y) :y € ¥u} >V, (5.3.9)

/B( )IIS—TIIde(x,S) < (1/m)||Vin||B(y, 7) (5.3.10)
wr

whenever 0 < r < 1+ by,

,y€ Yy, and b, #Qorv > 2,
r|8Vin| B(y, r) < (1/m)||[Vin| [B(y, ) (5.3.11)
whenever 0 < r < 1+ |by| and y € ¥, and
||V [{x : dist(x — by, ¥) < 1} < AvaRE. (5.3.12)
Define R,, to be the supremum of those r < 1 for which
[|Vin|[{x : dist(x —ab,,,Y) < s} > ?»vgsk
for 0 < s < r. Condition (9) guarantees R > 0. Now let

Wi = u(1/Rp)4V —m,
Y =R"'Y,, and
Ap = {x: dist(x— by, Y,;) < 1}.
We will be concerned only with V,,L_A,,, so by cutting out and moving around chunks of varifold,

we may assume that there is some bounded set containing every A,,.
It follows from the definition of R, that

[Wanl|Am = Ava (5.3.13)

and (11) implies that
lim ||dW,,||A,, = 0. (5.3.14)
m—oo

To each Y, associate a v-tuple Z,, = (Ym1,---,tmv) such that {yu1,...,ymv} = Y, and
card{;j : ymi = ymj} < 0(||Winll, 1)

fori =1,...,v. Then, by the compactness theorem for integral varifolds [AWI 6.4] and the com-
pactness properties of Euclidean spaces, there are convergent subsequences (labelled the same)

Wl A,y — W € IV (RY),
b, — b, Zym — Z, A, — A, Y: —Y.

m



It follows from the definition of R, that
|W||{x: dist(x—sb,Y) < s} > Avas® (5.3.15)

for 0 < s < 1. By (14), W is stationary in A.

Incase v=1, b =0, and Y = {y}, we see that y € spt||W||. Hence 6%(||W||,y) > 1 by the
upper semicontinuity of density for stationary varifolds [AW1 8.6]. The monotonicity lemma 4.17
yields |[W]|U(y, 1) > a, which contradicts (13).

Otherwise, it follows from (10) that S = T for W almost all (x,S) € Gx(R"). Being stationary
in A, W must be of the form

W =Y [g:v(T +d;)LA], (5.3.16)
J

where ¢; € {0} UN and d; € R". We may suppose Y = {di,...,dy}. By (7),if i, j < vand d; # d;,
then |7, (d; —d;| > 0. Hence (15) implies Z}le gj > Av. But since W is integral, it must be true that
Y.¥_1q; > Av. Then (16) says that [|W||A > va, which contradicts (13) again. O

Remark: The essential difference between this lemma and [AW1 6.2] is that hypothesis (5)
involves r||8V (y,r)||B(y,r) instead of R||dV||B(y,r). This seemingly slight difference is actually
the key to chapter 6, for it gives rise to o’/ *=7) in (5.4.10) instead of a?, and this in turn permits
things to happen in finite time in 6.7. The proof shows why we are assuming a discrete range of

values for 8%(||V|,x) rather than a continuous range bounded below away from zero.

5.4 Lipschitz approximation

Theorem: Foreach p,v,ande with1 < p < o,v € N, and( < € < 1, there exists P with0 < P <
o such that if

VEIVi(RY), T =eA... e € G(nk), (5.4.1)
(v—1+e)a < [[V[[B(0,1), (54.2)
IV||B(0,3) < (v+1—g)a3t,

o’ = / [h(V,x) [P d||V]]x, (5.4.3)

B(0,7)
i :/ IS =TV (x,5), (5.4.4)

B(0,7)
1<q<oandu’ = [T @AV, (5.45)

B

then there are Lipschitzmaps f : T — My and F : T — T x M such that

F(z) = (z,f(z)) forz € T, (5.4.6)
|f(z1) = f(z2)| < c(V)|z1 — 22| forzi,22 € T, (5.4.7)
sup{|f(2)i| 1z € Ti = 1,...,v} < 4(u?/a)"/ ), (5.4.8)
and if
Y ={z€B(0,1): F(z) € B(0,1) and (5.4.9)

0 (||V||,F(2)i;) = card{j : F(z); = F(z);} fori = 1,...,v},
S =B(0,1)N *-image FNT ' (Y)



then
IVII(B(0,1) ~ X) +3*(B(0,1) ~ ¥)

- Plo?k/ k=) L B2 4 y9]  ifp <k, (5.4.10)
= | PIB? + 4] ifp > k.

Proof: The basic idea of the proof is that the points to which we can apply the multilayer
monotonicity lemma 5.3 cannot stack up more than v deep and are related in a Lipschitzian manner
in horizontal directions.

Let2/3 <A < 1land0 <y < 1 be such that

AMV+DGB -7 > (v+1—¢)3k, (5.4.11)
W2 =)k > vk — 47kt

and y works in 5.3 for A and v+ 1 with & = 2!/24. Let A be the set of those y € B(0,2) such that
o (|IVIl,y) € N, T*(y)| < /4 and

r[[8V|[B(y.r) < y||V|[B(y,) and (5.4.12)
[ Is=TIPav(x.s) < 7IVIIBG.r) (5.4.13)
B(y,r)

whenever 0 < r < 5. Define

B={xeB(0,2) ~A:0"(||V|],x) € N},
C=T(B). (5.4.14)
Suppose z € B¥(0,2) ~ C. Then for y € A, T(y) =z, and 0 < r < 5 we have from (13) and
Schwarz’ inequality,
[ lIs=Tllav(es) < yIvIBo:.»). (5.4.15)
B(yr)

Applying the multilayer monotonicity lemma 5.3 with b = z and R = 3 —y shows that if

Y6 (IVIlLy) :y e A T(y) =2} <V (5.4.16)

does not hold, then
[V|[B(0,3) > A(v+ a3 —7y)k. (5.4.17)

By the choice of A and yin (11), (17) would contradict hypothesis (2). Therefore (16) does hold.
Next, we putabound on |7+ (y)| fory € A. Letc = 4[u?/a]'/*+4) and suppose that |7+ (y)| > ©
for some y € A. Then by the monotonicity lemma 5.3 we get

IVI[B(y,6/2) > (2/2)(5/2)",
which certainly means that
/ ITH(0)|7d||V|lx > (@/2)(5/2)4

b(0,6)
>kt

which contradicts the definition of u. Hence

sup{|T*(y) 1y € A} < dfu?/o]"/ "+, (5.4.18)



Now define the set E to consist of those z € B(0,2) ~ C such that

YO (IVI.y) iy €A T(y) =x}=v

and define f : E — My and F : E — T x M, so that F(z); = (z, f(z);) € A and

card{j : f(z); = f(2)i} = 6*(|IV||, £ (2):)

fori =1,...,vand z € E. To see that F is Lipschitz, suppose z1,z2 € E. If |21 —z2| < /2, then the
components of F(z;) and F(z2) can be paired off so that |F(z1); — F(z2)i| < 2'/?|z— za], or else we
could pick v+ 1 points from F(z;) UF(z2) and apply 5.3 to get a contradiction to (3). Thus

£(2) = fG)] < [T IfG)i— fz)i2])?
1
<2271 — 2. (5.4.19)

Since | f(z):] < y/4 holds by the definition of A, we see that (19) also holds if |z; —z2| > /2, and

so f has Lipschitz constant 2v!/2 on E. We then use Kirszbraun’s Theorem as noted in 5.2 to obtain
Lipschitz extensions f : T — My and F : T — T x M, satisfying (6), (7), and (8).

The rest of the proof verifies (10). First, we estimate ||V||B. Suppose b € B. If it is (12) that

fails for b, then we can choose r(b) such that 0 < r(b) < 5,

IV||B(b,r(b)) > (1/2)ar(b)" and (5.4.20)

r(b)|[8V|[B(b,r(b)) = v[[V[[B(b,r(b)), (5.4.21)

either by choosing the smallest r(b) for which (21) holds and using monotonicity lemma 4.17 to

get (20), or otherwise using 8%(|V||,b) > 1 to get (20) and (21) to hold for the same r. Holder’s
inequality applied to (21) yields

r(b)” / (h(V,)["d[[V]x = v"[[V|[B(b,r(D)),
B(b,r(b))

s0, using (20)
IS —T|[*dV (x,8) > i(y"/2)our(b)* 7. (5.4.22)
B(b,r(b))

If p > k, then P can be chosen large enough so that either (10) holds trivially or else o0 must be so
small that (22) cannot hold and B is empty. Otherwise, if p < k,

r(b) < [zaﬂ/yﬂg] 1/(k—p)

and (21) may be replaced by

/ [h(V,x)|7d[|V||x > v7 [0/ 207)P EP) |V | [B(b, r(b)). (5.4.23)
B(b,r(b))

If (12) does hold for b, then either [T (b)| > y/4 or there is some r(b) with 0 < r(b) < 5 and

[ UIs=TIPave.s) = ¢lIVIB@. o). (5.4.24)
B(b,r(b))



Hence the Besicovitch covering theorem 2.2 implies
IVIIB < (4/v)7 / [T+ () 7d[|V [ |x (5.4.25)
B(0,2)
+B()y 720 Pl [ b
B(0,2)
B [ IS TIPav(xs)
B(0,7)
< (4/)7u7 4 B(n)y<r/k=p) (z/g)p/(k*p)(xkp/(k*p) +B(n)y B2,

but recall that the o term is absent if p > k.

Our next aim is to find out how much of B¢(0,2) is covered by less than v layers of A. Recall
that E is where A has v layers, and let Q = B;(0,2) ~ E. When G is any 3{* measurable subset of
B(0,2),

IVII[B(0,2)nT~1(G)] <[IV[[ANT~(ENG)]
+HIVI[ANT H(QNG)] +||VI|B.
Since A has no more than v layers,
VHNENG) > / | AL T 0S|dV (x,S)
ANT~1(ENG)
> / 1 —K[|S— T|[dV(x,5).

ANT~1(ENG)

Likewise, since A has no more than v — 1 layers over Q,
v—1HQNG) > / 1—k||S—T|[*dV(x,S). (5.4.26)
ANT—1(0NG)
Hence
IVIIB(0,2)NT~H(G)] < VIYENG)(+(v— )H(QNG)

5.4.27
+k/ 1S —T|[2dV(x,S) + ||V||B. (5:4.27)
B(0,2)

Now consider G = B¥(0,1). We see from (25) that ||V||B is small if o, B, and u are small. Thus we
can pick P large enough so that either (10) holds trivially, or else o, 3, and u are small enough so
that (2) and (26) imply that ENB(0, 1) is nonempty. Then by the multilayer monotonicity theorem
and (11)

IVI[B(0,2) > Avay(2 — )"
> va2k -4 g,
Hence, using (26) with G = B¥(0,2),
vo2t — 47 g < vHY(G) — 3H*(Q) + kB + ||V ||B.
Thus, for large enough P, we may assume

H*(Q) < 47*

I



Next, let 0 = ONB(0,1). Since H* almost every point of Q* is a Lebesgue point of Q*, and
since H*(Q) < 4~*a, we can for H* almost every w € Q* choose r(w) with 0 < r(w) < 1 and

H¥ QN B (w, r(w))] = 4 *ar(w)*. (5.4.28)

By the Besicovitch covering theorem 2.2. there is a collection B of disjoint balls B(w, r(w)) with
w € Q* and
HY(QNB) > H*(Q")/B(k). (5.4.29)

Using G = UB in (26) produces
IV]|(B(0,2) T~ (UB)) < vVHK(ENUB) + (v — K (QNUB) 4+ kB> + ||V ||B.

But the condition (28) guarantees that in each B(w,r(w)) there is x(w) € E with |x(w) —w| <
r(w)/2. Hence the multilayer monotonicity theorem 5.3 implies that

IV[[{y € B(0,2) : |T(y) —w| < r(w)} = Avaur(w)

and so
IV|[(B(0,2) N T~ (UB) > AvHK(UB).

Thus, using (27) with G = UB,
WHK(UB) < vH¥(UB) — HY(QNUB) + kB> + ||V||B. (5.4.30)

It follows from (26) that
H*(UB) = 4k H*(QNUB),

and so (28) becomes
H(QNUB) < (1 —A)vaH QN UB) + kB> +||V||B.

Using the properties of A,
HY(QNUB) < 2(kB>+||V||B).

Thence, by (28),
H4(Q") < 2B(k) (kB> +||V]|B). (5.4.31)

Now to verify (10). We have
B(0,1) ~X Cc BUANT1(Q")],
s0, using (25) with G = Q*,
[[V|I[B(0,1) = X] < ||V||B+ (v—1)H*(Q") + kB> (5.4.32)

Since Bk(O, 1) ~Y = QF, we see from (25) , (31), (32) and the earlier constraints placed on P that
there is P < oo such that

Plok/k=p) 4 B2 4 y4] if p <k,

IVIIB(O, 1) ~ X]+3*(Q") < {P[[32+y2] ifp >k,

which verifies conclusion (10). O



5.5 Tilt of tangent planes

Here we estimate the total tilt of the tangent planes of a varifold near a k-plane in terms of more
convenient quantities.
Lemma: IfV € IVi(R"), T € G(n,k), ¢ € C{(R",R"),p=1orp =2,

o = [ (V.2 P00 d|V b, (55.1
i = [ T Pow AV i, (5.52)
& = [ 1T (0 PIDOCPdV b, and (553)
B> = /HS— T|*0(x)*dV (x,S), (5.5.4)
then
B2 < ko3 41682 ifp = 1, (5.5.5)
B2 < 20+ 1682 if p = 2. (5.5.6)

Proof: Let g(x) = 0(x)>T*(x) for x € R". Then for S € G(n,k) we have
Dg(x) S = 20(x)S(T* (x)) - DO(x) +¢(x)*T -

and hence
O(@IIS=TIN* < 0(x)°T-S
< Dg(x) - S+20(x)[S(T*(x)) - 0(x)]
< Dg(x) - S+20(x)[|S—T|| |T*(x)| [Do(x)-
Therefore

JoURIS=TIPavV(ws) < 8V ()| +2 [ 6(olIS ~ 7117 (6) Do) |V (x.5)
< [8V(g)l+2[ [ IS~ TIPoePav(e.s) [ 1T (x)PIDoCRd| V).

