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Table 1: Notation.

V Varifold, representing a surface.
Vt Time-varying varifold, representing a surface moving by its mean curva-

ture.
k Dimension of the surface under consideration.
n Dimension of the ambient space.
Rn Ambient Euclidean space.

R Radius of a sphere.
R(t) Time-varying radius of sphere.

h(V,x) Mean curvature vector of varifold V at point x, corresponding to the sum
of the sectional curvatures, without the usual 1/2 factor.

R+ nonnegative reals, {t ∈ R : t ≥ 0}.
Uk(a,r) Open k-dimensional ball, {x ∈ Rk : |x−a| < r}.
U(a,r) Open n-dimensional ball, {x ∈ Rn : |x−a| < r}.

Bk(a,r) Closed k-dimensional ball, {x ∈ Rk : |x−a| ≤ r}.
B(a,r) Closed n-dimensional ball, {x ∈ Rn : |x−a| ≤ r}.

Lk k-dimensional Lebesgue measure.
α Volume of unit k-ball, LkB(0,1).

Hk Hausdorff k-dimensional measure.
A ≈ B Set subtraction.
D̄ f (t) Upper derivative of f at t.

D− f (t) Left upper derivative of f at t.
D+ f (t) Right upper derivative of f at t.

B(n) Besicovitch number in Rn, §2.2.
µµµ(r) Homothety by factor r, §2.3.

θ∗k(µ,a) k-dimensional upper density of measure µ at a, §2.4.
θk(µ,a) k-dimensional density of measure µ at a, §2.4.
G(n,k) Grassmann manifold of k-dimensional subspaces of Rn.
Gk(Rn) k-plane bundle of Rn, Rn×G(n,k).

Hom(Rn,Rn) Linear maps from Rn to Rn.
||A|| Norm on Hom(Rn,Rn), ||A|| = sup{|A(x)| : x ∈ Rn, |x| = 1}.

A∗ Transpose of matrix of Hom(Rn,Rn).
I Identity element of Hom(Rn,Rn).

A ·B Inner product in Hom(Rn,Rn), this is Tr(A∗B).
Cm(A,B) Set of functions from space A to space B with continuous order m deriva-

tives.
Cm

0 (A,B) Set of functions from space A to space B with continuous order m deriva-
tives and compact support.

C(T,a,r) Cylinder perpendicular to plane T with center a and radius r, {x ∈ Rn :
|T (x−a)| ≤ r}.

Vk(Rn) Space of k-dimensional varifolds in Rn, i.e. Radon measures on Gk(Rn),
§2.6

||V || Weight measure of varifold V , projection of V to measure on Rn. §2.6
V (·) Fiber measure induced by varifold V . §2.6

V A Restriction of V to subset A ⊂ G(n,k). §2.6
V β Varifold V multiplied by function β(x,S). §2.6



v(E) Varifold associated to rectifiable set E. §2.7
RVk(Rn) k-dimensional rectifiable varifolds. §2.7
IVk(Rn) k-dimensional integral varifolds. §2.7

f#V Varifold transformed by map f . §2.8
δV First variation of varifold V . §2.9

||δV || Total variation measure on Rn. §2.9
||Vsing|| Total variation measure part singular with respect to ||V ||. §2.9

φ(x) Arbitrary test function in C2
0(Rn,R). §2.10

δ(V,φ) First variation of V with respect to test function φ. §2.10
δ(V,φ)(h(V, ·)) Motion by mean curvature on a test function. §3.2

Ω Weighting function, in C3(Rn,R+). §4.1
||ψ||Ω Ω-norm of function. §4.1

ΩΩΩC(Gk(Rn)) Space of test functions of finite Ω-norm. §4.1
ΩΩΩV k-dimensional varifolds finite on Ω. §4.1

Ωlim Limit in Ω norm. §4.1
ΩΩΩR Rectifiable Ω-finite k-dimensional varifolds. §4.1
ΩΩΩI Integral Ω-finite k-dimensional varifolds. §4.1
ΩΩΩ Initial k-dimensional varifolds. §4.1
Ai Scalar test functions with derivative size limited by i. §4.1
Bi Test vectorfields with derivative size limited by i. §4.1
Ψε Smoothing function. §4.2

Ψε ∗V Smoothed varifold. §4.2
Ψε ∗ ||V || Smoothed varifold mass measure. §4.2

Ψε ∗δV Smoothed varifold. §4.2
hε(V ) Smoothed mean curvature of V . §4.3

c1 A constant. §4.5
c2(i,ε) A constant. §4.5

E(V,σ,w) A certain set of Lipschitz maps. §4.9
∆σ,w||V ||(φ) Infimum of change. §4.9

Q2 Nonnegative dyadic rationals. §4.13
∧(n,k) Ordered k-tuples of 1, . . . ,n. §4.15

c3 A constant. §4.16
A(n,k) k-dimensional affine planes in Rn §5.1

χ Approximate smooth characteristic function of unit ball. §5.1
ρ Derivative bound on χ. §5.1
βββ Integral of square of χ. §5.1

Mν Range for ν-multi-valued functions.
*-image F Image of multi-valued function in Rn. §5.1

c4 A constant. §5.6
c3 A constant. §5.6. Oops, not the same as in §4.16
c

2
A constant from [AWl 8.14]. §5.6

c(m) Constant in the Clearing Out Lemma. §6.3
c10,c11 Constants in popping soap films lemma. §6.6
ψ(t,x) Truncated heat kernel. §6.7

c15 A constant. §6.8



Chapter 1

Introduction

Surfaces that minimize area subject to various constraints have long been studied. Much of the
inspiration for these studies has come from physical systems involving surface tension: soap films,
soap bubbles, capillarity, biological cell structure, and others. So far, mathematical investigations
have been mostly confined to the equilibrium states of the systems mentioned, with some study
of the evolution of non-parametric hypersurfaces [LT]. This work studies in general dimensions a
dynamic system: surfaces of no inertial mass driven by surface tension and opposed by frictional
force proportional to velocity. The viewpoint is that of geometric measure theory.

The mean curvature vector h(V,x) of a surface V at a point x can be characterized as the vector
which, when multiplied by the surface tension, gives the net force due to surface tension at that
point. For example, if V is a k-sphere with radius R centered at the origin with unit magnitude
surface tension, then h(V,x) = −kx/|x|2. Note that the magnitude of the mean curvature is larger by
a factor of k than in many other definitions.

The mathematical object we wish to study may be loosely described as a family of surfaces
Vt parameterized by time such that each point at each time is moved with a velocity equal to the
mean curvature vector of the surface at that point at that time. A physical system exhibiting this
behavior is the motion of grain boundaries in an annealing pure metal. Grain boundaries represent
excess energy, and there is effectively a surface tension. it is experimentally observed that these
grain boundaries move with a velocity proportional to their mean curvature. For a fuller discussion,
see Appendix A.

The question arises: what do we mean by a surface? We do not wish to restrict ourselves to
manifolds, firstly because a manifold may evolve singularities, and secondly because systems like
grain boundaries are most interesting when they are not manifolds. For surfaces we shall take a
certain class of Radon measures known as varifolds, which are defined in section 2.6. The space of
varifolds includes anything one would wish to call a surface and has nice compactness properties.

Since it is impossible to follow a measure pointwise, how are we to describe the motion of a
surface? We do it by describing how a measure behaves on test functions. Section 2.10 derives an
expression for the rate of change of the integral of a test fuction when the velocity of a surface is a
smooth vectorfield. Section 3.3 generalizes this expression to define when a varifold is moving by
its mean curvature, even when the mean curvature is far from a smooth vectorfield.

The surfaces with the simplest nontrivial motion are k-dimensional spheres. Let R(t) denote
the radius of a k-sphere at time t. The magnitude of the mean curvature is k/R(t), so dR(t)/dt =
−k/R(t). Thus

R(t) = (R(0)2−2kt)1/2. (1.0.1)

The behavior of a k-sphere turns out to be characteristic of the behavior of any k-dimensional surface
in tne following manner: By 3.7, if a k-dimensional surface at time t = 0 is contained in the exterior
of a ball of radius R(0), then at later time t the surface is contained in a ball of radius (R(0)2−2kt)1/2
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with the same center. By 3.9, the analogous statement is true of a surface contained in the interior
of a ball. An immediate consequence of 3.7 is that a surface starting in a convex set always remains
in that convex set.