If B? < 4BE, then
p* < 162 (5.5.7)

Otherwise, we must have B> < 2|8V (g)|. If p = 2, then we use Schwarz’ inequality:
208V(9)] < 2 [ Ih(V,) 1902 TV (558)

<2 [ v Podvilx [ [7-(0PowRd Vi,

and we get conclusion (6) by adding (7) and (8). If p = 1, then we must be more devious. For a
temporarily unfixed constant M > 0, decompose g into g + g2, where

o) = {¢<x>2TL<x> if |7 (0] < 1/M,
DT (x)/MIT ()] i [T > 1/M,

o) = {o if [T4(x)| < 1/M,
© 02T (x)/(1 = I/MIT- (%)) if |T(x)] > 1/M,



One may calculate that for S € G(n,k),

IDg>(x) -S| < 20(x)DO(x)|| T (x)] + ko (x)*
< [DOE)[P|T (x) >+ (k+ 1) (x)?
< DY) [P|T (x) > + (k+ DM T (x) 2o (x)?

when |T+(x)| > 1/M. Then
18V ()] < [8V(g1)]+[8V(g2)]
< (1/M)]|3V](@*)+ [ IDga() -5l (x.5)
< o/M+E+ (k+ )M
The value of M that minimizes this expression is
13V ()] < (2k+2)V3a?/32/3 4 €2 42723 (k4 1)V /3a2/3,2/3,

which, together with (7), implies conclusion (5). O

5.6 Blowing up and shrinking down

This is the basic theorem for getting improved flatness. It shows that if there is little mean curvature
in a region compared to the bumpiness of the varifold, then a smaller region must be flatter. The
basic idea is to blow up the varifold. more vertically than horizontally, to get a harmonic function,
rather than just a tangent plane.

Theorem: Ifv € N then there exists a constant ¢4 < oo such that:

If0 < 0 < 1/18 and M < oo then there exists 0 < M < 1 with the following property:

If

VeIVi(R"), a€R", 0<R<e, AcAnk), (5.6.1)
(v—1/2)a(R/9)* <||V|[B(a,R/a), (5.6.2)
IVIB(a,R/3) < (v+1/2)a(R/3)",

IVI[{x € B(a,R) : 6(||V[],x) # v} < MR, (5.6.3)

dist(a,A) < MR, (5.6.4)

R*2 / dist(x,A)2d||V|]x = i < 1, and (5.6.5)
B(a,R)

R |8V||B(a,R) = o < Mu?, (5.6.6)

then there is A* € A(n,k) such that

(BR) 2 / dist(r, A*)d||V||x < 20%2. (5.6.7)
B(a,0R)

Proof: Fix v, 0, and M and define
3 = 81[2+2(c(v) + 1) ve39* 2ka/ (k+4)], (5.6.8)

where c3 is the constant appearing in (48) and (49) below.



Owing to the behavior of the various quantities appearing in (1)-(7) with respect to transforma-
tion by homothetities and Euclidean motions, we see that were the theorem false there would exist

T € G(n,k) and to each i € N there would correspond 7;, V;, and a; such that
p

limn; =0,
[|—00

V; € IVi(R"), a; € T 1(0),

Vil |B(a:,3) < (v+1/2)a3k,

Vil {x € B(ai,9) : 64(|IVill,x) # v} < 9,
lai| <9y,
072 [ disx TR AVIe =47 <
B(a:,9)

91|18V |B(a;,9) = oy < My,

and for every A* € G(n,k)

(99) -2 / dist(r, A2 d||V|[x > c30%2.
B(a;,90)

It is not too hard to see that these conditions imply that

lima; = 0 and

[—o0

limV;L_U(a;,9) = vv(T NU(0,9)).

For eachi € N we let
B = [ lIs-TIPav(xs)
B(0,7)

and we note that (15) implies y; > 0.

(5.6.9)

(5.6.10)
(5.6.11)

(5.6.12)

(5.6.13)
(5.6.14)

(5.6.15)

(5.6.16)

(5.6.17)
(5.6.18)

(5.6.19)

We apply the Lipschitz approximation theorem 5.3 with € = 1/2 to obtain a real number P and

mappings f : T — M, such that

F(y) = O fi(y)) fory € T,
1fi(y) = fi(@)| < c(V)ly—z|fory,z €T,
if C = B(0,1), D = U(0,1), and
X; = CN*-image FNT(Y)),

Yi = {y € D: 6" (|Vill, i(y)m) = card{j : fi(y); = fi(¥)m}
and f;(y)m € B(0,1) form =1,...,v}

then
VI(€ ~ X)+3¢ (D ~ 1)
_ [ PUO M) B2 42 itk > 1,and
= Pl 2] itk=1,

sup{|fi(¥)m| sy € Tym =1,...,v} < 4922 /o) 1/ k52,

(5.6.20)
(5.6.21)

(5.6.22)

(5.6.23)

(5.6.24)



From (14), (15), and the tilt lemma 5.5 with ¢ = (8, ) we calculate
B < (9 M)A (922) P 4 16(p /8)°9 %42
< [9*M?3 4 952p2 /2] (5.6.25)
Therefore, there is a positive real number N so that for all i € N we have

sup{B7,||Vil|(C ~ X;) +3“(D ~ Y;)} < N (5.6.26)

Since F; and f; are Lipschitz, we use Rademacher’s theorem [FH 3.1.6] to see that F; and f; are
differentiable at ¥ almost all points y € 7', and by (21)

IDfi(¥)m| < c(v), IDE;(y)m| < c(v)+1 (5.6.27)

form =1,...,v. Moreover, we see from (22) and the integrality of V that

[ s avites) = [ ¥ i), image DEG)) DRG0 (5:628)

im=1

whenever { is a bounded Baire function on G¢(R").
We make the following estimates for sufficiently large i: By (28) and the definition of y;,

| E10)nPay < [ F 0l A DF() a3

rm

< / dist(x, )2 d||Vi||x (5.6.29)
. 9212“%,
By (20), (27), (25), and (26),
/ L IDA0nfasty < / L IDFi(y)nimage D)y ~ T a3
< (V) +1)? / X llimage DF () — || AcDF ()| 03¢
< (c(v)+ 1)2/X_ IS —T|[>dVi(x,S) (5.6.30)

< (e(v)+ 1)2N,ui2.

By (24) and (26),
Y1 £ ml? d3Ey < 16v[9F 42 /o CFINLZ. (5.6.31)
p~y; ™
By (27) and (26)
/ Y IDfi(y)m|? dF*y < c(v)*Nyg. (5.6.32)
p~y; "

We see from these estimates, (9), and (14) that
1imsupy;2/ (|fi]* + IDfi|*) dH* < oo, and (5.6.33)
[—o0 D

lim sup ;> /D fi2doeE < 942, (5.6.34)

[—o0



Using the same reasoning that is well known in the case of single-valued functions, passing to a
subsequence if necessary, we may find an M, valued H*|_ D summable function 4* such that

1im/ I — 2 a9t = 0. (5.6.35)
i—oo /D

It follows from (12) that 4* is single-valued, i.e. there is a T valued H¥_ D summable function &
such that #*(y) = (h(y),...,h(y)). Clearly, by (34),

lim / 2 dk < 9k+2, (5.6.36)

i—o /D

We will now show that 4 is H*_ D almost equal a harmonic function on D. In order to do this, it
will suffice to show in view of (35) that for each smooth function ¢ : D — T+

timg; ! [ DA DY) a3y = 0. (5.637)
f—ee D m
Fixing 0, let
B = sup{|¢(y)| +[Do(y)| : y € D}, (5.6.38)
ap; = / ZD fily (y) dFty, (5.6.39)
DY,
a; = /Y Y Dfi(y)m-Do(y) - [image DF(y)m - (DO(y) o T)]| Ak DF;(y)m| dgt, (5.6.40)
az; = /Y Zimage DF;(y)m - (DO(y) o T)| Ak DF; ()| dFHFy — 8Vi(¢ 0 T'), and (5.6.41)
ag; = Vi(ooT). (5.6.42)
Note that
;! / ZDf, m-0(y) dFHEy = pi! Za,, (5.6.43)

We now estimate the four quantities a;; for large i : using (27) and (26) and (38)
la1i| < c(v)BNy;. (5.6.44)

Using ¢, as in [AWI 8.14] and (30),

lani| < B/ Y [IDfi (3 P a3y

Iﬂ’l

< ¢,B(c(V) + 1)’ Ny (5.6.45)
Using (28) and (26),
las ] < | / D(60T)(x) - dVi(x,S))|
C~X;
< B||Vi[|(C ~ Xi) (5.6.46)
< BNV?.
Using (15) and (17)

lag ;| < 9FF2MBy. (5.6.47)



Because 1; — 0 and y; — 0, (37) holds and # is harmonic. As is well known [FH 5.2.5], there is a

positive real number c3, independent of 4, such that when |y| < 1/2

sup{|4(0)|[IDh(0)|[} < ea( [ 1 a0tt)'* and
1/2
h(3) = (0) ~y-DH(O)] < e [ Wa3¢)" Iy
Whenever i is sufficiently large, we let

Li(y) = y+uiy-Dh(0)  foryeT,
Ki(x) = Li(T (x)) +pih(0) ~ forx € R",
A = image K; # A(n,k).

If x € C then
x—K;(x) = T*(x) — uih(0) — ;T (x) - DR(0),

so that, using (48) and (36)
dist(x,A]) < |x— K;(x)]
< dist(x, T) +2¢39%+2)/2y;.
IfyeY,andm=1,...,v then
Fi(¥)m = Ki(Fi(y)m) = fi(y)m — pih[h(y) — h(0) —y- Dh(0)]
so that, using (49) and (36), for |y| < 1/2

L i), A1) < 2105) it )+ 2930 2

Heading into the home stretch, we have
/ dist(x, A2 d||Vi||x < / dist(x, A7)2d||Vi||x
B(0,96) B(0,90)NX;

n / dist(x,A7)2d||Vi]|x.
(C~X;)NB(0,96)

Using (28), (56), and (27),

[ dista Pl [ LAt ARGy
B(0,90)NX; B(0,90)nY;

+1Um )= i (3) P 9y
+ve39522 / |y|4d3{ky} .
B(0,90)

By simple calculus,
[ ol sty = (ray/ -+ 4)(90)
BK(0,90)

(5.6.48)

(5.6.49)

(5.6.50)
(5.6.51)
(5.6.52)

(5.6.53)

(5.6.54)

(5.6.55)

(5.6.56)

(5.6.57)

(5.6.58)

(5.6.59)



Define
Z;={z € B(0,99) : [T*(z)| > u"/*+2)} (5.6.60)

Then, using (54) and (60)
[ dsearavizs [ TP +8ET RV
(C~X;)N1B(0,98) (C~X;)NB(0,98)
2/ (k+2
<2 [ [T @ PVl i+ 8392 VI (C ~ X)),
(5.6.61)
We shall now show that for sufficiently large i
1Vil|Zi < (98) . (5.6.62)

Suppose not. Then it follows from the Besicovitch covering theorem 2.2 and (15) that there is z € Z
with 6%(||Vi||,z)1 such that for 0 < r < |T*(z)|/2,

|18Vil[B(z,r) < B(n)]|8Vi|[B(a:,9)[|Vi|[B(z,r)/[|Vil|Zi

< B(n)Mp79*11;72(90) 7 4||Vi||B(z, 7). (5.6.63)

Letting y correspond to A = 1/2 and v = 1 in the monotonicity lemma 5.3, we have, for sufficiently
large i,

F|3Vil[B(z,r) < (1“2 2), (5.6.64)
||[6Vi|[B(z,7) < Y(||[V|B(z,r).

So by the monotonicity theorem 5.3,
1Vil[B(z, |T*(2)/2]/2) > (0/2)|T(z)[*27". (5.6.65)
Recalling the definition of ,u% from (14) and the definition of Z; from (60), we have

O 2t > (/2)|T* (2)[F727%2
> (o/2)p2 2, (5.6.66)

which contradicts lim; ... u; = 0. Therefore (62) holds.
Combining (57), (58), (35), (59), (61), (26), (62), (9), and (14) yields

lim sup?(99) 2 / dist(x, A% d||Vi|[x
e B(0,70) (5.6.67)
< [2+2(ev) + 1) ve39 ka/ (k+4)](98)4(98) *2,

which, together with (36) and (48), contradicts (8) and (16). L]
Remark: The theorem remains true if hypothesis (6) is replaced by

R+ / Ih(V,)d][V]|x < 2. (5.6.68)
B(a,R)



5.7 Flatness

Theorem: IfV € IV, (R") and ||V|| is a Radon measure, then for V almost all (y,T) € Gi(R")

R / Ih(V,)2d||V]|x < V2. (.7.1)
B(a,R)

Proof: For V almost all (y,T) we know that

o“(IIVIl.y) € N, (5.7.2)
Tan“([[V[].y) =T, (5.7.3)
h(V.y) e R", (5.7.4)

and hence for V almost all (y,T),
rhl?or_kHVH{a € B(y,r) : 65(||V[],y) # 6*(|IV[,x)} = O, (5.7.5)
lim 2 / 7 (x—)[2d||V|}x = 0, and (5.7.6)

B(yr)

sup {r ¥||8V|[B(y,r)} = B for some B < co. (5.7.7)

0<r<l1

Suppose y and T satisfy (2)-(7). Assume y = 0, let v = 6%(||V|[,0), define

2 : —k—2 : 2
= f dist(x,A)=d||V 5.7.8
ury = inf v (/ g AV (578)
B(y,r

and let the infimum be obtained for A(r). By the existence of a tangent plane at y,

lim v~ 'dist(0,A(r)) = 0 and (5.7.9)

F—o0
lim r2u(r)? = 0. (5.7.10)

r—o0

We wish to show that lim,_q ! y(r)2 =0,
If limsup, o7~ 'u(r)? > 0, then there is € > 0 such that for arbitrarily small v

ru(r)? > e (5.7.11)

Choose 8 < ¢;* and let M = 8 %3¢~ !B. Let n be as found in 5.6, and choose Ry > 0 so that 5.6
(2), (3), (4), and (5) hold fora = 0,0 < r < Ry, and A = A(r). Choose m € N so that

0(="/2eR, > 1. (5.7.12)
Suppose 0 < r < 8"Rg and r~'u(r)> > €. By the minimality of A(r)
R 2u(r)? < (r/0) " 2u(r/0)>. (5.7.13)

Hence
(r/0) 'u(r/6)? > o<t (5.7.14)

We carefully choose M so that

(r/0)*F1||3V||B(0,r/0) < Mu(r/6)?, (5.7.15)



which is hypothesis (6) of 5.6. Hence 5.6 says that
u(r)? < c30%u(r/e)?, (5.7.16)

or, by choice of 0 and u(r)?,
(r/0) 'u(r/0)> > 67'/2%. (5.7.17)

Thus we may repeat this process until we get p € N with p > m, ORy < r/6” < Ry, and

(r/6") u(r/6P)? > 077 % (5.7.18)
But by the choice of m, we then have

u(r/6P)? > OR0 ™/ %e > 1,

which contradicts u(R)? < m for R < Ry. Hence lim,_or—'u(r)> = 0.