Section 3.4 establishes bounds on the motion of a surface moving by its mean curvature, and
these bounds are used in 3.10 to show that the motion is continuous except for instantaneous losses
of area.

Chapter 4 addresses the problem of the existence of a surface moving by its mean curvature with
a given initial surface. We consider the k-dimensional initial surfaces to be members of a class of
rectifiable varifolds with a positive lower bound on the k-dimensional densities. This class includes
all surfaces of interest. For such an initial surface, Chapter 4 gives an approximation procedure that
yields a one parameter family of varifolds that satisfies the definition of motion by mean curvature
given in 3.3 and are rectifiable at almost all times. If the initial surface has integer densities, which
all familiar surfaces do, then the constructed varifolds are also integral at almost all tines. These
properties are proven in 4.29.

If the initial surface were a smooth manifold, then one might get a solution for a short time by
the straightforward use of the theory of partial differential equations, as briefly discussed in 3.1. My
procedure will yield the same result in such a case, as noted in 4.15.

For a given initial surface, the subsequent motion may be naturally not unique, as illustrated in
C.4. Therefore my procedure does not strive for uniqueness.

Certain modifications may easily be made at one stage to model different types of behavior (see
Remark 2 of 4.9). None of these modifications affect the results of Chapter 4.

Chapter 5 proves that the mean curvature vector is almost everywhere perpendicular to an inte-
gral varifold whenever the notion of mean curvature vector is valid. This perpendicularity is easily
proved for class 2 manifolds in differential geometry, but under our very broad hypotheses, we will
have to delve deep into the microstructure of varifolds. This result is not directly concerned with
moving varifolds, but it is essential for chapter 6.

Chapter 6 shows that a unit density integral varifold moving by its mean curvature is an in-
finitely diffetentiable manifold almost everywhere, except perhaps when there is an instantaneous
loss of area. Unit density means that the density of the varifold is the same everywhere. Without
this hypothesis, not even minimal varifolds (those with zero mean curvature) are known to be reg-
ular. Section 6.2 describes an example illustrating the problems that arise with multiple densities.
Unfortunately, the existence construction of chapter 4 has not yet been made to yield unit density
varifolds. However, the regularity proof is totally independent of the source of a varifold moving by
its mean curvature, and would apply, for example, to the non-parametric hypersurfaces of [LT].

Appendix A discusses metal grain boundaries, as mentioned above. Appendix B discusses
smooth simple closed curves in the plane moving by their mean curvature. Appendix C discusses
1-dimensional surfaces in a plane that retain the same shape but change in size as they move by mean
curvature. There are computer plots of several such surfaces. Appendix D shows the necessity of
the hypothesis of positive lower bounds on densities in Chapter 4 by describing a rectifiable varifold
with densities approaching zero that should turn unrectifiable as it moves by its mean curvature.

As for generalizations of this work, everything would still be valid on smooth Riemannian man-
ifolds, when properly interpreted. Extension to integrands much different from the area integrand
would not be as easy, because Allard [AW2] has shown that essentially only the area integrand
satisfies monotonicity theorems, such as 4.17, which are vital to the methods herein.

I thank my advisor, Professor Frederick J. Almgren, Jr., for his guidance, for many inspiring
discussions, and especially for his never-ending optimism and encouragement. I am grateful to the
National Science Foundation for support.



Chapter 2

Preliminaries

2.1 General definitions
We follow the standard terminology of [FH]. Most of the definitions regarding varifolds come from
[AW1].

We denote by N the positive integers and by R the real numbers. Throughout this paper k and n
are fixed positive integers with k ≤ n. Define

R+ = {t ∈ R : t ≥ 0},
Uk(a,r) = {x ∈ Rk : |x−a| < r},
U(a,r) = {x ∈ Rn : |x−a| < r},

Bk(a,r) = {x ∈ Rk : |x−a| ≤ r},
B(a,r) = {x ∈ Rn : |x−a| ≤ r}.

Frequently, we will treat Rk as a subspace of Rn.
We will use

∫
dx to denote integration with respect to Lebesgue measure Ln on Rn. Set

α = LkBk(0,1).

We denote by Hk Hausdorff k-dimensional measure on Rn.
We will often use 〈 f ,g〉 to denote the value of a distribution f on an appropriate test function g,

especially when dealing with convolutions.
For ψ ∈ C2

0(Rn,Rk) we define

(|Dψ|2/ψ)(x) =

{
|Dψ(x)|2/ψ(x) if ψ(x) 6= 0,
0 if ψ(x) = 0.

It can be shown that |Dψ|2/ψ is bounded.
If F :R→ R then we define for each t ∈ R the upper derivate of F at t by

D̄F(t) = limsup
s→t

F(S)−F(t)
s− t

.

We shall also use the upper left and upper right derivates, denoted D− and D+ respectively.
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2.2 The Besicovitch covering theorem
There is a positive integer B(n) with the following property: If A is a subset of Rn and C is a family
of closed balls in such that each point of A is the center of a member of C, then there are disjoint
subfamilics Ci, i = 1, . . . ,B(n), of C such that

A ⊂ ∪{∪Ci : i = 1, . . . ,B(n)}.

For the proof, see [FH 2.8.14].

2.3 Homothety and translation
For each r ∈ R we define the homothety µ(r) : Rn → Rn by

µ(r)(x) = rx.

For each a ∈ RN we define the translation τ(a) : Rn → Rn by

τ(a)(x) = x−a.

2.4 Densities and tangent cones
If µ is a measure on Rn then we define the k-dimensional upper density and density of µ at a ∈ Rn

by

θ∗k(µ,a) = limsup
r→0+

/αr k,

θk(µ,a) = lim
r→0+

µB(a,r)/αr k.

The approximate tangent cone of µ at a ∈ Rn is

Tank(µ,a) = ∩{C : C is a cone in Rn with vertex at a and θk(µ|Rn−C,a) = 0}

2.5 The Grassmann manifold, homomorphisms, and cylinders
Let G(n,k) denote the space of k-dimensional subspaces of Rn, which can also be thought of as the
set of unit simple k-vectors. Suppose S ∈ G(n,k). We will also use S to denote orthogonal projection
of Rn onto S.

Let Gk(Rn) = Rn×G(n,k).
For A,B ∈ Hom(Rn,Rn), we define a scalar product A ·B by

A ·B = trace(A◦B).

The identity element of Hom(Rn,Rn) will be denoted by I. If φ∈C2(Rn,R) or g∈C1(Rn,Rn),
then we will sometimes treat Dφ(x) as an element of Rn and D2φ(x) or Dg(x) as elements of
Hom(Rn,Rn). The tensor product v⊗w of two vectors v,w ∈ Rn is also in Hom(Rn,Rn). The
norm || || on Hom(Rn,Rn) is

||A|| = sup{|A(x)| : x ∈ Rn, |x| = 1}.



We will frequently use the following facts about S,T ∈ G(n,k) and A,g,a,v,w as above:

v⊗w ·S = S(v) ·w = v ·S(w) = S(v) ·S(w),
D2φ(x)(v,w) = v⊗w ·D2φ(x),

I ·S = k, 0 ≤ k−S ·T ≤ k||S−T ||2,
|A ·S| ≤ k||A||,

||T (S⊥(w))|| ≤ ||S−T || |w|,and
||T (S⊥(T (w)))|| ≤ ||S−T ||2|w|.

For T ∈ G(n,k), a ∈ Rn, and 0 < r < ∞, we define the cylinder

C(T,a,r) = {x ∈ Rn : |T (x−a)| ≤ r}.

2.6 Varifolds
We say V is a k-dimensional varifold in Rn if and only if V is a Radon measure on Gk(Rn). Let
Vk(Rn) be the weakly topologized space of k-dimensional varifolds in Rn. Whenever V ∈ Vk(Rn),
we define the weight of V to be the Radon measure ||V || on Rn given by

||V ||A = V ((x,S) ∈ Gk(Rn) : x ∈ A)

whenever A is a Borel subset of Rn. We let V (·) be the ||V || measurable function with values in the
Radon measures on G(n,k) such that for any ψ ∈ C0(Gk(Rn),R)

V (ψ) =
∫ ∫

ψ(x,S)dV (x)S d||V ||x.

If β ∈ Gk(Rn) → R is a locally V summable function, then ψ β ∈ Vk(Rn) is defined by

(V β)A =
∫

A
β(x,S)dV (x,S).

The same notation will be used with the obvious meaning even if β is only defined on Rn. Similarly,
if A is a ||V || measurable subset of Rn, we will use V A to abbreviate the restriction V (A×
G(n,k)), and

∫
A β(x,S)dV (x,S) to abbreviate

∫

A×G(n,k)
β(x,S)dV (x,S).

By the well-known compactness properties of Radon measures, the set of varifolda

{V ∈ Vk(Rn) : ||V ||B(0,Ri) ≤ Bi, i ∈ N}
is compact if Bi < ∞ for all i and limi→∞ Ri = ∞.

2.7 Rectifiable and integral varifolds
Whenever E is an Hk measurable subset ofRn which meets every compact subset ofRn in an (Hk,k)
rectifiable subset [FH 3.2.14], there is a naturally associated varifold v(E) ∈ Vk(Rn) defined by

v(E)A = Hk{x : (x,Tank(H E,x)) ∈ A}

whenever A ⊂ Gk(Rn).



We say a varifold V ∈ Vk(Rn) is a k-dimensional rectifiable varifold if there are positive real
numbers c1,c2, . . . and Hk measurable subsets E1,E2, . . . of Rn which meet every compact subset of
Rn in an (Hk,k) rectifiable subset such that

V =
∞

∑
i=1

civ(Ei).

If the ci may be taken to be positive integers, then we say V is a k-dimensional integral varifold. We
let

RVk(Rn) and IVk(Rn)

be the spaces of k-dimensional rectifiable and integral varifolds respectively.

2.8 Mapping of varifolds
Following [AF 1.1(13)], suppose f : Rn → Rn is a proper mapping of class 1 and V ∈ Vk(Rn). Then
the varifold f#V ∈ Vk(Rn) induced by f is characterized by the condition

( f#V )A =
∫

{(x,T ):( f (x),D f (x)(T ))∈A}
|∧k (D f (x)◦T )|dV (x,T )

whenever A is a Borel subset of Gk(Rn).
Suppose f : Rn → Rn is a proper Lipchitz map and V ∈ RVk(Rn). Then the induced varifold

f#V ∈ RVk(Rn) is characterized by

( f#V )A =
∫

{(x,T ):( f (x),apD f (x)(T ))∈A}
|∧k (apD f (x)◦T )|dV (x,T )

whenever A is a Borel subset of Gk(Rn); here the approximate differential is

apD f (x) = (||V ||,k)apD f (x) : Tank(||V ||,x) → Rn,

see [FH 3.2.16, 3.2.19, 3.2.20]. The function f : RVk(Rn) → RVk(Rn) is not in general continuous.
One observes f#(IVk(Rn)) ⊂ IVk(Rn).

2.9 First variation
Suppose ε > 0, h : (−ε,ε)×Rn → Rn, is smooth, ht(x) = h(t,x) for (t,x) ∈ (−ε,ε)×Rn,
h0(x) = x, and the set

{x : ht(x) 6= x for some t ∈ (−ε,ε)}
has compact closure in an open subset G of Rn. Let

g = (∂h/∂t)(0, ·) ∈ C1
0(Rn,Rn).

Then for V ∈ Vk(Rn) such that ||V ||G < ∞ we have by [AW1 4.1]

(d/dt)||ht#V ||G |t=0 =
∫

Dg(x) ·SdV (x,S).

This motivates for any V ∈ Vk(Rn) the definition of a linear function

δV : C1
0(Rn,Rn) → R,



called the first variation of V by

δV (g) =
∫

Dg(x) ·SdV (x,S).

If δV = 0, then V is called stationary. We define the total variation ||δV || to be the largest Borel
regular measure on Rn determined by

||δV ||G = sup{δV (g) : g ∈ C1
0(Rn,Rn),sptg ⊂ G and |g| ≤ 1}.

whenever G is an open subset of Rn.
If ||δV || is a Radon measure, then there is a ||δV || measurable function η(V ; ·) with values in

Sn−1 such that
δV (g) =

∫
g(x) ·η(V ;x)d||V ||x

for g ∈ C1
0(Rn,Rn). The theory of symmetrical derivation (see [FH 2.8.18, 2.9]) implies the follow-

ing: The formula
||δV ||/||V ||(x) = lim

r↓0
||δV ||B(x,r)/||V ||B(x,r)

defines a real-valued ||V || measurable function on Rn such that if

||δV ||sing = ||δV || {x : ||δV ||/||V ||(x) = ∞}

then
||δV ||B =

∫

B
||δV ||/||V ||(x)d||V ||x+ ||δV ||singB

whenever B is a Borel subset of Rn. The formula

h(V,x) = −||δV ||/||V ||(x)η(V ;x)

defines a ||V || measurable function with values in Rn such that

δV (g) = −
∫

g(x) ·h(V,x)d||V ||x+
∫

g(x) ·η(V ;x)d||δV ||singx

whenever g is a Borel measurable function with values in Rn such that
∫ |g(x)|d||δV ||x < ∞. If

||δV ||sing = 0, then we call h(V, ·) the generalized mean curvature vector of V .
The preceding mathematics has a physical interpretation. A surface naturally corresponds to a

varifold. When a surface has a surface tension, the area is proportional to the total energy. If g is the
velocity of the surface, then the rate of change of energy (the power) is δV (g). Since power is the
integral of the force times the velocity over the surface, clearly h(V,x) is proportional to the force
due to the surface tension. Singular first variation, ||δV ||sing, occurs at edges, sharp corners, and
the like.

2.10 First variation with respect to other integrands
Suppose φ ∈ C2

0(Rn,R) and V , G, r, h, and g are as in 2.9. Then by [AW1 4.9(1)]

(d/dt)||ht#V ||(φ)|t=0 =
∫

Dg(x) ·Sφ(x)dV (x,S)+
∫

g(x) ·Dφ(x)d||V ||x.

We are led to define the first variation δ(V,φ) of V with respect to φ by setting

δ(V,φ)(g) =
∫

Dg(x) ·Sφ(x)dV (x,S)+
∫

g(x) ·Dφ(x)d||V ||x. (2.10.1)



whenever g ∈ C1
0(Rn,Rn).

Proposition: If V ∈ Vk(Rn), φ ∈ C1(Rn,Rn), and g ∈ C1
0(Rn,Rn), then

δV (x,φ)(g) = δV (φg)−
∫

S(Dφ(x)) ·g(x)dV (x,S)+
∫

Dφ(x) ·g(x)d||V ||x. (2.10.2)

Proof: From eq. (2.10.1)

δ(V,φ) =
∫

Dg(x) ·Sφ(x)dV (x,S)+
∫

Dφ(x) ·g(x)d||V ||x

= D(φg)(x) ·S− (Dφ(x)⊗g(x)) ·SdV (x,S)+
∫

Dφ(x) ·g(x)d||V ||x

= = δV (φg)−
∫

S(Dφ(x)) ·g(x)dV (x,S)+
∫

Dφ(x) ·g(x)d||V ||x.

Note that we may also write eq. (2.10.2) as

δ(V,φ)(g) = δV (φg)+
∫

S⊥(Dφ(x)) ·g(x)dV (x,S) (2.10.3)

or if ||δV || is a Radon measure and ||δV ||sing = 0, then

δ(V,φ)(g) =
∫

h(V,x) ·g(x)φ(x)d||V ||x+
∫

S⊥(Dφ(x)) ·g(x)dV (x,S). (2.10.4)

2.11 Compactness theorem for rectifiable varifolds
Theorem [AW1 5.6]: Suppose G1,G2, . . . are open subsets of Rn, Rn = ∪∞

i=1Gi, M1,M2, . . . are
nonnegative real numbers, and θ is a positive real valued continuous function on Rn. The set of
those varifolds V ∈ RVk(Rn) for which

(||V ||+ ||δV ||)Gi ≤ Mi, i = 1,2, . . .

and
θk (||V ||,x) ≥ θ(x) for ||V || almost all x ∈ Rn

is compact.