It remains to replace A(r) by T. We do this by comparing A(r) and A(r/2). For each r > 0,
let A(r) = T(r) 4+ b(r), where T(r) € G(n,k) and b(r) € T(r)*. For small r, where V is nearly a
k-plane, a little geometry shows that for some constant ¢ we must have

|b(r) —b(r/2)| < cvu(r) and
T (r) =T (r/2)I| < cu(r).
Because there is a tangent plane at 0, clearly

limb(r) =0,  limT(r)=T.

r—0 r—0
Thus, when u(s)? < s forall s < r

() < Y er2 "u(r/2")

m=0

< Z cr?2273m2 < 96312 and

m=0
IT(r) =TI < ) cu(r/2™)
m=0
< i crt/227m/2 < 4epl/?,
m=0
Hence A(r) is close enough to T that 7~ u(r)> — 0 implies
tim 43 / ()2 d||V|Jx = 0.
B(0,r)

O
Remark: When ||8V||sine = 0 and H(V,-) is locally square integrable with respect to ||V'||, then
r~*=3 may be replaced by r—*=4+3 for any § > 0.

5.8 Perpendicularity
Theorem: IfV € IV, (R") and ||8V || is a Radon measure, then

T(h(V,y)) =0 (5.8.1)



forV almost all (y,T) € Gr(R").
Proof: To prove (1), it is sufficient to show that

lim %8V (x(r,- —y)w) = 0 (5.8.2)

r—0

forevery w € T with |w| = 1.
From chapter 2 and 5.7 we know that V almost all (y,T) € G¢(R") satisfy

h(V,y) € R", (5.8.3)
o“(IV[,y) €N, (5.8.4)
Tan*(||V||,y) = T, (5.8.5)
sup {r X||8V|/B(y,r)} = B for some B < oo, and (5.8.6)
<r<1
}iil(l)r’k’3 / |7+ (x)|*d||[V||x = 0. (5.8.7)
B(4,r)

Suppose (y,T) satisfies (3)-(6), w € T, |w| =1, and ¢ > 0. We may assume tbat y = 0 and
T =eA...\e. Letv = 0%(||[V|],0). For sufficiently small » > 0 we have:

(v—1/4)ar* < ||V|[B(0,r), (5.8.8)
IVIIB(0,3r) < (v+1/4)(3r)", and
/ T ()P d|V]|x < erk™3. (5.8.9)
B(0.9r)

Letf:T — Myand F : T — T xM, be the Lipschitz approximations constructed in 5.4, scaled
down to B(0,r), and let X and Y also be as in 5.4.
Let {(x) = x(r,x)*. From 2.9 we have

SV (Cw) = /Dg(x)®w-SdV(x,S), (5.8.10)
and by symnetry we have
V/TDC(y) -wdHky = 0. (5.8.11)
To connect (10) and (11) we define quantities ay,...,as as follows:
o = /DC(x)®w~(S—T)dV(x,S), (5.8.12)
a= [ DL-walvi

)X

B(0,r)
@ = ./XDC(x)-w(l — ARV (x,S),
ai = [ LIDLF () ~DLW)] - wdd'y, and

as = / vD{(y) - wdH*y.
BK(0,r)~Y

By (10), (11), and D{(x) @ w-T = D{(x) - w,

SV(Cw) = a1 +ax+ a3 +as +as. (5.8.13)



Using the tilt lemma 5.4 with 0(x) = x(87,x), p = 1, & = B(8r)k from (6), x> = er**3 from (9),

{2 = (p/8r)*er**3 from (9) and the properties of  we get

[ Is-TIRaV(s) < (B8R (e 4 (e
B(0,7r)
< (32/34k£]/3 +p28/4)rk+l.

We estimate: using |S(w) —w| < ||S— T||* and (14),

@l [ @o/lls-TIPav(xs)
B(0,r)

< 2p(B*4ke! 3 1 p?e/a)rk,
using (5.4.10) with appropriate scaling, (6), (9), and (14),
|as| + |as| < v(2p/r)P[(BT*r)K/ &) 1 (B2/34ke!/3 1 p2¢ /4)r + (p/8)%er|rk;
using |1 —|[MT 0S|~ < k||S—T|* and (14),
jas| < (2p/r) (B *4€' 7+ pe/a)

and using the properties of ), (9), and F (y)m-w =y w,

sl = | | ZIDEO5/ b1 DLEOIFO/ PO w5y
< [ ZI0DE0) ~ DEEm /b

+ IDEE X))y (" = [F )|~ |3y
< J X sup (DX} bl = ~IF () |

+5611D5{DC(X)/IX\}I Y = F (y) —m] [d3¢*

< [ /AT WP+ p/AITH 0PV
B(0,r)
< 6peritt

The estimates (15)-(18) are all of order no more than 81/3rk, soas€ — 0,

lim &V (% (r,-)w) = 0.

r—0

(5.8.14)

(5.8.15)

(5.8.16)

(5.8.17)

(5.8.18)



Chapter 6
Regularity

In this chapter we investigate the regularity of integral varifolds moving by their mean curvature.
Because of the close relationship to parabolic partial differential equations, in particular the heat
equation, one would expect that such a varifold would be an infinitely differentiable manifold, except
perhaps on a set of measure zero where several sheets join. We shall prove in 6.13 that an integral
varifold moving by mean curvature has the desired regularity, but only under the hypothesis that the
varifold has unit density almost everywhere at almost all times. Indeed, it is not even known if a
stationary integral varifold, i.e. one with zero first variation, is regular when multiple densities are
permitted. The next section describes an example showing the problems stemming from multiple
densities. The existence theory of chapter 4 is not yet known to produce varifolds with unit density,
as remarked in 4.9. However, the physical surfaces that varifolds model always seem to have unit
density.

The idea of the proof is to show that a flat enough piece of a varifold moving by its mean
curvature can be represented as the graph of a Lipschitz function; the theory of parabolic partial
differential equations then quickly gives the infinite differentiability. To get the Lipschitz represen-
tation we show that surplus mass quickly disappears, that a mass deficit means holes which cause
the varifold to pop like a soap film, and that otherwise things tend to average out, analogous to the
diffusion of heat.

6.1 A multiple density example

We will construct an integral varifold V € IV, (R?) with bounded mean curvature such that there is
a set A € R? with ||[V||A > 0 for which no element x of A has a neighborhood in which V can be
represented by the graph of a functionl even a multiple valued function.

It is well known that a catenoid has zero mean curvature. Having in mind a radius R > 0 and an
upper bound B for the mean curvature, one can take a catenoid with a very small central hole and
gradually bend the two sheets together away from the hole to get a varifold that has mean curvature
bounded by B that is a double density plane outside radius R, and has a hole in the middle.

To construct V, start with a double density plane in R?. Remove a disjoint collection of disks
whose union is dense in the plane yet leaves behind a set A of positive area. Replace each disk
with a section of bent catenoid with a hole so that the edges match smoothly. The resulting integral
varifold V has integral densities and bounded mean curvature, yet if x € A, then V has holes in every
neighborhood of A and hence cannot be represented as the graph of a function.

This example is not a varifold moving by its mean curvature (the construction does not work for
zero mean curvature), and it would mostly instantaneously vanish under the construction given in
chapter 4, but it cannot yet be ruled out that some slowly changing version of V would be moving by
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its mean curvature. In any case, V does show the need for the unit density hypothesis for the method
used in this chapter. Note that in V' the holes are surrounded by single density, and the bad points of
A are double density. By eliminating the double density, we eliminate the possibility of holes with
small mean curvature.

6.2 Regularity and square integrable mean curvature

It was shown in [AW1 chap. 8] under the unit density hypothesis that a k-dimensional varifold is
almost everywhere a Holder continuously differentiable manifold if the mean curvature is locally
integrable to a power greater than k. We know from 3.4 that a varifold moving by its mean curvature
has locally square integrable mean curvature. Hence the above result gives some degree of regularity
only for k = 1.

To see what happens in higher dimensions, note that a k-sphere of radius A has mean curvature
k/R and hence total squared mean curvature of k(k +/)oR*~2. Thus for k > 2 one can scatter
infinitely many tiny spheres densely throughout space while keeping the mean curvature square
integrable. The support of the varifold would be the whole space, so there would be no chance of
regularity.

We can prove a regularity theorem for a varifold moving by its mean curvature because tiny
spheres and like things quickly wipe themselves out.

6.3 Clearing out

This lemma shows that a region with little mass in it quickly becomes empty.
Lemma: If2 < m < oo then there exists ¢(m) > 0 such that if V; is an integral varifold moving
by its mean curvature,

0<M < oo, fh € RT, 0 < Ry < oo, aeR", 6.3.1)
1—|x—al?/R? for0<|o—al <R
o(x) = k—al’/Ry  for0 < o—al <R 632)
0 for |x —a| > Ry,
[1Viol(0™) < MRG, (6.3.3)
1 > to+c(mm¥*®2MR:  and (6.3.4)

R% = Ré—4k(l‘1 —t())7

then
Vi, |B(a,R1) = 0. (6.3.5)

Proof: We will use a fast shrinking test function, similar to the barrier function of 3.7. Mass
near the edge will be left behind, and mass in the interior must have high mean curvature, which will
wipe it out.

Because of the behavior of the various quantities under translation and homothety, it suffices to
prove the lemma with 7o = 0, Ry = 1, and @ = 0. We shall lete = 1/(k+2m).

For 0 < t < 1/4k, define R(¢) and ¢(z,-) : R* — R™ as follows:

R(t)* = 1 — 4kt (6.3.6)

R = x> if0 < |x] <R(r)
0ltx) = {o it [x| > R(1).



Also let E(¢) = ||Vi]|(9, (z,-)™) . In what follows, ¢ always refers to the time varying function just
defined, and & means &(¢).
By 3.5,
B < (V0" (h(Vi, ) + | V] [(36" /o), 6.3.7)

so by 3.2(3) and the perpendicularity of mean curvature,

DE(1) < — [ h(V.0)0"(1,)d| Vi

(6.3.8)
+/h(Vt,x))~D¢m(t»X)dHVzIIX+HVtII(3¢”’/3t)~
By the definition of mean curvature in 2.9,
/h(v,,x) DO (1,2)d|[Vi||x = —8V (Do™) (6.3.9)

_ _/D2¢’"(t,x)-Sd\/,(x,S)
= [[lmOm— 1§ 2(0.2) (x2.3) - 200" (1,01 - SV (x.5)
= [ —rmOm = 1)§"2(0,2)[3) P — 2™ 1,) 4V, (5).
Since 9¢™ /ot = —4kmd™ L, we have
DE(1) < — [ Ih(V;.x) P9 (1, Vi

—4m(m— 1)/IS(X)|2¢””2(t7x)dW(x7S) (6.3.10)
m—1
—2km// (t,%)d||Vi| .

We wish to show DE(1) < —c&(¢)!~2¢ for a yet to be determined constant c. If not, then we will
have, for some ¢,

[ bR alvlle < c&0)' >, 63.11)
/ IS() PO 2(1,%) AV, (x,S) < c&(r)' %, and
[ e divii < cq0)' >,

It follows from the Besicovitch covering theorem 2.2 that there is a point b € R" such that
0(|[Vill.) > 1 and

/|h(v,,x)|2q>m(t,x)c1||v,\|x<3cB(n)<“;2e / o™ d| Vil (6.3.12)
B(b,r) B(b,r)
/ 1SC)P0"2(t,x) AV, (x,S) < 3¢B(n)E % / o d|[vill, (6.3.13)
B(b,r) B(b,r)
[ e lexdmi<acme > [ omdul (63.14)
B(b,r) B(b,r)

for every 0 < r < co. From (14), as r — 0, we see that 0(¢,b) > £2¢/3cB(n).



Now consider V;L_ ¢™. If g is a test vectorfield, then
(VL o™ (g / Dg(x) - SO (¢,%) Vi (x, 5) 6.3.15)
_/D (1,2)g(x)) - S — g(x) © D" (¢,x) - SAV; (x, S)
= /*h(l,X) -8(x)0"(2,x) — g(x) - S(DY™(1,x)) dV; (x,S).
Therefore, since D™ (¢,x) = m¢™ ' (¢,x)(—2x),

IBVILoMIBBr) < [ IR, 01" (10| Vi
B(b,r)
s [ Is@)e" (0 dv(x.S).
B(b,r)

(6.3.16)

for all » > 0. Then by Schwartz’ inequality, (8), and (9),

1/2
RURDIEE [/ WPl [ o]
B(b,r)

1/2
+2m[ [ swper s [ eendls] @3
B(b,r) B(b.r)

< [3eB(n)] "' 7%|V,L 0" B(, )
+2m[3cB(n)]'2E7([ViL ¢"|B(b, 1)
for all » > 0. Let r(b) = [3cB(n)]~'/2€8/(2m + 1). Then the monotonicity lemma 4.17 and (17)

imply
[IVi.L o™ B(b,r(b)) > e ' ar(b) 6% (||V,L "], ). (6.3.18)

By the density hypothesis in b, we clearly have
O (IIV;L "1, ) > 0" (2,b) > [€%/3¢B(n)]" (6.3.19)
Hence (18) yields

[[ViL¢"1B(b, (b)) = ™' af3cB(n)] ™"~/ (2m+ 1) HEH/2)E

> a3eB(n)] " 2m 4 1), (6.3.20)

Thus, if ¢ is small enough, we have a contradiction to § = ||V;L_ ¢™||R".
Now that we have established

DE(r) < —cE(r)' 7% (6.3.21)

we need only integrate to find that &(¢) = 0 forz > (0)% /2ce. Since £(0) < 1, we have established
the lemma with ¢(m) = 1/2ce.