2.12 Compactness theorem for integral varifolds
Theorem [AW1 6.4]: Suppose G1,G2, . . . are open subsets of Rn, Rn = ∪∞

i=1Gi, M1,M2, . . . are
nonnegative real numbers, and θ is a positive real valued continuous function on Rn. The set of
those varifolds V ∈ IVk(Rn) for which

(||V ||+ ||δV ||)Gi ≤ Mi, i = 1,2, . . .

and
θk (||V ||,x) ≥ θ(x) for ||V || almost all x ∈ Rn

is compact.



Chapter 3

Motion by mean curvature

3.1 Manifold difficulties
On first considering the problem of a surface moving by its mean curvature, one is likely to try to
apply results from the theory of partial differential equations. In what is called the parametric ap-
proach, the moving surface is viewed as a family of maps Ft : Rk → Rn. From differential geometry
[SM, p. 193], the mean curvature vector ht(x) at Ft(x) is the invariant Laplacian of the position
vector:

ht(x) = ∆Ft(x). (3.1.1)

In coordinates, this is

ht(x)m =
n

∑
i, j=1

1
g(x)

∂
∂xi

(
g(x)gi j(x)

∂Ft(x)m

∂x j

)
, m = 1, . . . ,k, (3.1.2)

where (gi j) is the inverse matrix of the metric (gi j),

gi j(x) =
n

∑
p=1

∂Ft(x)p

∂xi

∂Ft(x)p

∂x j
,

and g2 = |det(gi j)| . Thus, the problem becomes to solve

∂Ft(x)/∂t = ∆Ft(x). (3.1.3)

This looks like a vector-valued heat equation, except that the operator ∆ depends on Ft .
Equation (3.1.3) is parabolic, just as the minimal surface equation ∆F(x) = 0 is well known to

be elliptic. The theory of systems of quasilinear parabolic partial differential equations applies. For
example, if F0 is nice enough, then [ES III.4] guarantees the existence of Ft for some short time
interval.

The non-parametric approach is to represent a moving surface as the graph of maps ft : Rk →
Rn−k. Here, the equation of motion becomes

∂ ft(x)/∂t =
k

∑
i, j=1

gi j∂2 ft(x)/∂xi∂x j, (3.1.4)

where the metric arises from Ft = I⊗ ft . This equation is also nicely parabolic, and it is nearly
the heat equation when ft is nearly constant. The analogy to heat will be a guiding principle in the
regularity theory of chapter 6. There we will also use the fact that solutions to (3.1.4) are infinitely
differentiable [ES II.1.5].
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There are many objections to these two approaches. The principal one is the topological re-
striction placed on surfaces. Real grain boundaries are full of singularities, and the topological type
continually changes. Even if the initial surface is representable parametrically, the existence of a so-
lution is guaranteed only for a short time, as the surface may develop knots and other singularities.
The non-parametric problem may have “generalized solutions” [LT] existing forever but puts even
more drastic restrictions on the type of surface.

The varifold approach places no restrictions on the nature of a surface. Anything with area and
tangent planes is a varifold. Of course, that means (3.1.3) or (3.1.4) no longer apply. Therefore,
the first task of this chapter is to provide a definition of motion by mean curvature for varifolds that
can always be applied. The starting point for this definition is the first variation with respect to an
integrand, discussed in 2.10. We see from 2.10 that if a varifold Vt represents a smooth manifold,
then (3.1.3) is equivalent to requiring

(d/dt)||Vt ||(φ) = δ(Vt ,φ)(h(Vt , ·)) (3.1.5)

for smooth test functions φ. We will generalize (3.1.5) to all V , but first we must define
δ(V,φ)(h(V, ·)) for all V ∈ Vk(Rn).

3.2 Definition of δ(V,φ)(h(V, ·))
Suppose V ∈ Vk(Rn) and φ ∈ C1

0(Rn,Rn). If ||δV || is not a Radon measure, if ||δV ||sing φ = 0 or
if ∫

|h(V,x)|2φ(x)d||V ||x = ∞, (3.2.1)

then we will set
δ(V,X)(h(V, ·)) = −∞. (3.2.2)

Otherwise, in analogy with eq. (2.10.4), set

δ(V,φ)(h(V, ·)) = −
∫
|h(V,x)|2φ(x)d||V ||x+

∫
S⊥(Dφ(x)) ·h(V,x)dV (x,S). (3.2.3)

Remarks: To enable us to write single formulas to cover all cases, we will make the convention that
∫
|h(V,x)|2φ(x)d||V ||x = ∞

also in case ||δV || φ is not a Radon measure or ||δV ||sing 6= 0. This makes (3.2.2) formally con-
sistent with (3.2.3).

Since h(V, ·) may not be bounded, even on compact sets, it is not clear a priori that the rate of
change of ||Vt ||(φ) should be given by δ(V,φ)(h(V, ·)). However, we shall see in 3.4 that unbounded
mean curvature does not lead to unbounded rates of growth on test functions.

3.3 Varifold moving by its mean curvature
We shall say that a one parameter family of varifolds V ∈ Vk(Rn), t ∈ R, is a varifold moving by its
mean curvature if and only if

D̄||Vt ||(φ) ≤ δ(Vt ,φ)(h(Vt , ·)) (3.3.1)

for every φ ∈ C1
0(Rn,Rn) and for all t ∈ R+ .

Remarks: The notion of derivate is used because ||Vt ||(φ) may not always be differentiable,
or even continuous (see Appendix C.5), and the upper derivate gives a stronger condition than any
other derivate. We will see in 3.10(b) that (3.3.1) implies ||Vt ||(φ) is differentiable for almost all



t ∈ R+, but it is not clear whether we should require equality in (3.3.1) for almost every t. Appendix
C.4 shows an example in which V0 has zero mean curvature, yet we want D̄||Vt ||(φ)|t=0 = −∞ if
φ(0) > 0. It is conceivable that there is some example in which frequent behavior of this sort leads
to

D̄||Vt ||(φ) < δ(Vt ,φ)(h(Vt , ·))
for all t ∈ R+. Condition (3.3.1) is also the condition that naturally arises out of the construction of
Chapter 4, as remarked in 4.18.

This definition does not imply anything about the uniqueness of a varifold moving by its mean
curvature for a given initial varifold. Appendix C.4 gives one example of non-uniqueness. For
general varifolds, (3.2.1) cannot ccmpletely characterize the motion because it says nothing about
the rate of change of the Grassmann manifold component V (·)

t of Vt (see 2.6). It would obviously be
nice to use first variation with respect to a test function defined on Gk(Rn), but such a first variation
could not be converted into a form like (2.10.1) which could be generalized from smooth vectorfields
g to mean curvature h(V,x) as in (3.2.3). However, for rectifiahle varifolds ||V || does determine V ,
and this covers almost all interesting cases.

This chapter henceforth will deal only with consequences of (3.3.1). Existence of Vt for certain
V0 will be shown in Chapter 4.

3.4 Upper bound on motion
Proposition: If V ∈ Vk(Rn) and φ ∈ C2(Rn,Rn) then

δ(V,φ)(h(V, ·)) ≤ −
∫
|h(V,x)|2φ(x)d||C||x+

[∫
|h(V,x)|2φ(x)d||V ||x

]1/2

||V ||(Dφ|2/φ)1/2

≤ ||V ||(|Dφ|2/φ).

Proof: If δ(V,φ)(h(V, .)) = −∞ then we are done. Otherwise, by (3.2.3)

δ(V,φ)(h(V, ·)) = −
∫
|h(V,x)|2φ(x)d||V ||x+

∫
S⊥(Dφ(x)) ·h(V,x)dV (x,S)

≤ −
∫
|h(V,x)|2φ(x)d||V ||x+

∫
|Dφ(x)||h(V,x)|d||V ||x,

from which the conclusions follow by applying the Schwarz inequality to the second term on the
right hand side and finding the maximum value of the resulting expression.

Remark: This shows δ(V,φ)(h(V, ·)) → −∞ as
∫ |h(V,x)|2φ(x)d||V ||x → ∞ for a bounded value

of ||V ||(|Dφ|2/φ), justifying definition (3.2.2).

3.5 Time varying test functions
Proposition: If Vt is a varifold moving by its mean curvature, 0 ≤ r < s < ∞ , and
ψ ∈ C1

0([r,s]×Rn,R+), then

D+||Vt ||(ψ(t, ·)) ≤ δ(Vt ,ψ(t, ·))(h(Vt , ·))+ ||Vt ||(∂ψ(t, ·)/∂t)

for t ∈ [t,s) .
Proof: Let ψ ∈ C2

0(Rn,Rn) be such that ψ(x) > 1 if x ∈ sptψ(t, ·) for any t ∈ [r,s].



Suppose t ∈ [r,s). It follows from (3.3.1) and 3.4 that there are M < ∞ and δ > 0 such that
||Vu||(ψ) < M for t < u < t +δ. We may write

D+||V − t||(ψ(t, ·)) = limsup
∆ t↓0

[ ||Vt+∆ t ||(ψ(t +∆ t, ·))−||Vt ||(ψ(t, ·))]/∆ t

≤ limsup
∆ t↓0

[ ||Vt+∆ t ||(ψ(t, ·))−||Vt ||(ψ(t, ·))]/∆ t

+ limsup
∆ t↓0

||Vt+∆ t ||(∂ψ(t, ·)/∂t)

+ limsup
∆ t↓0

(1/∆ t)
∫ ∫ ∆ t

0
|∂ψ(t +θ,x)/∂t−∂ψ(t,x)/∂tdθd||Vt+∆ t ||x.

By the definition of motion by mean curvature,

limsup
∆ t↓0

[ ||Vt+∆ t ||(ψ(t, ·))−||Vt ||(ψ(t, ·))]/∆ t ≤ δ(Vt ,ψ(t, ·))(h(Vt , ·)).

By approximating ∂ψ(t, ·)/∂t with class 2 test functions, we see from 3.4 that

limsup
∆ t↓0

||Vt+∆ t ||(∂ψ(t, ·)/∂t) ≤ ||Vt ||(∂ψ(t, ·)/∂t).

Finally, by the continuity of ∂ψ/∂t, compactness, and the boundedness of ||Vt+∆ t ||(ψ) for ∆ t < δ,

limsup
∆ t↓0

(1/∆ t)
∫ ∫ ∆ t

0
|∂ψ(t +θ,x)/∂t−∂ψ(t,x)/∂t|dθd||Vt+∆ t ||x

≤ limsup
∆ t↓0

[M sup{|∂ψ(t +θ,x)/∂t−∂ψ(t,x)/∂t| : x ∈ Rn,0 ≤ θ ≤ ∆ t}]

= 0.

Remark: The proposition is also true for D−, but 3.6 is needed first to provide an upper bound for
||Vt+∆ t ||(ψ) for ∆ t < 0. However, D+ will be sufficient for all our needs.

3.6 Barrier functions
A class 2 function ψ : R+×Rn → R+ will be called a barrier function if there exist
φ ∈ C2(R,R+) and a ∈ Rn such that

ψ(t,x) = φ(|x−a|2 +2kt)

for all (t,x) ∈ R+×Rn and
(dφ(r)/dr)2 ≤ 4φ(r)d2ψ(r)/dr2

for all r ∈ R.
Theorem: If Vt is a varifold moving by its mean curvature and ψ is a barrier function with

compact support, then
D+||Vt ||(ψ(t, ·)) ≤ 0

for t ∈ R+.
Proof: Let t ∈ R+. If δ(Vt ,ψ(t, ·))(h(Vt , ·)) = −∞, then we are done. Otherwise, letting V = Vt ,

we may rewrite (3.2.3) as

δ(V,ψ(t, ·))(h(V,x)) =
∫
−|h(V,x)|2ψ(t,x)−h(V,x) ·S(Dxψ(t,x))dV (x,S)

+
∫

h(V,x) ·Dxψ(t,x)d||V ||x. (3.6.1)



Completing the square in the first integral, noting that Dψ(t,x) = 0 when ψ(t,x) = 0, and using
∫

h(V,x) ·Dxψ(t,x)d||V ||x = −δV (DxV (t, ·))

= −
∫

D2ψ(t,x) ·SdV (x,S)

gives

δ(V,ψ(t, ·))(h(V,x)) ≤
∫

{(x,S):ψ(t,x)>0}
−|h(V,x)ψ(t,x)1/2 +(1/2)S(Dxψ(t,x))ψ(t,x)−1/2|2

+(1/4)|S(Dxψ(t,x))|2/ψ(t,x)dV (x,S)

−
∫

D2
xψ(t,x) ·SdV (x,S). (3.6.2)

Since ψ is a barrier function, we have for appropriate φ : R→ R+ (assuming a = 0 without loss of
generality)

ψ(t,x) = φ(|x|2 +2kt), (3.6.3)

∂ψ(t,x)/∂t = 2kφ′(|x|2 +2kt), (3.6.4)

Dxψ(t,x) = 2φ′(|x|2 +2kt)x, and (3.6.5)

D2
xψ(t,x) = 4φ′′(|x|2 +2kt)x⊗ x+2φ′(|x|2 +2kt)I. (3.6.6)

Hence, dropping the negative square from (2) and using (3), (5), and (6), we get

δ(V,ψ(t, ·))(h(V, ·)) ≤
∫

{(x,S):ψ(t,x)>0}
|S(x)|2|φ′(|x|2 +2kt)|2/φ(|x|2 +2kt)

−4|S(x)|2φ′′(|x|2 +2kt)−2kφ′(|x|2 +2kt)dV (x,S).

Since a barrier function is defined so that |ψ′|2/ψ ≤ 4ψ′′, we have by (4)

δ(V,ψ(t, ·))h(V, ·)) ≤
∫
−2kφ′(|x|2 +2kt)dV (x,S)

≤ −||V ||(∂ψ(t, ·)/∂t).

The theorem now follows from 3.5.

3.7 Sphere barrier to external varifolds
Theorem: If Vt is a varifold moving by its mean curvature, R > 0, and ||V0||U(0,R) = 0, then

||Vt ||U(0,(R2−2kt)1/2) = 0

for 0 < t < R2/2k.
Proof: Define φ : R→ R+ by

φ(r) =

{
(R2− r)4 for r ≤ R2,

0 for r > R2.

Since φ′(r)2 ≤ 4φ(r)φ′′(r) for all r ∈ R, we can define a barrier function ψ(t,x) = φ(|x|2 +2kt). By
3.6,

D+||Vt ||(ψ(t, ·)) ≤ 0



for each t ∈ R+. Since ||V0||(ψ(0, ·)) = 0 by hypothesis, we have ||Vt ||U(0,(R2−2kt)1/2) = 0 and
thus

||Vt ||U(0,(R2−2kt)1/2) = 0

for 0 < t < R2/2k.
Remark: Obviously, by time and space translation invariance, the theorem remains true for

initial times other than t = 0 and centers other than the origin.

3.8 Convex set barriers
Theorem: If Vt is a varifold moving by its mean curvature, K is a closed convex subset of Rn, and
spt ||V0|| ∈ K then spt ||Vt || ∈ K for all t > 0.

Proof: Suppose ||Vt ||(Rn−K) > 0 for some t > 0. Then one could find a ball U(a,r) ⊂ Rn−K
such that ||Vt ||U(a,r) > 0 and

U(a,(r2 +2kt)1/2) ⊂ K.

But by hypothesis
||V0||U(a,(r2 +2kt)1/2) = 0,

so by 3.7 we have ||Vt ||U(a,r) = 0, which is a contradiction to ||Vt ||U(a,r) > 0.

3.9 Sphere barrier to internal varifolds
Theorem: If Vt is a varifold moving by its mean curvature, R > 0, and spt ||V0|| ⊂ B(0,R), then

spt ||Vt || ⊂ B(0,(R2−2kt)1/2

for 0 < t < R2/2k.
Proof: Let φ : R→ R+ be the barrier functin generated by

φ(r) =

{
0 for r < R2,

(r−R2)4 for r ≥ R2.

By 3.8, spt ||Vt || ⊂ B(0,R) for all t ≥ 0, so the support of ψ can be made compact for t ≤ R2/k
without affecting its properties with respect to Vt . By hypothesis we have ||V0||(ψ(0, ·)) = 0, and by
3.6 we have

D+||Vt ||(ψ(t, ·)) ≤ 0

for t ≤ R2/k. Hence ||V0||(ψ(0, ·)) = 0 for t ≤ R2/k, and the conclusion follows because
ψ(t,x) > 0 for all x for all t > R2/2k.