6.4 Cylindrical growth rates

We will later be dealing with nearly flat varifolds and cylinders nearly perpendicular to them, and
we will need estimates of the rate of growth of the mass in a cylinder as a function of radius. Note



that we get both upper and lower bounds, as contrasted with the lower bounds of the spherical
monotonicity theorem 4.1.7.
Theorem: Suppose

T €G(nk), 0O<R <Ry<oo, 0<a<oo, 0<P<oo, (6.4.1)
V € IVi(R") and spt||V||NC(T,0,R,) is compact, (6.4.2)

o € C3(R",RY), sptd < C(T,0,1), o(x) depends only on |T (x)], (6.4.3)
/ Ih(V,)P0(x/r)d||V||x < o2 for Ry < r < Ry, and (6.4.4)

/ 1S = T|PoCe/r) AV (x,S) < B>r* forR1 < r < Ra. (6.4.5)

Then
R IVIIO(/R2)) = RTMIVII(0(x/R1))| < kB log(Ra/R1) + (R~ Ri)+B%. (6.4.6)
Proof: We assume that a = 0. Recall that under our assumptions, (4) implies

||8V||singC(T,0,R2) = 0
For Ry < r; < R, 2.9 and the boundedness of spt||V||NC(T,0,R,) guarantee the validity of

SV (o(x/r)T(x)/r) = ril/T~S¢(x/r)dV(x,S)

6.4.7)
+r_1/T(x)®D¢(x/r)~SdV(x,S).

Because ¢(x) depends only on |T(x)|, we have
Do(x/R) = r(0d(x/r)/dr)T (x). (6.4.8)

Using the perpendicularity of mean curvature, Schwarz’ inequality, (4) , and (5)
BV 00/ (1)) = | [ (V) S(T 0o/ )V 1:5)

< | [ ponaw i [ s-IPotnav ()| -
< aprk. (6.4.9)
It is not too hard to see that

T8~ KIS(T () PIT(x)| 2] < kl|s— T (6.4.10)
We use (8), (9), and (10) in (7) and rearrange:

(aan) [ ISTEDRITWI o000/ (1.5
4.11
= (/) [1ST@PIT@ Pot/mavies)  CHD
< r_lk[32rk+(x[3r .
Integrating this from R; to R; yields
7k 2 Ry
7 [ ISPl 200/ v (x.5) 641

< szlog(Rz/Rl) +oB(Ry—Ry).



Because
1= |S(T(x))]|T ()| > < [[S—T|]

we can combine (5) with (12) to get

[Ry“IIVII(0(e/R2)) = Ry MIVII(0(x/R1))| < kB log(Ra/Ry) +aB(Ra — Ry) +B>.

6.5 Expanding holes

Here we show that, for a nearly flat varifold, thin spots will expand and thick spots will contract. For
later convenience, the spots expand or contract non-isotropically.

Lemma: IfV is an integral varifold moving by its mean curvature, 0 < u < oo, T € G(n,k),
a€R,0<t <th<ew,0<R,Ry<1,6=(R3—R})/(ta—t1),R(t)> =R} +0(t—11), O (x) =

xr (x/R(1)] —a),

/ T ()2 d||Vi|[x = 12() < @2R(:)? and 6.5.1)
C(T.,0.R(t))
a(t)? = [ 102 PO (x) a1Vl (652)
fort € [t;,1], then
8(V,07)(h(Vi,-)) < —a(t)* +320°R(t) *u(r)? (6.5.3)

for allt € [t1,t;] and there is M < o depending on G such that

RyMIVaal(97,) < RYM[1Va, [1(07,) +Mu® | log Ra /Ry (6.54)

Proof: By 3.3 and because D¢y lies in T, we have, using Minkowski’s inequality,
811,07 (0(V. ) = = [ Ih(V.2) P7(c)d[Vl s
+ [ 28V, 05" (D0 (x))6, (3) 4V (x.5) (6.5.5)
< —a(f)2+2/ [h(Vi,x)| [[S—T| [Dg: (x)|d(x)dV (x,S)
< —a(t+(1/4) [ I0(%.0) P2 dl Vi
+4/||S—T|\2|D(]),(x)|2dV(x,S).
A slight modification of the derivation of 5.5 yields
[ Do RIS —TIRPavi(x.5)

<16 [ |74 () PIDIDo,(x)| Pd Vi

/2 (6.5.6)
+2| [P0 [ 1740 FDa ) Po 20V

< 16pR(1)*u(r)® +20(1)pR(t) u(t)
< at)?/4+320°R(2) *u(r)*.



Combining (5) and (6) yields (3).
For (4), we need to find ||V;||(d9?/0t). From the definition of ¢, we get

997 (x) /91 = —20:(x)D; (x) - x(R (1) /R(1)) (6.5.7)
We also have

BV (07 ()T () = — [ h(Vix)- ) d|[Vilx 65.8)

_ /2¢, X)D0, (x) © T (x) - S+ 0>(x)T - SV (x, S).
One finds from (8) that

[ ~20,0D0u () w1Vl < KIVII63)+2 [ 4(0ID0, () (ST () ~9)dVi(x.S)  (659)
+ [0V TR AV lv+ [0TSR aVi(x,5).

By the properties of G(n,k) in 2.5, the perpendicularity of mean curvature, sptd, C C(7,0,R(2)),
Minkowski’s inequality,

[ ~200D0, () x| IVillx < KIIVII(3)+2 [ (OIS = TIPIT () Vi (x5)
+ [ 0l IS =711 760 ) dl 1V o
+/¢,(x)||S—T|\2dv,(x,S) (6.5.10)
< KV @)+ (1+ 0]+ 8) [ & (lIs ~ T v (x.5)
IR /40| [ (V06 ) 1V

FREP [ Do (x)PlIS - TP v (x.5)
< KIVAII(97) + (k+ o] + 1)[20u(t)u(r) + 16p°R(r) (1))
+[R(1)*0u(1r)? /40| + [20u(1)u(r) + 16p°R(r) 2#( )’]
< KIVAII(97) + IR(FPeu(r)? /26 + (k + |o] +2)*|o|R(1) (1)
+ (k+ |o| +2)16p?R(r) 2u(r)*.
By 3.5, (3), (7), (10), and (1)
DI[Vi1(07) < 8(Vi, 7) (h(V;,x)) +1|Vi | (067 /1)
< —ot)?/2+32p%u*R(2)< 2 (6.5.11)
+k(R (1) /R(0)||Vi[|(07) + R (1) R(r)ou(1)? /2] o]
+(R (1) /R(1))[(k+ o] +2)|o] + 16(k + |o| +2)p*u.
Since 6 = 2R/ (£)R(t), we have
R(t)™*DI|Vi[1(67) —kR' (1) R(t) ||Vl (07)
< R (t)R(1)'[[64p /|0] + (k+ o] +2)?[0] + 16(k + |o] +2)p*|u.
If we let M be the quantity in brackets, then integration of (12) gives

R(12)™¥||Viy |1(07) = R(11) (Vi [1(07,) < Mu?|logRo /Ry

(6.5.12)



6.6 Popping soap films

The Lipschitz approximation theorem 5.4 shows that a nearly flat varifold either has nearly integral
density ratios or else has considerable first variation. Here we show that in a moving varifold, this
first variation quickly drives density ratios towards integers.

Lemma There are constants cjg, c¢1; < oo such that if V; is an integral varifold moving by its
mean curvature, spt||V;|| N C(T,0,1) is bounded,

T eG(nk), 0<ti<thy<oo, 0<u<e, v=01,or2, (6.6.1)
/ T () d|[Vi||x < 4 fort <t < 1, and (6.6.2)

C(T,0,1)
Vil (x7) < (v+ 1B —cro’® (6.6.3)

then fort; +c1; <t <t
Vil (x3) < VB+cion?. (6.6.4)

Proof: Suppress the ¢ variable temporarily. Define
2 _ 2,2
o2 = [ Ih(v.x) P () dl[v b (665)

B = [lIs-TIPG v (666)
Then the tilt lemma 5.5 and (2) say that
B? < 20+ 16p%u?. (6.6.7)
Suppose that v = 0, 1, or 2 and
(v=1/2)B < [IV[I(x}) < (v+1/2)B. (6.6.8)

We want to apply the Lipschitz approximation theorem 5.4 to B(0,1/9), so we must check (5.4.2).
Define r; = 1+ 1/100k. Then, using a little geometry,

IVI[B(0,1/9) > [[V||C(T,0,r1/9) (6.6.9)
—|IV|l{x € C(T,0,r1/9) : [T+ (x)] > (r —1)"/2/9}
> ||V||(X%(’”1/9,-))—8100ky2 and

IVIB(0,1/3) < |IVII(x7(r1/3),"). (6.6.10)
By the cylindrical, growth lemma 6.4 and (8),
(r2/9) VI (r1/9,)) = |IVII(xF) — 4kB* — B (6.6.11)
> (v—1/2)B — 4kB* — o and
(r/3) VI (r1/3,)) < (v+1/2)B+4kB + af. (6.6.12)

We may choose c1g large enough so that either (3) is satisfied trivially, or else
8100ku* < (t/8)97%. (6.6.13)
Combining (9)-(13) with the properties of r; and y yields
94|V||B(0,1/9) > (v—5/8)a.— 4kB* — o — /8, (6.6.14)
34|V[|B(0,1/3) < (v+5/8)a+ 8kB* +2aB (6.6.15)



Therefore either
4kB* + af > /8 (6.6.16)

or else we may apply 5.4 with ¢ = 1/8. In the latter case, we deduce from 5.4 that there is P < o
such that
|9 IVII(xF(1/9,-)) — VB| < Plo?*/ (=2 B2 44, 6.6.17)

Recall from 5.4 that a®*/(*=2) is not present when k = 1,2. Using the cylindrical growth lemma 6.4
again,
|9V (1/9,)) — IVII(xF)] < 4kB* +0iB. (6.6.18)

Combining (7), (17), and (18), we see that there is M < oo such that
V(7)) —VB| < Msup{a®*/*2) oy g} (6.6.19)
If cjo > M and we let E = ||V||(x%) — VB, then either (3) holds or
o > inf{(|E|/M)* 2% E?)1PM?}. (6.6.20)
If, instead, (16) holds, we infer using (7) that
(8k+4p)au+2'2a? 32 + 64p% > /8. (6.6.21)

If cyg is large enough, then either (3) holds or there is a constant 8 > 0 such that (21) implies

a? > 3. (6.6.22)
Then 6.6, (20), and (22) imply
3(V,x2)(n(V,-)) < —(1/4)inf{(|E|/M)*2/% E? /12M? 5} (6.6.23)
Restoring the variable 7, we have
DE(r) < —(1/4)inf{(|E(t)|/M)* 2D/ E(1)? /> M?,8}. (6.6.24)

Thus the maximum length of time (8) can hold and (3) not hold is
Ar = sup{4kﬁk/2M(k’2)/k, B/2,B/28}.

If E(t;) starts out greater than cjou?, then we see that E(t) < ciop® for t > 1) + At. If E(t;) <
—cyou?, then E(t; +At) < —B/2, and we can go through the above with v — 1 instead of v. Thus,
we take ¢11 = 2At. O

Remark: This lemma can be done with v > 2, but it would require ) approximating the charac-
teristic function of B(0, 1) better.

6.7 Truncated heat kernel

We would like to exploit the close similarity between heat transfer and motion by mean curvature to
show that a varifold smoothes itself out. To this end define a truncated kernel for the heat equation
as follows: Fix T € G(u,k). For0 < < 1 and x € R" let

W(,x) = ot 2y (1/2,x)exp|—|T (x)|? /4], (6.7.1)

where © is chosen so that [ y(t,x)dH*x = 1.
One way calculate that

|0y /0t — Ays| < (4p/1)(4mt) /2 exp[—1/161]. (6.7.2)



6.8 Near diffusion

Here we show that instantaneously the height of a nearly flat moving varifold is diffusing like heat.
This is done by looking at the behavior of the varifold with respect to the truncated heat kernel just
defined. The estimate is in terms of an upper bound in one direction, but we will later look in all
directions to get a complete estimate.

Lemma: Suppose

VEIVi(R"), T=e/A...Ae; € G(n,k), (6.8.1)
me{k+1,...,n}, 10, 0<t<I1,

IV||NC(T,0,9) C {x e R" : T < x,, < 31}, (6.8.2)

6%(||V||,x) = 1 for||V|| almost all x € C(T,0,9), (6.8.3)

IV||B(0,1) > /2, and (6.8.4)

IVI[B(0,3) < (3e/2)3%, ||[V||C(T,0,9) < 2-9*a. (6.8.5)

Then there is c¢15 < oo such that

/ max{0,3(V,x,y(t,x —2))(h(V,x)) — | |V||(xn0w(t,x —z) /3t) } dFH*z

k
BH0.1/3) (6.8.6)

<esr R4 / (V)2 d]|V|[x+ 72 exp(—1/161)].
B(0,8)

Proof: By the convention of 3.2, the conclusion is trivial unless the first variation of V is entirely
represented by the mean curvature in B(0,8). In the latter case, for each z € B¥(0,1/3), by 3.2,

(V. un¥(t,x— 2))(0(V.x)) = = [ I(V.) Pray(t.x— )| V]
+ / xph(V,x) - ST (Dy(r,x —2))dV (x,S) (6.8.7)
+ / h(V,x) - S* (en)W(t,x— 2) AV (x,S).
The first term on the right hand side of (7) is nonnegative and thus can be neglected for conclusien

(6). To estimate the second term, we use the fact that y depends only on |7 (x)| and Minkowski’ s
inequality:

‘/xmh(v,x)-si(Dw(r,x—z))dV(x,S)‘ < 31/\h(V,x)| IDY(t,x—2)| IS — T|dV (x, S)
<31 / H(V,%)[2[Dy(t, x —2)|d]|V]|x (6.8.8)
+3T/HS—T||2|D\|f(t,x—z)|dV(x,S).
‘We will return to (8) later.