3.10 Continuity properties of ||Vt ||
Theorem: Suppose V is a varifold moving by its mean curvature and ψ ∈ C2

0(Rn,Rn). Then

a. lims↑t ||Vs||(ψ) ≥ ||Vt ||(ψ) ≥ lims↓t ||Vs||(ψ) for all t ∈ R+.

b. ||Vt ||(ψ) is a continuous and differentiable function of t at almost all t ∈ R+,

c. ||Vt || is a continuous function of t at almost all t ∈ R+.



Proof: Suppose T > 0. By 2.1, |Dψ|/ψ is bounded with compact support, and therefore we
may construct a barrier function ψ : [0,T ]×Rn → R+ such that ψ has compact support and

|Dψ|2/ψ ≤ ψ(t, ·)

for each t ∈ [0,T ]. By (3.3.1), 3.4, and 3.6 we have

D̄||Vt ||(ψ) ≤ δ(Vt ,ψ)(h(Vt , ·))
≤ ||Vt ||(|Dψ|2/ψ)
≤ ||Vt ||(ψ(t, ·))
≤ ||V0||(ψ(0, ·)) < ∞

Conclusions (a) and (b) follow from the uniform boundedness of the upper derivate of ||Vt ||(ψ) in
[0,T ] and the arbitrariness of T .

Conclusion (c) follows since the space of test functions C0(Rn,R+) has a countable dense subset
from C2

0(Rn,R+).



Chapter 4

Existence of varifolds moving by
their mean curvature

In this chapter we construct for a certain type of initial varifold V0 a one parameter family of varifolds
Vt defined for all t ∈ R+ and satisfying the necessary conditton for motion by mean curvature given
in 3.3:

D̄||Vt ||(ψ) ≤ δ(Vt ,ψ)(h(Vt , ·))
for any ψ ∈ C1

0(Rn,R+) and for all t ∈ R+. As 4.15 shows, in case V0 is a smooth manifold, the
construction given here agrees with the more straightforward mapping approach described in 3.1, as
long as the latter works. The key properties of the present construction are proven in the last section
of this chapter.

4.1 Definitions
We wish to include noncompact surfaces in our treatment. Therefore, to keep integrals finite,
we arbitrarily choose a weighting function Ω ∈ C3(Rn,R+) satisfying the conditions |DΩ(x)| <
Ω(x) and ||D2Ω(x)|| < Ω(x) for all x ∈ Rn. Note that Ω is never zero. Define the Ω-norm on
C(Gk(Rn),R) by

||ψ||Ω = sup{|ψ(x,S)|/Ω(x) : (x,S) ∈ Gk(Rn)}
and define the normed linear space

ΩΩΩC(Gk(Rn)) = {ψ ∈ C(Gk(Rn),R) : ||ψ||Ω < ∞}.

Then the set of positive continuous linear functionals on ΩΩΩC(Gk(Rn)) is

ΩΩΩV = {V ∈ Vk(Rn) : ||V ||(Ω) < ∞}.

We shall use
Ω lim

m→∞
Vm = V

to denote convergence in the Ω topology. Note that Ω limm→∞ Vm = V implies limm→∞ Vm = V in
the varifold topology defined in 2.3. Since ΩΩΩC(Gk(Rn)) is separable if M < ∞ then

{V ∈ ΩΩΩV : ||V ||(Ω) ≤ M}

is compact.
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We define

ΩΩΩR = ΩΩΩV∩RVk(Rn),
ΩΩΩI = ΩΩΩV∩ IVk(Rn)

and we define the set of initial varifolds ΩΩΩ to consist of all V ∈ ΩΩΩR such that

θk(||V ||,x) ≥ 1 for ||V || almost all x ∈ Rn and (4.1.1)

spt ||V || is Hk locally finite. (4.1.2)

Condition (4.1.2) is not an unreasonable restriction. Indeed, the second half of the proof of 6.13
shows that if Vt a varifold moving by its mean curvature that satisfies (4.1.1) then the instantaneous
mass loss at t is proportional to the Hk measure of the set of points x ∈ spt ||Vt ||with θk(||Vt ||,x) = 0.
Thus Vt would satisfy (4.1.2) for all t > 0. We require (4.1.2) to hold for V0 because this hypothesis
makes 4.16 much simpler.

It follows from (4.1.1) and (4.1.2) that V ∈ ΩΩΩ is of the form

V = v(S) β

where S is a closed countably (Hk,k) rectifiable subset of Rn and β : Gk(Rn) → R+ is a locally
v(S) summable function with values greater than or equal to 1 v(S) almost everywhere. If V is also
integral, then β has integral values.

It follows from [AF I.1(13)] and the properties of Ω that if f : Rn → Rn is a Lipschitz map with
| f (x)− x| bounded, then the induced mapping f# preserves ΩΩΩR, ΩΩΩI, and ΩΩΩ.

If g ∈ C1(Rn,Rn) and sup{||Dg(x)||/Ω(x) : x ∈ Rn} < ∞, then we may still define for V ∈ ΩΩΩV

δV (g) =
∫

Dg(x) ·SdV (x,S)

=
∫

h(V,x) ·g(x)d||V ||x (when ||δV ||sing = 0)

and have Ωlimm→∞ Vm = V imply limm→∞ δVm(g) = δV (g). If ψ ∈ C(Rn,Rn) and
sup{|ψ(x)|/Ω(x) : x ∈ Rn} < ∞, then we may define δ(V,ψ)(h(V, ·)) as in 3.2.

The choice of the weighting function Ω enters into the actual construction in 4.9, so for a given
initial V0 the later Vt may depend on Ω. However, there are many other places arbitrary choices
are made in this construction, and the solution Vt may not be unique, as noted in 3.3. Since we are
concerned with existence here, nonuniqueness does not bother us.

Some sets of test functions used in this chapter will, be: for each i ∈ N,

Ai = {ψ ∈ C3(Rn,R+) : ψ(x) ≤ Ω(x), |Dψ(x)| ≤ iψ(x),

and ||D2ψ(x)|| ≤ iψ(x) for all x ∈ Rn}.
(4.1.3)

Some sets of test vectorfields will be: for each i ∈ N,

Bi = {g ∈ C2(Rn,Rn) : |g(x)| ≤ iΩ(x), ||Dg(x)|| ≤ iΩ(x),

and ||D2g(x)|| ≤ iΩ(x) for all x ∈ Rn}.
(4.1.4)

4.2 Estimates on growth of test functions
Proposition: If i ∈ N, φ ∈ Ai, and g ∈ Bi, then for all x,y ∈ Rn

(i) φ(y) ≤ φ(x)exp(i|x− y|),



(ii) |φ(y)−φ(x)−Dφ(x) · (y− x)| ≤ [i−1(exp(i|y− x|)−1)−|y− x|]φ(x),

(iii) |Dφ(y)−Dφ(x)| ≤ [exp(i|y− x|)−1]φ(x),

(iv) |g(y)−g(x)| ≤ i[exp(|y− x|)−1]Ω(x),

(v) ||Dg(y)−Dg(x)|| ≤ i[exp(|y− x|)−1]Ω(x).

Proof: These properties are consequences of the definitions of Ai and Bi.

4.3 The smoothed mean curvature
In approximating motion by mean curvature, we shall need smooth approximations of the mean
curvature defined for any initial varifold.

For each 0 < ε < 1/2 define Φε : Rn → R+ by

Φε = β(ε)ε−n exp[−x2/(ε2 + ε4|x|)], (4.3.1)

where β(ε) is defined so that ∫
Φε(x)dx = 1. (4.3.2)

Note that for x,y ∈ Rn we have

Φε(x− y) ≤ β(ε)ε−n exp(−|x|), (4.3.3)
|DΦε(x)| ≤ ε−4Φε(x), and (4.3.4)

||D2Φε(x)|| ≤ ε−8Φε(x). (4.3.5)

Hence for V ∈ ΩΩΩ we may define convolutions Φε ∗V , Φε ∗ ||V ||, and Φε ∗δV . The last two of these
can also be viewed as smooth functions on Rn defined by

Φε ∗ ||V ||(x) =
∫

Φε(y− x)d||V ||y and (4.3.6)

Φε ∗δV (x) =
∫

S(DΦε(x− y))dV (y,S). (4.3.7)

Eq. (4.3.7) is true because for g ∈ C1
0(Rn,Rn),

∫
Φε ∗δV (x) ·g(x)dx = δV (Φε ∗g)

=
∫

D(Φε ∗g) ·S dV (x,S)

=
∫

(DΦε)∗g ·S dV (x,S)

=
∫ ∫

DΦε(y− x)⊗g(y) ·S dy dV (x,S)

=
∫

g(y) ·
∫

S(DΦε(y− x))dV (x,S)dy.

Clearly Φε ∗ ||V || = ||Φε ∗V ||, and Φε ∗δV = δ(Φε ∗V ) because

(Φε ∗δV )(g) = δV (Φε ∗g)

=
∫

D(Φε ∗g) ·S dV (x,S)

=
∫

(Φε ∗Dg) ·S dV (x,S)

= δ(Φε ∗V )(g).



From (5), (6) and (7) we get

|Φε ∗δV (x)|/Φε ∗ ||V ||(x) ≤
∫
|DΦε(x− y)|d||V ||y

/∫
Φε(x− y)d||V ||y

≤ ε−4. (4.3.8)

Thus we may define the smoothed mean curvature of V , denoted hε(V ), to be the vectorfield

hε(V ) = −Φε ∗ (Φε ∗δV/Φε ∗ ||V ||). (4.3.9)

When V is unambiguous, we shall write hε for hε(V ) and hε(x) for hε(V )(x). Proposition 4.8 shows
that hε is in fact an approximation to the mean curvature.

It can be shown in the standard way that Ω limm→∞ Vm = V and limm→∞ εm = 0 imply

Ω lim
m→∞

Φεm ∗Vm = V. (4.3.10)

4.4 The smoothness of hε

Proposition: If V ∈ ΩΩΩ and 0 < ε < 1/2, then for all x ∈ Rn we have

(i) |hε(x)| ≤ ε−4,

(ii) ||Dhε(x)|| ≤ ε−8, and

(iii) ||D2hε(x)|| ≤ ε−12.

Proof: From (4.3.9), (8), (2), (4), and (5) we get

|hε| ≤ Φε ∗ |Φε ∗δV/Φε ∗ ||V ||| ≤ Φε ∗ ε−4 ≤ ε−4,

||Dhε|| ≤ DΦε| ∗ |Φε ∗δV/Φε ∗ ||V ||| < ε−8, and

||D2hε|| ≤ ||D2Φε|| ∗ |Φε ∗δV/Φε ∗ ||V ||| ≤ ε−12.

Because of these estimates, we may use (2.10.1-2.10.3) to define δ(V,φ)(hε(V )) for φ ∈ Ai.

4.5 Some constants
Define 0 < c1 < 1/10 such that if i ∈ N, ε < c1i−1, and φ ∈ Ai or φ ≡ 1, then for all j < i we have

Φε ∗φ ≤ 2φ, (4.5.1)
(ε−1(e j|x|−1)Φε(x))∗φ ≤ n jφ, (4.5.2)

(ε−2(e j|x|−1)2Φε(x))∗φ ≤ n j2φ, (4.5.3)

(ε−1(e j|x|−1)2|DΦε(x)|)∗φ ≤ n2 j2φ, (4.5.4)

(ε−2 j−2(e j|x|−1− j|x|)2|DΦε(x)|2/Φε(x))∗φ ≤ n2 j2φ, and (4.5.5)
((|x|+3ε2|x|2 +(2ε4 + ε−2)|x|3 +4|x|4)2Φε(x))∗φ ≤ φ (4.5.6)

Also define
c2(i,ε) = sup{Gε ∗φ(x)/φ(x) : x ∈ Rn,φ ∈ A} (4.5.7)



where

Gε(x) =

{
0 for 0 ≤ |x| ≤ ε1/2,

|DΦε(x)| for |x| > ε1/2.
(4.5.8)

We have
Gε ∗φ(x)/φ(x) =

∫

|x−y|>ε1/2
φ(x)−1|DΦε(y− x)|φ(y)dy.

Since, from (4.3.1),
|DΦε(x)| ≤ 2ε−2|x|Φε(x)

and, by 4.2(i),
φ(y) ≤ φ(x)exp(i|y− x|),

we have, using (4.3.1),

c2(i,ε) ≤
∫

|x|>ε1/2
2ε−2|x|β(ε)ε−n exp(−|x|2/(ε2 + ε4|x|)+ i|x|)dx

Thus for any p ∈ R , in particular for p < 0,

lim
ε→0

εpc2(i,ε) = 0. (4.5.9)

Lemma: If V ∈ ΩΩΩ, i ∈ N, φ ∈ Ai and 0 < ε < c1i−1 then
∣∣〈φ,Φε ∗ ||V ||〉−〈φ, ||V ||〉

∣∣ ≤ εni||V ||(φ) (4.5.10)

Proof:

|〈φ,Φε ∗ ||V ||〉−〈φ, ||V ||〉| =
∣∣∣∣
∫ ∫

φ(y)Φε(y− x)dy−φ(x)d||V ||x
∣∣∣∣

=
∣∣∣∣
∫ ∫

(φ(y)−φ(x))Φε(y− x)dy d||V ||x
∣∣∣∣

≤
∫ ∫

(exp(i|y− x|)−1)φ(x)Φε(y− x)dy d||V ||x (by 4.3(i))

≤
∫ ∫

(exp(i|y− x|)−1)Φε(y− x)dy φ(x)d||V ||x
≤ εni||V ||(φ) (by (4.5.2)).

4.6 Some estimates on hε

Proposition: If V ∈ ΩΩΩ, i ∈ N, and 0 < ε < c1i−1 then for any g ∈ Bi

(i)
∣∣∣∣
∫

hε(x) ·g(x)d||V ||x+
∫

Φε ∗δV (x) ·g(x)dx
∣∣∣∣

≤ niε〈Ω, |Φε ∗δV |2/Φε ∗ ||V ||〉1/2|V ||(Ω)1/2,

(ii)
∣∣∣∣
∫

S⊥(g(x)) ·hε(x)dV (x,S)+
∫ ∫

S⊥(g(x))d(Φε ∗V )(x)S ·Φε ∗δV (x)dx
∣∣∣∣

≤ niε〈Ω, |Φε ∗δV |2/Φε ∗ ||V ||〉1/2||V ||(Ω)1/2, and

(iii) if φ ∈ Ai and g = Dφ then one may replace Ω by φ in the right hand sides of (i) and (ii).



Proof: It follows from the definition of hε in (4.3.9) that
∫

hε(x) ·g(x)d||V ||x = 〈g||V ||,−Φε ∗ (Φε ∗δV/Φε ∗ ||V ||)〉
= −〈Φε ∗ (g||V ||),Φε ∗δV/Φε ∗ ||V ||〉,

and we can write
∫

Φε ∗δV (x) ·g(x)dx = 〈gΦε ∗ ||V ||,Φε ∗δV/Φε ∗ ||V ||〉.

Therefore
∣∣∣∣
∫

hε(x) ·g(x)d||V ||x+
∫

Φε ∗δV (x) ·g(x)dx
∣∣∣∣ ≤ 〈|Φε ∗ (g||V ||)−gΦε||V ||, |Φε ∗ ||V ||〉. (4.6.1)

Now for each x ∈ Rn, using 4.2 (iv) and Schwarz’ inequality,

∣∣Φε ∗ (g||V ||)(x)−g(x)Φε ∗ ||V ||(x)
∣∣2

=
∣∣∣∣
∫

(g(y)−g(x))Φε(y− x)d||V ||y
∣∣∣∣
2

≤
∣∣∣∣
∫

i(exp(|y− x|)−1)1Ω(x)Φ(y− x)d||V ||y
∣∣∣∣
2

≤ i2Ω(x)2
∫

(exp(|x− y|)−1)2 Φε(y− x)d||V ||y
∫

Φε(y− x)d||V ||y
− i2Ω(x)2(exp(·)−1)2Φε(·))∗ ||V ||(x) Φε ∗ ||V ||(x).