The third term of (7) is the significant one. Dy the perpendicularity of mean curvature and the
definitions of 2.9,

/ h(V,x) - S* (en) Wt x—2) AV (x,S) = / h(V,x) - eny(t,x — 2)dV (x, S)
= — 8V (ew - S(DY(t,x—2))dV (x,S). (6.8.9)



We next estimate tbis integral using the Lipschitz approximations f: 7 — T+ and F : T — R”
constructed in 5.4 forv =1 and p = 2. Let X and Y be as in 5.4, and note that since v = 1 we may
take Lip(f) = 1. Estimating as in 5.6 (39)-(41),

[ en-SOV(x=2)aV(55) ~ [ Dfuly) - Wity —2) a3y

_ / e - S(DY(t,x—2))dV (5, 5)
B(0,1)~X

+/Yem -image DF (y)(Dy/(t,y —2))| Ac DF (y)| = Dfiu(v) - Dy(t,y — z) dH*

+ / Dfnu(y) - Dy(t,y —z) d3H*y
B(0,1)~Y

= /B(O’ 1) ~ X[|S—T|]*|Dy(t,x—2)|dV (x,S)
+22/XIIS—TIF\D\u(t,x—z)\dV(x,s)

+ [ Dyy-2)laty,
B(0,1)~Y
(6.8.10)

where [N is from [AW1 8.14]. These error estimates are not simplified further because later they will
be integrated with respect to z.
Since f is Lipschitz and y has compact support, we can integrate by parts:

[ DIl)- Dy =2)a3y = = [ Fu(aw(e.y -2zt (6811

We then make a similar set of estimates to get back to the varifold:
— [ )My 20030+ [ spdute =) d)V]Jx

— / xmAY(t,y —x)d||V]||x

B(0,1)~X

+ / Fn(3)AW(t,y = 2)[| AeDF (y)| — 1] ¢

+ / S AW (t,y —2) dH* (6.8.12)
B(0,1)~Y

< 3¢ [ BO.1) ~ X|Ay(e,x— )| dIV]x
+ 3, [ 11— TIPlaw(r,x—=2)|dV(x,5)

+3t / |Ay(t,y —z)|dFHHy.
B(0,1)~Y
[endwtex =V~ [xdwx—2)/arav
< 3t|Ay —d/ar|[|V||C(T;0,1) 6.8.13)
< 3t(4p/t)ot " exp[—1/161]a3 !



To facilitate integrating these estimates over z, define

Cityx) = / ID(t,x — )| dH*z and (6.8.14)
B¥(0,1/3)

Co(t,x) = / |Ay(1,z — x)| dFH*z. (6.8.15)
BK(0,1/3)

Therefore, adding (8), (10)-(13), and integrating over z,
/ max{0, 3(V,xmW(t,x — 2)) (h(V,x)) — [V || ComdW(t, x — 2) /1) } dH*
BK(0,1/3)
<3¢ [ V.9 PG 0 dlv
+ [ G0+ 3 Vi
B(0,1)~X (6.8.16)
ey [LIIS=TIR(G(06) + 3Ca(0.0)) AV (1.5)

[ )+ 3y 0t
B(0,1)~Y

+31(dp/r)or ¥/ exp[—1/161]a3 1 H*B(0,1/3).
One may compute that
sup{{,(t,x) : x € R"} < kt~'/? and (6.8.17)
sup{Ca(t,x) : x € R"} < ke L. (6.8.18)
Therefore (16) becomes
/ max(0, 8(V, xmy(t,x — 2)) (h(V,x)) — |[V]| CondW (e, x — 2) /1) } dH*
B(0,1/3)

<sck 2 [ bRV
B(0.1) (6.8.19)
+ (ke ™V2 4 3tk ™! / [|S—T1|*dV (x,S)
B(0,1)xG(n.k)
+3t(4p/1)or /1 exp[—1/161]30”.

From the Lipchitz approximation theorem 5.4
IVII(B(0,1) ~ X) + (B0, 1) ~ ¥)

<o| [ mwaraviis [ is-riPaves)+ [ @R
B(0,7) B(0,7) B(0,7)
(6.8.20)



Also, from 5.5 (6) with ¢ = x7(8,-) and Minkowski’s inequality,

[ ls=TIPaves) < 16p/8? [ TH@Pdvis
0,7) B(0,8)
1/2
+2[ [BO8 BV [ TL<x>|2d||V|s] 6821)
B(0,8)
<P VIBO8)+ [ [h(V.0)Rd|V]
B(0,8)

B(

Since t < 1, we have 12 < =1, so we see from (35), (19), (20), and (21) that there is a constant
c15 < oo such that the conclusion of the lemma holds. O

6.9 Flattening out

We apply the previous lemma to a moving varifold to show that if the varifold is reasonably flat
on a certain scale to start with, then later it is much flatter on a much smaller scale. This result is
somewhat like that of 5.6, but with time thrown in. However the proof is much different, relying
on the heat analogy rather than blowing up. In 5.6, the curvature had to be small compared to the
roughness, but here it is large, although we are able to put a bound on the ratio. This is the lemma
where the unit density hypothesis is critical.

We say that a varifold V, moving by its mean curvature has unit density if 8*(||V;||,x) = 1 for
[|V¢|| almost all x € R for almost all # > 0.

Lemma: For any € > 0 there exists 6(€) > 0 such that if 0 < R < 0(€) then there exist 0 <
M1 < 1 with the following property:

If'V; is a unit density integral varifold moving by its mean curvature,

T=eA...e, € G(n,k), 0<tT<m, 0<1H <t <os (6.9.1)
spt||[V;||NC(T,0,9) C {x:|T*(x)| < 1}, (6.9.2)

B/2 <[ IVII(x7) < 3B/2, (6.9.3)

IVi[[B(0,3) < (30,/2)3%, |V;|C(T,0,9) < 2-9*a, (6.9.4)

for almost all t € [ty,];
ciiisasin6.7andty+ci1+1 <sog <ty —ci1—1; (6.9.5)

then there exists A € A(n,k) such that if A =T*+a,T* € G(n,k), anda € T+, then

|IT*—T| <21, |a| <21, (6.9.6)
spt||V;||NC(T*,a,R) C {x: dist(x,A) < R* ®1}, (6.9.7)

B/2 < (R/9)|IVill(xF-(R/9,")) < 3B/2, and (6.9.8)
IVil|B(a,R/3) < (30/2)(R/3), | IVil|C(T",a,R) < 20R* (6.9.9)

forsy <t < so+4(ci1 +1)R2.
Proof: We may assume that (2)-(4) hold for all ¢ € [t,#;] because we will be concerned with
integrals over . Applying 6.6 with 4> = 20T, we see from (3) that

—cior” < |Vill(x7) — B < clour” (6.9.10)



for to +c¢11 <t < t; —cq1. This means that there is a limited amount of mass to be lost in this time
interval, and hence a limited amount of mean curvature. In fact, defining

alt) = [ Ih(V.x) P dl Vil 6911
by 6.5 (3) we must have

| —etrenphiaz [ DG o

JSs

> Vil (x7) = Vet 1 () (6.9.12)
> —2C10,u2.
Hence }
/ a(r)?de < 4(cio+16p?)i, (6.9.13)
s—1

where the relationship of s to 5o will be defined at eq. (24).
To apply the previous lemma, 6.8, let p = t'/2 and ¢ ~ 36/ — p, where ¢ will be pinned down
later. Let y be a unit vector in T, and assume y = e,,. Define W; = t(271e,, )4V, so that

spt||W||NC(T,0,1) C {x: T < x < 31} (6.9.14)

Adjusting for the different scale in 6.8, we infer from 3.6 and 6.10 that

/ max{0, |[Wy||(W(p,x—2)) = [[Ws—q||(W(p +¢,x—2))} dH"z
BX(0,1/27)

< / / max {0, D||Wi||((p+s5—1,x—s))} dr d¥tz

B(0,1/27)

< / / max{0,8(W,, y(p +s—t,x—2)) (h(W,x))

qB(O,l/27)
+ || Wil (@ (p + s —t,x—2z)/9t) } dFFzde

S/ cis(prs—q) [P Ha)? +i(p+s—1) P exp(—1/16(p+s—1))]dr,
s—q

(6.9.15)

where the scaling factor involved in applying 6.8 has been absorbed into c¢5. Using (13) and
p < p+s—t < p+gq, wehave

[ max{o, W (w(pox =)~ [Wemy | ((p+ .= 2) } a2
B(0,1/27) (6.9.16)
-1 _ 2112 (2=K)/2 oo
<cisp [1+4(co+16p7)]T" +c1532(p+q) exp(—1/16(p+q)).
Define an affinemap L : T — R by
L(z) = |[Wy—gl|(xmW(p + q,X) — Xm) — xmz-DY(p +¢,x)). (6.9.17)

To calculate how much W deviates above the plane x,, = L(T (x)), we first compute how far
||Wy—q | (xmW(p+ q,x — 2)) deviates. By Taylor’s formula with remainder,

1
y(p+q,x—2) =¥(p+q,x) —2-Dy(p+4q,x) +/0 (1-0)(z®z)-D*y(p+q,x—0z)d6.
(6.9.18)



One may calculate from 6.7 that for W € T

Dy(1,w) = [D*(1/2,w) = Dx(1/2,w) @w/t —x(1/2,w)T /2
+(1/2,2) (w@w)/41%) (47) K/ exp(—|w|? /41). (6.9.19)

Therefore,
Wy gl | oW (p + 41— 2)) — L(z)
1
s3r/0 (1-0)[We_gll((z®2) - D*w(p+g,x— L)) dC

< 31|*4p(4n(p + )" exp[~1/16(p + q)]|Wy—q[|C(T 0, 1)

+3t12(2p/(p+ ) (4n(p+ ) exp[~1/16(p+ )] [WergllC(T,0,1) 920
431 [ -0 200 +9)
JU (TGP +12P)/ (p+ @) w(p+ .5~ L) dl[War gl
We may find g with 36R® < p+q < 72RE and
o?(s—q) < 8(cio+16p*)u?/q. (6.9.21)

Then we may use the Lipschitz approximation theorem 5.4 to see that there is a constant cig such
that when |T'(z)|* < p+ g we have

S TGP +12P)/ (p+ @0+ g3~ 02) AWy

<34cis(ptq) K222

(6.9.22)

Hence, in case (19) holds,

IWs—gl | ConW(p+ g% —2)) — L(2) < 31(12*/2(pg)) 3 + c1s(p+q)~*+2/*2 (6.9.23)
<612*/(p+q) ifcis(p+q) KPP <1
We shall take T small enough compared to R so that (23) does hold.
We have already seen that ||W,_,||(xnW(p +¢,x — z)) approximates ||[W,_,||(xnW(p,x —z)), so
let’s see how the graph of ||W;]||(x,,¥(p,x —z)) as a function of z approximates W;. This is where

the unit density hypothesis is critical.
By (13), we may find s with so —2(c1; + 1)R?> < s < 59 and

a(s)? < 4(cro+ 16p* )R 2. (6.9.24)

Then letting f : T — T be the Lipschitz approximation constructed in 5.4, we see using (24), 5.5,
and (14) that there is a constant ¢i9 such that

[[Wyl[{x € C(T,0,1/27) : x > L(T (x)) +67|T (x)|*/(p+4)}
(6.9.25)
< Hz € B(0,1/27) : fu(z) > L(2) + 61|z /(p+q)} +c19T°R >

and

/ || Wyl (xmW(p,x —5)) — /T Fn)W(p,y —2)dF*y| dFH*z < c1ot?R 2. (6.9.26)
B(0,1/27)



Estimate (26) is similar to those made in 6.8. Next, we may calculate

/|fm /fm W(p,y—z) d3hy| dItz

B(0,1/27)

< / |/p/3l|fty—Z)/at fn(y) dF*ydr| d3*z

B(0,1/27)

< / |//Al|fty ) fnly) A3y dr| 35z

B(0,1/27)
4+ 3t / 19y /3r — Ay de
= Jo
14
< / | /0 AD\U(L)I — Z) Dfm (y) dg‘fkydl‘ dg'CkZ (6.9.27)
B(0,1/27)

p
Jr”"‘2/ (4p/t)(4mt) 2 exp[—1/161] dr
Jo
P
S/ /C1(t,y)|Dfm(y)\dJ-Ckydt+pt where () is as in (6.8.14)
o Jr
P
< [ [a 2Dl ascdr 4 pr
o Jr

<2 [ D)3+ pr
B(0,1/27)
1/2

< ci9p R~! + prt.

Combining (25) , (27), (26) , (16) , and (23) , we got

max{0,x, — L(T(x)) — 6| (x)|*/(p+q) } d||Wy]|x
B(0,1/27)

= / max{0, fn(z) — L(z) — 61[z]*/(p+ q) } dH'z 4 3T- c1T’R >

B(0,1/27)

< / | fin(z _/fm W(p,y—z)dH*y|dd*z

B(0,1/27)
+ / I/fm W(p,y—2) dHy — [|Wyl| (omW (p, x — 2)) | dF 2
B(0,1/27)
+ / max{0, |[Wy||(xnW(p,x —2)) — [[Wy—gl| (W (p + g, x — 2)) } dFH*
B(0,1/27)
+ / max {0, ||Ws—q||(xnW(p,x —2)) — L(z) — 6t|z]*/(p+ q) } dFH*z
B(0,1/27)
—|—3C19’C3R72

< Clgpl/z’tR71 +p’C+619’CzR72 + 615[]?71 [1 +4(C10 + lépz)]’tz

+32(p+ q)(sz)/2 exp(—1/16(p+4q))t|+0+ 3c19TR 2.
(6.9.28)

For convenience, write this last quantity as 8.



Now consider the ball B(b,Ry) that has radius Ry = (p + ¢)/12t and center b in the plane

spanned by T and e, and is tangent to the graph of the paraboloid
G = {xeR":x, = LIT(x)) +61T(x) "/ (p+4)}

at the point (0,L(0)) € R* x R"~*. Note that B(b, Ry) is is entirely “above” G.
We want to apply the clearing out lemma 6.3 to B(b,Ry). Letting

o(x) = 1—|x—b*/R} for0<|x—a| <R
o for |x —a| > Ry,

note that
0 (x) = Ry *(Ro + [x—b])* (Ro — [x—b])?
< 8R,>41t*(Ry — |x—b|) and
Ro— [x—b| < x — L(T (x)) + 6T |T(x)]*/(p+)

(6.9.29)

(6.9.30)

(6.9.31)

(6.9.32)

forx € B(b,Rp)Nspt||V||NC(T,0,1). Even though it may be that (B(b, Rp) is not entirely contained
in C(T,0,1), we can check that B(b,Ro) N {x : x,, < 31} is in C(T,0,1). We may thus modify ¢ to
vanish outside C(7T',0, 1) without affecting the following calculations. From (28), (30), and (31) we

find that

[IW,l(0%) < 32R;*87°
< 32(12/(p+q)) 38T TORY.

Hence, by the clearing-out lemma 6.3 with m = 3, we have
|[Wysas|B(b,R1) =0

when As > Asg, where

Aso = c(3)[32(12/(p+q)) 3 O [(p+ g) /121
_ 6(3)322/(k+6)(12/(p+q))k/(k+6)82/(k+6)’ and
Ro—R; = 4kAS/(R() +R1)
> 2kAs/Ry
We want to have T, p, and g so that
Asg < R?
and
Ry—R; < R**1/3
when
As < 8(cn1 + l)Rz.

We also want for (23) that
2 < C1_gl (p+ q)(k+2)/2.

(6.9.33)

(6.9.34)

(6.9.35)

(6.9.36)

(6.9.37)

(6.9.38)

(6.9.39)

With p = 1'/2 and p+ g = 36RE, we see that the only term of & in (26) that does not contain a
positive power of T is the exponential term. For R® small enough, this term is small compared to the
relevant powers of R. Then r can be chosen small enough compared to R so that § is small enough

that (36), (37), and (38) hold.



Now go back to V;. Let the sought-for A € A(n,k) be the graph of the affine map L : T — T+
defined by

L*(2) = |[Vsg| (T ()W (p + ¢,x) = T+ (x)2- DY(p + ¢,x)).
We see that (6) is easily satisfied. To check (7), note that
|IL*(2) +2te — L(2)| < 21| |Vsg|(W(p+ ¢, %)) — 1| 4 2t|2]|||Vs—g | (DW(p + ¢, x)) |

We use the Lipschitz approximation lemma 5.4 as above to see that

WVeeallW(p+0) = [ w(p =, a3y < cis(p-+q) 2%
and

[Vi—gl|(DW(p +.x))| — /TDIII(p—q,y) dHYy < cig(p+q)F /22
< R* /3
which shows that

‘L* (Z) +2te, — L(Z)| < chg(p + q)fk*l)/zftz
<R**1/3

for small T.

Since e, was in an arbitrary direction, and the choices made of times and such did not depend
on e, we put everything together to conclude that for x € spt||V;|| and for s+ Asy <t < s+ Aso+
8(c11 +1)R?

IT(x) — L(T()] < 265|T()P/(p+ )] +Ro — Ry + R2x/3,
Hence for |T(x)| < R,
IT(x)—L*((x))| < (R* 14+ R* 14+ R* 1) /3.

Finally, we verify (7) and (8). The various upper bounds clearly hold for V, and by the film
popping lemma 6.6 they remain true. If any of the lower bounds were violated at time t, then 6.6
would lead to violation of the lower bounds in the hypotheses at time 7 4 2c¢;;. O

6.10 Infinite differentiability

Here we show that a nearly flat varifold becomes smooth after a little time. This is done by using the
previous theorem inductively. to get spt||V;|| to be the graph of a Holder continuously differentiable
function, and then using the near-diffusion lemma 6.8 again to get the function to have continuous
second derivatives and to be a solution of the non-parametric quasi-linear parabolic partial differen-
tial equation mentioned in 3.1. Standard P.D.E. theory then gives the infinite differentiability.
Theorem: There are constants cr; < oo and Tg > 0 such that:
If'V is a unit density integral varifold moving by its mean curvature,

T eG(nk), acR" 0<1<f <o, 0<R<os (6.10.1)
spt||Vi||NB(a,R) C {x: dist(x,T +a) < ToR}, (6.10.2)

B/2 < (R/9)*IVill(x7 (R/9.-)) < 3B/2, (6.10.3)

||V —t||B(a,R/3) < (2g/2)(R/3)k and (6.10.4)

|IVi||C(T,a,R) < 2aR*



for allt € [to,t1], then
{(t,x) € (to+c21R*,11 — c21R?) x U(a,R/3) : x € spt||V;]|} (6.10.5)

is an infinitely differentiable manifold.

Proof: We may assume that 7 =e; A...Aex,a=0,7p =0, and R = 3.

Let > 0 be arbitrary, and let 8 = 6(¢) be as in 6.9. Let y € B¥(0,1). We can apply 6.9 to V,
in C(T,y,1) NB(0,3) because of the boundedness of spt||V|| given by (2). Applying 6.9 repeatedly,
with slightly tilted and ever smaller cylinders of radius 6™ around y, we find that if

= =

(en+1) Y (0" <t<n—(cu+1) ) (67> (6.10.6)

m=0 m=0
then there are A, (t,y) € A(n,k) and F(t,y) € T~'(y) such that
spt ||V | N C(T,y,0™) NB(0,3) C {x : dist(x,An(t,y)) < 8@y} (6.10.7)
forr—0%" < s < r+6*" and
Ac(t,y) = lim An(t,) (6.10.8)
— Tan*(spt V[, F (1,9)) + F(1,5).

We take c21 = (c11+1) Lon_o(6™)2.

m=0
Let f(t,y) = T*+(F(t,y)). Clearly, (7) shows that f is differentiable in y and Holder continuous
in ¢ with exponent 1 —€/2.
Now we establish a little more differentiability for f. If A(r,y) = T,,(¢,y) + an(t,y) with
Tou(t,y) € G(n,k) and a,(t,y) € T~'(y), then by 6.9 (6),
1T (t,3) = Tons (1) < 26"y, (6.10.9)

| (t,y) — ame1(1,y)] < 2078y, (6.10.10)
Consider y1,y2 € B(0,1). Suppose m € N is such that
0" /2 < |y —ya| < 0™/2. (6.10.11)
Then since (7) holds for y; and y,
dist(x, A, (1,y)) < 6278,
dist(x, A (t,y2)) < 83~y (6.10.12)
for x € spt||V;||NC(T1(y1 +»2)/2,0"/2) NB(0,3). Hence

T, 31) = T, 32)]] < 87910 /(68™ /2)
< 20(1-&mg, (6.10.13)

|l*€.

< 4100°y1 — 32
Then by (9),
[ Tea (2, 31) = Toa (2, 32) || < |[Too(t,1) — T2, 31|
(T (2 31) = T (8, y2) ||+ [| T (2, 32) — To (2, 32) |
<4102y — |2 4270 ) g =m0 7®a ! (6.10.14)
< 4109_1/2|y1 7y2|1/2 +4,[:09(1—8)m—1(1 791_8)_1



Hence f(t,y) is Holder continuously differentiable in y with Holder exponent 1 — €.
Likewise, we can show that Df(z,y) is Holder continuous inz. If y € B(0, 1),
9cy1 <t <tz <t —9cp1 and
02t < |t — 13| < 2™, (6.10.15)

then we may assume that A,,(2,y) = An(#3,y), and therefore by (9) again

1T (12, ) — Tea(t3,7)]] < 47001781 (6.10.16)
< 4T09€72|l‘2 - t3|<178)/2.

Now we re-examine the error estimates for near-diffusion as in 6.8 using our much improved
smoothness. Letting T, p. g, m and z serve the same role as in 6.8, and noting that the Lipschitz
approximations are exact, we can extract from 6.8 (8), (10), (12), (13) the estimate

3(Voxmy(t,x —2)) (h(V,x)) — |V || (xmOW(#,x —2) /Ot
< 31:/||S—T|\2|x—z|2/t2\|l(t,x—z)dV(x,S)

+gz/||S—T||2|D\p(t,x—z)|dV(x,S) (6.10.18)
31, [ 11— TIPlAw(ex—2)] 4V (x.S)
+31(dp/r)or > exp[—1/161]a3 !

Take a specific time #, and aradius R > 0. Re-orient everything so that f(#,0) = 0and Df(#,,0) =
0. Let M be a general purpose constant. Then, from the first part of this theorem, we can take

X < Mt — 1" "¢/ 4 M|T (x)|>¢ and (6.10.19)
IS—T] < MIT(x)|"" +M]t — 1|1 =9)/2
for ||V;|| almost all (x,S) € B(0,1) x G(n,k) and all ¢ € [t,, + R?]. Thus
8(Ves xmW (12 =2+ 1,00 = 2)) (W(Vi, %)) — [[ve | (om0 (22 +1,x = 2) /1)
< M3 [t173£/2 + |Z|272€,71/2 + |Z|473£t71 + |Z‘27€,7(1+€)/2]
+g2M2[|z|2’25t’1/2+t1/2’8}
—|—M3 [t17£/2 + |Z|27£t78/2 + |Z|473£t71 + |Z|27£t7(178)/2]
F M2 4 |28 2 exp[—1/161].
(6.10.20)

Integrating ¢ from #; — g to £, we find

Vo l| (e (P, x = 2)) = [|[Viy—g| | (cmW (P + 9) . x — 2))
<M (p+q)> P+ [P (p+ ) T + |2 logpl + 2 (p +9) 0]
+e, M [P = (p+ )"+ (p+ )77

+M[(p+q)* *+ 2 (p+ )] (p+q) /> exp[-1/16(p+q)).
(6.10.21)



Now take p+¢ = R€ and p = R>. Then for |z| < R

Vi | e W (p,x = 2)) = [ [Viy—g || (kW (P + ¢, x = 2))
< M3 [R3—9£/4 L RT/2-11e/4 R log R JrR11/4—7a/4]

+cM?[RU/472 4 RO/436/2] (6.10.22)
<R3

for € = 1/100 and small enough R.
Next, we show that ||V, ||(xn,W(p,x —2)) is a good approximation to f,(t2,z). By judicious
rewriting and using the estimates from (19), we find

Ve i W(pox=2)) = [ Su9)W(pox—2)| ADF ()| 3¢y

- /T Fn(@W(p,x—2) 3y
+/ (y = 2) - Dfu(2)W(p,x — z) dFFy (6.10.23)
+ [ Un) = finle) = (9= 2) Do) W(prx = 2) 3¢
+ [ 1 w(px= )| ADF ()|~ 1)a3¢"y

> fm(2) +0—/M|y—ZI2’£W(p,x—Z) day
— [ £aWlpx =)kl =TI a0ty

> fm(Z) _Mp17£/2 —kM2 [p273£/2 + |Z|272€p17£/2 + |Z|4738_’_ |Z‘278p(178)/2]

2 fm(z) _MR3 _kM2 |:R674€/2 _~_R577€/2 _~_R473€ +R7/275€/2]

> fu(2) —R3/3

Next, the smoothness of ||V, || (xmW(p,x —z)). Let H : T — R be defined by

H(z) = |[Viy—gl| (xm [W(p+q.X) —2-DY(p+¢,x) + (2©2/2) - D*y(p+q.x)]).  (6.10.24)

by Taylor’s theorem with remainder
V=gl (xmW(p + g, — 2)) = H(2)

< [ [ 02002 (oz0:00 Dy +g.x- LAV, |
< o IRIRIRZ v(p+q,x—Cz h—ql|X

< \ZI3M(p+q)73/2 (6.10.25)
< R33e/2
; RV/3/3.
Thus, combining (22) , (23) , and (25)
funlt2,2) < H(z)+ R/ (6.10.26)

for |z| < R. Looking at things from the opposite direction, we likewise have

T— fn(t2,2) < [[Vi—gl| (T —x) [W(p+¢,X) —2-DW(p +¢,x)
+(z®2/2)-D*y(p+q,x)] +R"/E. (6.10.27)



Hence

fin(t27z) > H(Z) —|—‘C—‘CHVI27q||(\|I(p+q,x))

(6.10.28)
+7/|Vi—ql| [z DW(p + ¢, %) + (222/2) - D*y(p +q,x)].

Using the estimates of (19) again,

WVaral| WP+ .3)) < [ W(p+a.0(1+ DS (12,0 a0
<1+kM?*(p = q)' %, (6.10.29)
Ve glllz-DY(p-+.0)) < [ x-Dy(p+g.0)a3¢x
+ [ 12l ID(p+g.x) kDS (12,02 9

< kM?|z|(p+4)"/*7¢, and
Vi—qll[(z22/2) - D*W(p+q,x) < kM*|z|*(p+4q)"

Since t < R, we have for |z| < R
fu(t2,2) > H(z) —2R"/3. (6.10.30)

By applying Euclidean motions before and after the foregoing analysis, we may find such an H
for any direction, any center y € B¥(0, 1), any time # with ¢;; <t < t; — c,1, and any small enough
R,i.e. we have H(t,y,R) : T — T+ such that

f(t,2) —H(t,3,R)(z)| < R/ (6.10.31)

for [y —z| < R. Asin 6.9, we find that limg_,o H (z,y,R) exists, so f(¢,z) has second derivatives in z.
By comparing H(t,y;,R) and H(t,y,R), we see that D?f(¢,z) is Holder continuous with exponent
1/8.

If Df(¢,0) = 0, then our estimates imply that

9f(t,0) = ;LmoII‘GII(TL(X)a\V(q,x)/at)
= lim ||V (T (1) (g.)
q*)
= Af(1,0).

Again, this can be made to apply to any point in B¥(0, 1), so f(z,7) is a classical solution to the non-
parametric quasi-linear parabolic partial differential equation discussed in 3.1 for c2; <t <t —c21
and |z] < 1. It now follows from standard P.D.E. theory, for example [ES], that f(z,z) is infinitely
differentiable. O

6.11 Local regularity

The smoothness theorem 6.10 requires an absolute bound on the distance of spt||V;|| from a plane
T. However, what is available in practice is a bound on the integral of the square of the distance.
This lemma links the two.



Lemma: There are constants ¢, ¢»3, and Mg such that 0 < ¢y < c¢3 and g > 0 and if ||V;]| is
a unit density integral varifold moving by its mean curvature,

T € G(nk), 0<1t) <o, 0<R<oo, (6.11.1)

/ 1T () [2d[[Vi|Ix < MoR*2, and 6.11.2)
B(0,R)

a/2 < (R/2)7¥|V[|B(0,R/2) < 30,/2 (6.11.3)

R¥|[Vi|[B(0,R) < 30,/2.

then
{(1,x) € (to+ R to+c23R*) x U(0,R/2) : x € spt||V;[}

is an infinitely differentiable manifold.

Proof: We use the clearing out lemma 6.3. We may assume that 7 = e A... Aeg, tp = 0, and
R=4.

Suppose b € B¥(0,2) and y € T+ +b with [y —b| = 1. Then B(y,1) C B(0,4). Define

1—|y—x* forly—x| <1
o() = 4 LTl forly=al < 6.11.4)
0 for [y—x| > 1.
Since 1 — |y —x|> < 2|T*(x)] for x € B(y, 1), we have
[1Val[(9%) < 4/B( T @ dloll < 4o, (6.11.5)
¥,
Hence, by lemma 6.3, for ¢ > ¢(2)[453n) %/ (+4)
|[V/|IB(y,R(t)) = O for R(t)* = 1 — 4kt. (6.11.6)
Now take ty and c¢»; as in 6.10 and let
r=1y/24kcar, A=13/432k%cy), (6.11.7)
and choose Mg so that
c(2)[ 4 g A = Ar. 6.11.8)
Then for At < ¢ < 4At, it follows from (6) that, for all x € spt||V;|| N (B¥(b,r) x B(0,1)),
y-TH(x) < (1=R())+7* (6.11.9)
< 2k-4At +r? (6.11.10)
< 1§ /54kea + 1/ 24keas (6.11.11)
< T1or. 6.11.12)

Since the direction of y was arbitrary, we actually have |T+(x)| < Tor. Also, by (7), we have At >
¢217%. Lemma 6.5 and (3) ensure that 6.10 (4) holds where needed, so theorem 6.10 says that

{(r,x) € (2A1,3A1) x Uk (k,r/2) x B*%(0,1) : x € spt||V;]|}

is an infinitely differentiable manifold.
Note that r, Az, and Mg are fixed constants, independent of b and V;, so the above analysis holds
for all b € B¥(0,2). O



6.12 Main regularity theorem

Finally, we show that V; is almost everywhere an infinitely differentiable manifold, except when
there is a jump decrease in mass.

Theorem: Suppose V; is a unit density integral varifold moving its mean curvature, ty > 0, a €
R", 0 < Ry < oo, and limy 1, ||Vi||(x*(Ro,x — a)) = ||Viy||(x*(Ro,x — a)). Then there is a closed set
B C R" with H*(B) = 0 such that if xo € B(a,R/2) ~ B, then spt||V;|| is an infinitely differentiable
manifold in some neighborhood of (ty,xo) in R x R",

Remark: Saying “for all x ¢ B with 3(*(B) = 0 is stronger than saying “for ||V;, || almost all
x” Indeed, it is possible to have a unit density integral varifold W such that spt||W|| is a smooth
manifold in some neighborhood of ||W|| almost every point, yet not in any neighborhood of a very
large set of points. An example may be constructed by taking W to be an infinite collection of
tiny k-spheres that stay away from each other, yet the closure of the set of spheres has positive F
measure.

Proof: We may suppose that Ry = 1 and a = 0.

If B is the set of points where regularity fails, then B is the complement of a union of open balls,
and hence closed. By the unit density hypothesis and [FH 2.10.19], for almost all x € R" either
0%(|[Vi|],x) = 1 and Tan*(||V;,||,x) € G(n,k), or 8%(||V,|[,x) = 0. We shall show that in the first
case the local regularity theorem 6.11. can be applied shortly before 7y axcopt on a set By with
3*(B;) = 0. In the second case, the clearing out lemma 6.3 will show that a neighborhood of (fy, x)
is empty, except for a set B, with H*(B,) = 0.

Let B be the set of x € B(0,1/2) such that 8%(||V,,||,x) = 1 and Tan*(||V;,||,x) € G(n,k), but
spt||V;|| is not a smooth manifold in any neighborhood of (#p,x). Consider some b € By, and let
T = Tan*(||V,,||,b). Pick R(b) > 0 so that

/ T () P2 (R, x— b) d]|Vig | Jx < MoR¥227%3 and 6.12.1)
B—1/8 < R_k/xz(R,x—b)dHV,OHx <B+1/8 (6.12.2)

for 0 < R < R(b). In order for 6.11 not to provide a nice neighborhood of (#y, ), one of the follow-
ing must hold for every ¢ and R with t = t_cy;R?/2:

1T 00P22 (Rex = )l e = moR* 22742, (6.12.3)
R’k/xz(R,x—b)dHV,Hx <B—1/8, or (6.12.4)
R’k/xz(R,x—b)dHV,Hx >B+1/8. (6.12.5)

Let B3 (1), B4(t), and Bs(t) be the subsets of B; where (3), (4), or (5), respectively, fail at time t.
Define

@30 = (bR and (6.12.6)
B
0 = [ 1T P Rx—B)d Vi (6.12.7)

We shall estimate how fast various integrals can change in terms of o and w.

Let € C3(R",R*) be like  in depending only on |x|, having spt¥ C B(0,1), and ¥(x) = 1
for x € B(0,3/4), but also suppose ¥ (x) < x(x) and |D¥(x)|, ||D*%(x)|| < My (x) for all x for some
constant M.



Let us look at B3(t;) for a particular time #;. Consider a point b € B3(t2). In going from (3)
holding at #; to (1) holding at #;, something must happen to the excess |7 (z)|. First, we find out
what happens if the excess tries eaving towards 7.

Let R be the above-mentioned radius corresponding to 7;. Define functions {p, (1p, Cop €
CY(R",R") by

Cin(x) = X (Rx—b)(1— T (x—b) P /R?),
Cop(x) = > (R,x—b)|T(x—b)|*/R*>, and (6.12.8)
G (x) = Cip(x) + Cap(x0).-

These functions will be used to detect the motion.
Suppose 1 < t < tg. Using 3.3 and Schwarz’ inequality,

8(Vi,C1)(h(V;,)) = —/IH(Vz,x)IZQ(X)dIMHx +/h(Vz,x)-Sl(Dél(x))de(x,S)
< /h(VM) St [27(R,x)DX(R,x) (1 - [T+ (x)[*/R?)
—2%*(R,x)T*(x)R*] AV, (x, )
< /Zlh(\/,,X)I [(R,x)|S* (DE(R, )|+ 1 (R, )| T+ (x)|[R ] dV; (x,S) (6.12.9)

< 4| [ PER DA s

1/2
= [ 18- ORRAP+RFRAT (P dVi(x5)

From the properties of ¥,

S (DX(R,x))| < |T+(DX(R.x))| +IS* —T*[| [DX(R,x)|
< MR2|T*(x)|x(R,x) + IS — T|| [DX(R, )],

s0, using 5.4 with ¢ = |D¥(R,x)

s

[ 155 (O(R0)PaVi(x.5)
<2PR [ [T PR V]
+2/||S— T|*D¥(R,x)|>dV,(x,S) (6.12.10)

< 2MPR™1i(1) +32/ IDIDX(R,x)|[*[ 7 (x)|* ]| Vi |x

1/2
+4] [0z P02V [ 1DRR PPV o

< 2MPR™413() + 32M>R 412 () + 4M*R ™20y (1o (1)
< 34MPR™ (1) + AMPR 20 (1) (7).

Thus
8(Vi, C1)((V, ) < 24MR 20y (1) (1) + 8MR ™ 0t (1) 2y (1) /2. (6.12.11)



Next, we make for imminent use the estimate
[ b DG@IdV] < [ I(Vx)2R 2 (R Dx(/R [T ()
+2° (R, )| T (x)[] d|[Vi |

< 2{ [ 00D (R P10 PR 20l
[T WA 6.12.19)

202 [ PR AV
Y IRCR I

< 4MR720C/3(I),U;,(Z‘).

Now suppose B is a collection of disjoint balls B(b,R) with b € Bz (7). By 3.3, fort; <t < 1y
8(Vi? = L) (V) < = [ (Vi) (3 0) = Y Golo)) i
B B

+ [ 10V, 220 D) Vi

+ X [ IV, 0] 1S4 (D1 () 4V (x.5) (6.12.15)
L
+ ¥ [ 00| ISDG ()| Vi (x.5).
B
By Minkowski’s inequality,

[ bV 2 D) i b

< [ moPE@A Ve [ 1DxR v
sptDy

Since spt{, NsptDy = 0 for each b in the sum, the first two terms on the right hand side of (15) are
dominated by [ |Dy(x)|*>d||V;||x. The third term is what was actually estimated in (9)-(12), and the
fourth term is taken care of by (14). Thus (15) becomes

3052~ &) < [ PPl

Y [28MR 2y (1)ap (1) + 8MR ™ ay (1) *uo (1)'/2].
B

(6.12.16)



From (12) and (16) we may calculate that

IVl 00) = 1166 < Vi ICE 1) = 15| E 30)
[ 80 Y ) (V) (6.12.17)
Iy B
w8 — Y G)h(v. ) dr
1y B

<R E ) s + [ IVl PP

fo
+L /t [S2MR 20wy (£)pp () + 16MR "0ty (1) 2o (£) /%] .
B *

Now we choose B and ¢, to use in the above. Let B (1) be the set of points b € B3(2) such that
|IVio|IB(b,R) < (4/3)aR". (6.12.18)

If limsup,, 1, F*(B3(t1)) > 0, then the unit density hypothesis implies that there are ¢ arbitrarily
close to £y such that
HE(By(11)) > (3/4)F (B3 (1)). (6.12.19)

By the Besicovitch covering theorem 2.2, we can find a disjoint collection B of balls B(b,R) with
b € B (l‘l) and
1VipI(UB) > B(n)~"||[Viy[|B3 (1) (6.12.20)

We infer from (18), (19), (20). and unit density that
Y or" > (3/4)Y ||V, |[B(b,R)
B B

> (3/4B(n))| Vi, ||B3 (1) (6.12.21)
> (3/4B(n))3"(B3(n))
> (1/2B(n) 3 (B3(1)).

Now let 7, be a value of ¢ for which } 5 ,ui(t) is nearly maximal for #{ < ¢ < 9. From (1), (3), and
(21) we see that We may assume that

Y[ (8) =i (0)] = (1/2R*) Y aip (1)
B B
> Y R 27+ (6.12.22)
B
> 27K 4B(n) "o HX (B3 (11)).
Note that this last estimate does not depend explicitly on R. Suppose that

limsup 3*(B3(t1)) > 0.

1110

By hypothesis, limy, 1, ||V;||(X?) = ||Vi,||(X?), and barrier functions may be used to show that



||V;]|(JDy|?) is bounded. Thus (22) shows that we may assume that ¢, is such that (17) implies

R [0~ (0)] < 1000 Y, [ [R 200 (6)+ R as(t)polt) )
B B I
1/2

1
< IOOMRZZZMb(t*)(to—t*)l/z[/O(xi(t)dt}
B ts

fo 3/4
+100MR-222M,(:*)1/2(¢0_t*)l/“{/ ag(t)dz]
B &
Using (22), ) —t. < ¢>1R? and Schwarz’ inequality on the sums, we get
2 /251 20 \11/2 0 o 12
(1/400M) Y pip (1) < ) RT[ ) piy ()] {Z/ ab(f)df]
B B B
1/4p-1/2 20 \11/4 0 ) i
+c) R / [Zyb(t*)] {Z/ ocb(t)dt}
B B
This implies that
fo
) / o (1) dt > Y i (t.) /400*° M2y R*. (6.12.23)
B B
Thus, using (22),
1o
Y /t oZ(t)dr > 275 22B(n) " M 25 Mo (Bs (1)) (6.12.24)
B *
But now we can easily calculate from 3.3 and Minkowski’s inequality that
T
WVall62) = Ve ll2) < [ 8(Tw) (h(vi, ) o
1o
<—(1/2) [ [ Inv0 P d v e (6.12.25)
1y
i) 2
1 [ IMIIPR P) dr
We know ||V;||(|Dy(x)|?) is bounded, so (24) implies
Ve 1) < (Vi1 (?) =275 2 B(n) "' M 25 oI (B3 (R)). (6.12.26)
By hypothesis, lim,_, ||V;||(x*) = [|Vol|(x?). so we finally have
limsup H*(B3(t;)) = 0. (6.12.27)

111ty

If B4(t;) and Bs(t;) are the subsets of By where (4) or (5) fail respectively, then similar (but

simpler) analyses show that
limsup H*(B4(t;)) = 0 and
1 —toy

limsup H*(Bs(t;)) = 0.

11ty

Since By = B3(t1) UB4(t1) UBs(t1) for any #;, clearly we must have 3(*(B;) = 0.

(6.12.28)

(6.12.29)



For the second part of the proof, let B, be the set of points x € B(0,//2) with 8(||V,,|[,x) = 0,
but for every R > 0 having ||V;||B(x,R) > 0 for some ¢ € [to — R?,t0 + R?]. Let ¢(3) be as in the
clearing out lemma 6.3, and define

1—|x> for|x| <1,
= 6.12.30
o) {0 for |x| > 1. ( )
Choose n > 0 so that
4ke(3)M>/ 0 < 1/2. (6.12.31)

Let Bg(R) be the set of b € B, such that
[ (= n)/RYdIV |l < (/2R (6.12.32)
Let?; = 19— R? /6k. Then the clearing out lemma implies that for b € B,
JEXCEDVSEIARER S (6.12.33)

It follows from the definition of Hausdorff measure and the Besicovitch covering theorem that
there is a collection B of disjoint balls B(b,R) with b € B,(R) and

ZaRk (1/2B(n))H*(Bs(R)). (6.12.34)

Equations (32) and (33) show that mass is being lost from UB, and we next show that it can’t be
going elsewhere. We estimate for t; <t < fp:

3007 = o'~ D)/ R) (V.
= [ BP0 = £ (0= b)/R) al v
+ [ 10V, 2) D) i (6.12.35)
+ 1 1070397 ((x=6)/RDO((x—) R
< [ IpxtolRd vl

H; U'h("f’x)2|D¢(<x—b)/R)|2¢<(x—b)/R)d||w||x

1/2
[ =n)Rydx
Define
o) = [ xRV, (6.12.36)
B(b,R)
— [@(=nR N (6.12.37)
Thus

3(Ve,w =Y 0°(-=b)/R))(h(V;,-)) < [[V;]|(IDx[*) +6R 0t (£)B (8). (6.12.38)
k



Let ¢, be a time for which }, Bﬁ(t) has nearly its maximum value between #; and fg. Integrating this
from #; to and using (32) and (33) we get

[ViolI(w) = [[Ve. [ <Zﬁhto — B3 (1)

1 (6.12.39)
+ [ IviliooRyar+ 6k Y [ anopnar
ty b VIx

Again we may neglect the terms explicitly containing x and Dy. By Minkowski’s inequality, (32),
(33) and the definitions of ¢, (39) then becomes

1/2 o 1/2
Ehern-n| L[ G0 > DEe - Burie
b b It b
> (R/12) Y Bj(t.). (6.12.40)

b

Hence

1o
Z/ t)dt > (1/12) ZB (6.12.41)
b b
> (n/24B(n) 23" (Bs(R)).-
As before, this implies

limsupBg(R) = 0.
R—0

Since every b € B; is in Bg(R) for small enough R, this implies 3(*(B,) = 0. O



Appendix A

Grain growth in metals

The purposes of this appendix are to describe a physical system involving motion by mean curvature
and to correct a calculation made in [RCD].

The physical system is the motion of grain boundaries in an annealing piece of metal such as
aluminum. The lowest energy state of aluminum at a temperature just below its melting point is a
certain crystalline lattice. However, when a sample of molten aluminum solidifies, crystallization
may start in many different places with random orientations, and the solid metal will be composed
of many small regions, each with uniform crystal structure. Each connected such region is called a
grain.

An atom on a grain boundary is only partially surrounded by a nice lattice; therefore it is in a
higher energy state than an atom in the interior of a grain. This extra energy may be thought of as
endowing the grain boundary with a surface tension. The size of this surface tension should be about
the same order of magnitude as the surface tension of the liquid metal [CH]. The surface tension of
aluminum at its melting point is 860 ergs/cm? [HCP p. F-19] (which may be compared to that of
water at 18°C, which is 73 ergs/cm? [HCP p. F-33]). It would be expected that the surface tension of
a grain boundary would depend on the orientations of the grains bounded. However, experimentaHy
the dependence seems small except for small differences in orientation [SC1].

It is observed that if pure aluminum with many small grains is annealed, then the grain bound-
aries move with velocities proportional to their mean curvatures [RCD]. On an atomic scale, the
motion may be viewed as due to the probability of an atom at a grain boundary finding itself, as a
result of random thermal motion, on one or another of the adjacent lattices. Clearly the probabil-
ity of landing in a concave lattice is greater than landing in a convex one, and the measure of the
difference of probabilities in general is the mean curvature [SC2].

Assuming the surface tension independent of orientation, then by [TJ] one should find through-
out the motion that three boundaries meet at 120° angles in a line and four boundaries meet at ap-
proximately 109° angles at a point. In one sample of aluminum, over 3000 junctions were examined
without finding any other configurations [RCD].

Since an arrangement of grains such that the boundaries have no mean curvature, for example,
a stacking of Kelvin’s tetrakaidecahedron [K). is extremely unlikely, boundary motion continues
until the sample consists of a few large grains. Relatively larger grains tend to have more faces than
smaller grains and thus the average face on a large grain tends to be more concave. Therefore large
grains grow at the expense of small ones. The dividing line between growing and shrinking seems
to be at about 14 faces [SC2]. The general distribution of shapes seems to be independent of average
grain size [RCD].

The assumption that the distribution of grain shapes is independent of time enables one to esti-
mate the rate of growth as a function of several physical constants. This calculation was unsuccess-
fully attempted in [RCD]. Suppose we start at time ¢+ = 0 with a sample whose average grain size is

111



assumed ideally to be zero. Define
Y = surface tension of boundary,
S(t) = average boundary area par unit volume,
) = average number of grains per unit volume,
) = average magnitude of the mean curvature,
u = mobility of the boundary; i.e., the velocity is mobility times pressure,
c = H()S*1)/N(),
k = S@EN()~'3,
® = ratio of the volume of the average grain to the volume swept out by the
boundary during the disappearance of an average grain.
Note that o, k, and 0 are dimensionless and thus constant in time because of the assumption of
the constancy of the distribution of grain shapes. The average pressure on the boundaries is

P(t) = vH(1).
The rate at which volume is being swept out per unit volume is
uP(1)S(1) = pyH (1) S(1).
The rate of grain loss per unit volume is
dN(t)/dt = —uyH (¢)S(¢)ON(t).
Using the constants 6 and & to eliminate H(¢) and S(¢) we get
dN(t)/dt = —ryeck 'N(r) >3 (A1)

which has the solution
N(t) = ((2/3)uyOok 1) >

which gives the expected power law dependence of volume on time [SC2]. We can derive the value
of 0 from the principle of conservation of energy: the work done against “friction” by the moving
boundaries must be less than or equal to the energy released by the shrinking of the area of the
boundaries. By the work done against “friction” I mean force times speed, or pressure times area

times speed. Thus
uyPH (1)?S(r) < —ydS(r)/ dr.
Using ¢ and k again, we have
1Pk 3N () < —ykdN(r)'3 )/ dr,

and using (1) for dN(r)/dr yields
6! <i*/30.

From experimental data presented in [RCD fig. 4.11] we get 6 ~ 1.33 and k> ~ 10, s0 6! < 2.5.
It seems entirely reasonable for boundaries to sweep out 2.5 grain volumes during a disappearance.



Appendix B

Curves in R?

The simplest non-trivial class of varifolds moving by mean curvature is the class of smooth closed
curves in R2. Even here, exact solutions are hard to find, so we will be content with deriving some
general properties which give a feeling for the effects of motion by mean curvature.

Because we are dealing only with times when a curve is smooth, we will use the mapping
approach discussed in 3.1. Suppose ; € RT,

F:[0,n] xS! - R?

is snooth, and F'(z,-) is non-self-intersecting closed curve for each ¢t € [0,7].
Define the metric g;[0,#,] x S! — R* by

8(t,8) = |0F(2,6) /98],
the tangent angle B : [8,#;] x S' — R* by
tanB(z,0) = (ey-9F(£,0)/00)/(e; - dF (¢,0)/00)
and the oriented curvature K : [0,;] — R by
K(t,0) = g(t,08) '9p(r,0)/08.

If F(z,-) is moving by its mean curvature in the mapping sense, then it can be derived that for all
(l‘,e) € [0,t1] x St

0g(1,0)/0r = —g(1,0)K(1,0), (B.1)
0K (1,0)/dt = g(1,0) 20%K(t,0)/00% + K (t,0)°. (B.2)

Suppose K(¢,0) is positive when the mean curvature vector points toward the inside of the curve.
Proposition 1: The area enclosed by the curve F (t,-) decreases at the rate of 21 for allt € [0,].
Proof: The rate at which area A(¢) decreases is given by

dA(r)/dr = — / K(1,0)g(1,0)d0

which is —27 by the Gauss Bonnet theorem. O
Propostion 2: The total curvature of F(t,-) is monotone decreasing for eacht € [0,1;].
Proof: The rate of change of total curvature is

@/or) [ K(r.0)ls(r.0)do

- / Isign K (1,0)] (9K (,0)/dr)g(1,0)
+|K(1,0)|(g(z,0) /3r) b,
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using (1) and (2)

_ / [sign K (1,0)][¢(#,8) 29*K(1,0)/06% + K (1,0)’]
-g(,0) — [sign K(,0)]K(z,0) do
_ / [sign K (1,0)][0*K (1,0) /06%(z,0) " d6

<0.

The last inequality follows by integrating over intervals of 6 where K(z,0) has constant sign: Sup-
pose a(b K(t,a) = K(t,b) =0, and K(z,0) > 0 for a < 8 < b. Let 6(0) be arc-length, so do =
g(¢,0)do. Then

b o(b)
/ 92K (1,0) /26%]g(1,6) "' d6 = / (9K (1,6(c))/30?) do

a Jo(a)

= 0K (1,b) /30 — 3K (t,a) /3.

By hypothesis, dK(¢,b)/dc < 0 and dK(f,a)/dc > 0, so we are done. A similar analysis can be
done for intervals on which K < 0. O

Definition: If Fi,F2 : [0,#;] x S! — R? are two smooth curves moving by their mean curvature,
then define for each ¢ € [0,#,] the area between Fi(z,-) and F»(t,-), denoted B(t), by

B(r) = L*{x € R? : x inside exactly one of Fi(r,-) or F>(t,-)}.

Definition: We say that the orders of mutual intersections of two curves are the same if the two
curves intersect at a finite number of points and the orders of these intersections are the same along
both curves.

Proposition 3: If | and F, are two smooth curves moving by their mean curvatures, and if the
orders of mutual intersections are the same along both curves for each t, then the total area between
Fi(t,-) and F»(t,-) is monotonically decreasing for eacht.

Proof: If Fi(z,-) and F>(t,-) do not intersect at all for a particular ¢, then it follows from Propo-
sition 1 that B(¢) is constant until the curves intersect or one curve vanishes.

Otherwise, suppose without loss of generality that a,b € S! are parameters of successive inter-
sections as indicated in figure 1. Then the rate of change of the area B(t) of the region between a
and b is

dB(1)/di = /bKl (1,6)g1(1,0)d6 — /sz(t,G)gz(t,G)de

= Bi(1,0) = Bi(r,a) = B2(t,b) + Ba(t,a)
= [Bl([vb) _32(tab)] + [BZ(tva) _Bl(t7a)]

<0.

O

These three propositions suggest that in general dimensions the “area bounded” ought to de-
crease, the total curvature ought to decrease, and two surfaces starting out nearly alike should get
evon more alike.

Proposition 1 depends on the mean curvature being the same as the Gaussian curvature, which
is not true in higher dimensions. For example, if the original surface is a 2-sphere in R? with a lot
of sharp inward spikes, then the volume enclosed will increase at first.

It seems intuitively clear that a surface will locally smooth itself out and thus reduce its total
mean curvature. However, global effects may reverse this. Figure 2 illustrates how this might
happen. The 2-surface in R? is two infinite parallel flat sheets with a large diameter doughnut hole.



Since the curvature due to the closeness of the sheets is greater than that due to the diameter of the
hole, the hole will expand. Therefore the area of the region with high curvature expands, so the total
curvature increases.

Proposition 3 implies a continuous dependence on initial conditions if nearness is measured in
terms of area between curves. While continuous dependence on initial conditions would hold for
higher dimensional smooth manifolds, it does not hold for general surfaces. For example, let the
initial surface be two unit circles in R? distance d apart, d > 0. If d > 0, the only possible course
is for the circles to shrink down to their respective centers. If d = 0, then the circles may remain
connected and turn into a dumbbell shape.



Appendix C

Curves of constant shape

C.1 Introduction

In this appendix we investigate one-dimensional integral varifolds V; in R, moving by their mean
curvature such that if s, # > 0 then V; is a homothety of V;. Suppose we have such a varifold V; and
R:R" — R* is such that fort > 0

Vi = p(R(t))sV1.

Then R(¢) is a characteristic scale of V, and since mean curvature is inversely proportional to scale,
we must have

dR(1)/dr = B/R(r)

for some § € R. Then
R(t) = (2Bt +R(0))'/2.

Note that this scaling factor is valid for all dimensions.

We now seek a differential equation describing curves in R* which remain homotheties of them-
selves. Let the curve be given by F : R* x R? with scaling factor R(t). For a particular time ¢ € R,
let Y= dR(t)/dt, n: R — R? be the normal vector, h : R — R? the mean curvature vector, and
K : R — R be the oriented scalar curvature of F(z,-) so that K(s)n(s) = h(s) for all € R. The
condition we are looking for is, for all s € R

YF(t,5)-n = K(s). (C.1DH

Given v, F(¢,0), and the initial direction of F(z,-), one can integrate (1) to get a curve. This I have
done on an HP 9820A desktop calculator with plotter, and some of the results are described in the
following sections.

C.2 Corners

If one takes y = 2, F(¢,0) = (0,3/8) and initial direction horizontal, one gets a curve as in Figure
3, which has asymptotes at approximately a right angle. If the time origin is chosen so that R(0) =
0, then we see that the initial surface was approximately a right angle. Thus we know what the
evolution of a corner looks like.
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C.3 Triple junctions

We take Y = 1 and three curves starting at (0.43,0) at angles of 0°, 120°, and 240°. Since the triple
junction contributes no curvature, and everywhere else obeys (1), this represents a curve of constant
shape. See Figure 4. The parameters were chosen so that the initial surface was a vertical line with
a horizontal line meeting it at the origin.

C.4 Multiple rays

Figure 5 shows a possible evolution of two lines meeting at right angles. The parameters are Y = 1,
starting points (0,0.28) and (0,-.28), and starting angles 120° apart.

Note the essential non-uniquness of the evolution. By symmetry, the same solution rotated 90°
is also a solution.

This solution will arise from the reduced mass model (see 4.9 Remark 2) but not in the normal
varifold model. Since the initial varifold has zero mean curvature, one must ask what Lipschitz
maps of small displacement can do. If one is not allowed to reduce mass, then any non-identity
Lipschitz map will increase mass. Thus in the normal model nothing will happen. In the reduced
mass model, the first small Lipschitz map can produce a miniature version of Figure 5, and the rest
of the evolution is driven by mean curvature. Figures 6, 7, and 8 show possible evolutions of 5, 7,
and 8 rayed initial surfaces with no special angles.

C.5 Shrinking loop

If one considers B < 0, then one gets surfaces that shrink as time increases. A circle is the most
obvious example. Another interesting example is the loop shown in Figure 9. Its parameters are
Y = —1, starting point (0,0.83), and angles 90°, 210°, and 330°. The starting point was chosen so
the two lower curves joined smoothly below the origin. This surface will shrink homothetically until
the loop vanishes, leaving a vertical ray from the origin. The ray will then vanish instantaneously.
This is an example of non-continuity, and thus non-differentiability.



Appendix D

Density bounds and rectifiability

The example presented in this appendix illustrates the necessity of assuming a lower bound on the
density of a rectifiable initial varifold in 4.1 in order to conclude rectifiability later in 4.17. We
construct an initial rectifiable varifold with lower density bound zero and give an argument that this
varifold should turn unractifiable as it moves by its mean curvature.

First, let W be the varifold depicted in Figure 10. The densities are to be such that W is stationary.
We intend that W = 2u(2)sW.

Define B : R? x G(2,1) — R by

B(x1,x2,8) = exp|Xa|.

Let Vo = WL B € RV{(RR?). Note that B was chosen to give Vj unit magnitude mean curvature
vectors on the vertical segments pointing away from the horizontal centerline.

To see that this initial varifold will evolve as claimed under the construction of Chapter 4, con-
sider the m™ approximation. Away from the centerline, motion is outward with a more or less uni-
form velocity, which preserves the density gradients, which preserves the uniform outward velocity.
The stuff near the centerline will be vertically stretched by the small Lipschitz maps f> (see 4.9).
When we take the limit of the approximations as m — oo, the stretched central stuff converges to
a region of one-dimensional varifold expanding with unit speed with zero one-dimensional density
but with positive two-dimensional density. It is thus unrectifiable.
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FIGURE 1.

FIGURE 2.
FIGURE 3.

FIGURE 4.
FIGURE 5.
FIGUHE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

FIGURE 10.

FIGURE CAPTIONS

Portions of two moving smooth closed curves and the shrinking area be-
tween them.

A doughnut hole which has increasing total mean curvature as it evolves.
A stage in the evolution of an initial right angle. All stages have a math-
ematically similar shape.

Evolution of three lines meeting at right angles.

Evolution of four lines meeting at right angles.

Evolution of five lines meeting at random angles.

Evolution of seven lines.

Evolution of eight lines.

A one dimensional surface which evolves by the loop shrinking down to
a point, leaving a line tnat vanishes instantaneously.

A rectifiable one dimensional initial varifold which intuitively should
evolve into an unrectifiable varifold. The pattern continues indefinitely
towards the center with decreasing line weights. Along the center line,
one dimensional densities are zero, but two dimensional densities are not.
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