Using Schwarz’ inequality on (4.6.1) and then using (4.6.2) gives

∣∣∣∣
∫

hε(x) ·g(x) d||V ||x+
∫

Φε ∗δV (x) ·g(x)dx
∣∣∣∣
2

≤ 〈Ω, |Φε ∗δV |2/Φε ∗ ||V ||〉〈Ω−1, |Φε ∗ (g||V ||)−gΦε ∗ ||V |||2/Φε ∗ ||V ||〉
≤ 〈Ω, |Φε ∗δV |2/Φε ∗ ||V ||〉〈Ω−1, i2Ω2((exp(| · |)−1)2Φε(·))∗ ||V ||〉
≤ 〈Ω, |Φε ∗δV |2/Φε ∗ ||V ||〉i2〈((exp(| · |)−1)2Φε(·))∗Ω, ||V ||〉
≤ ni2ε−2〈Ω, |Φε ∗δV |2/Φε ∗ ||V ||〉||V ||(Ω),

(4.6.2)

where at the end we used (4.5.3), with j = 1. This proves (i).
For (ii) we have
∫

S⊥(g(x)) ·hε(x)dV (x,S) = −
∫ ∫

S⊥(g(x)) ·Φε(y− x)Φε ∗δV (y)/Φε ∗ ||V ||(y)dydV (x,S)

(4.6.3)
and

∫ ∫
S⊥(g(x))d(Φε ∗V )(x)S ·Φε ∗δV (x)dx

=
∫

S⊥(g(x)) ·δV (x)/Φε ∗ ||V ||(x)dΦε ∗V (x,S)

=
∫ ∫

S⊥(g(y)) ·Φε(y− x)Φε ∗δV (y)/Φε ∗ ||V ||(y)dydV (x,S).

(4.6.4)



Adding (4.6.3) and (4.6.4) gives
∣∣∣∣
∫

S⊥(g(x)) ·hε(x) dV (x,S)+
∫ ∫

S⊥(g(x))d(Φε ∗V )(x)S ·Φ∗δV (x)dx
∣∣∣∣

≤
∫ ∫

S⊥(g(y)−g(x)) ·Φε(y− x)Φε ∗δV (y)/Φε ∗ ||V ||(y)dydV (x,S)

≤
∫ ∫

|g(y)−g(x)|Φε(y− x)d||V ||Φε ∗δV (y)/Φε ∗ ||V ||(y)dy

which can be treated exactly the same way as (4.6.1) was to give the same estimate as in (i).
If φ ∈ Ai and g = Dφ, then in the above derivations we can substitute φ for Ω in the first inequal-

ity of (4.6.2), use 4.2(iii) instead of 4.2(iv) in (4.6.2), and we use (4.5.3) with j = i. The net result
is just to replace Ω with φ in the right hand sides of (i) and (ii).

4.7 More estimates on hε

Proposition: If V ∈ ΩΩΩ, i ∈ N, φ ∈ Ai, and 0 < ε < c1i−1, then

(i) |δV (φhε)+ 〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉|
≤ 3niε1/2〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉+ni(2ε+ ε−6c2(i,ε))||V ||(φ),

(ii)
∫
|hε(x)|2φ(x)d||V ||x ≤ (1+ εni)〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉.

Proof: We have from 2.6

δV (φhε) =
∫

D(φhε)(x) ·SdV (x,S)

=
∫

φ(x)Dhε(x) ·SdV (x,S)+
∫

Dφ(x)⊗hε(x) ·SdV (x,S)

= −
∫ ∫

φ(x)DΦε(y− x)⊗Φε ∗δV (y)/Φε ∗ ||V ||(y) ·SdydV (x,S)

+
∫ ∫

Φε(y− x)Φε ∗δV (y)/Φε ∗ ||V ||(y)⊗Dφ(x) ·SdydV (x,S),

and using (4.3.7),

〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉
=

∫
φ(y)Φε ∗δV (y) ·Φε ∗δV (y)/Φε ∗ ||V ||(y)dy

=
∫ ∫

φ(y)S(DΦε(y− x)) ·Φε ∗δV (y)/Φε ∗ ||V ||(y)dV (x,S)dy.

Thus
∣∣δV (φhε)+〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉

∣∣

≤
∣∣∣∣
∫ ∫

−φ(x)S(DΦε(y− x))+S(Dφ(x))Φε(y− x)

+φ(y)S(DΦε(y− x))dV (x,S) ·Φε ∗δV (y)/Φε ∗ ||V ||(y)dy
∣∣∣∣

(4.7.1)



We shall work on the inner integral, first approximating φ(y)−φ(x) by Dφ(y) ·(y−x). The maximum
error we are making is

∫ ∫
|φ(y)−φ(x)−Dφ(y) · (y− x)| |DΦε(y− x)|dV (x,S)

·|Φε ∗δV (y)|/Φε ∗ ||V ||(y)dy,

which by 4.2(ii) is less than
∫ ∫

(i−1(exp(i|y− x|)−1)−|y− x|)φ(y) |DΦε(y− x)| d||V ||x
·|Φε ∗δV (y)|/Φε ∗ ||V ||(y)dy

which, using Schwarz’ inequality, is less than
{∫ [∫

(i−1(exp(i|y− x|)−1)−|y− x|)|DΦε ∗ y− x)|d||V ||x
]2

φ(y)/Φε ∗ ||V ||(x)dy
}1/2

·
{∫

|Φε ∗δV (y)|2/Φε ∗ ||V ||(y)φ(y)dy
}1/2

which, again using Schwarz’ inequality, is less than
{∫ ∫

(i−1(exp(i|y− x|)−1)−|y− x|)2|DΦε ∗ y− x)|2/Φε(y− x)d||V ||xφ(y)/Φε ∗ ||V ||(y)dy
}1/2

·〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉1/2,

which, cancelling Φε ∗ ||V ||(y), interchanging the order of integration, and writing as a convolution,
is less than

〈{(i−1(exp(i| · |−1)−| · |)2|DΦε(·)}∗φ, ||V ||〉1/2〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉1/2,

which, using 4.5(5) with j = i, is less than

niε||V ||(φ)1/2〈φ, |Φε ∗δV |2/Φε||V ||〉1/2 (4.7.2)

Next, in (1) we approximate Dφ(x) by Dφ(y). The maximum error we are making is
∫ ∫

|Dφ(y)−Dφ(x)|Φε(y− x)d||V ||x · |Φε ∗δV (y)|/Φε ∗ ||V ||(y)dy,

which, using 4.2(iii) is less than
∫ ∫

((exp(i|y− x|)−1)φ(y)Φε(y− x)d||V ||x · |Φε ∗δV (y)|/Φε ∗ ||V ||(y)dy,

which, using Schwarz’ inequality twice, is less than
{∫ [∫

(exp(i|y− x|)−1)Φε(y− x)d||V ||x
]2

·φ(y)/Φε ∗ ||V ||(y)dy
}1/2

·
{∫

φ(y)|Φε ∗δV (y)|2/Φε ∗ ||V ||(y)dy
}1/2

≤
{∫ ∫

((exp(i|y− x|)−1)2Φε(y− x)d||V ||x

·
∫

Φε(y− x)d||V ||(x)φ(x)/Φε ∗ ||V ||(y)dy
}1/2

· 〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉1/2.



which, cancelling Φε ∗ ||V ||(y), reversing the order of integration, and writing as a convolution, is
less than

〈(exp(i| · |)−1)2Φε(·))∗φ, ||V ||〉1/2〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉1/2

which by (4.5.3) with j = i is less than

nεi||V ||(φ)1/2〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉1/2 (4.7.3)

We now have the inner integral of (4.7.1) converted to
∫

Dφ(y) · (y− x)S(DΦε(y− x))+S(Dφ(y))Φε(y− x)dV (x,S),

which is equal to, noting that Dφ(y) is constant with respect to x,

−
∫

S(Dx(Dφ(y) · (y− x)Φε(y− x)))dV (x,S). (4.7.4)

Next, we approximate (y− x)Φε(y− x) in (4.7.4 by −(ε2/2)DΦε(y− x). It can be shown from
the formula (4.3.1) for Φε that

xΦε(x)+(ε2/2)DΦε(x) = (ε2/2)x|x|(2ε2|x|−1)(1+ ε2|x|)−2Φε(x),

and one can calculate
∣∣∣∣Dx

[
Dφ(y) · (y− x)Φε(y− x)

]
+DxDφ(y) · 1

2
ε2DΦε(y− x)

∣∣∣∣
≤ (ε2/2)|Dφ(y)|[2|y− x|+6ε2|y− x|2 +(4ε4 +2ε−2)|y− x|3 +4|y− x|4]Φε(y− x)

≤ iε2φ(y)
[ |y− x|+3ε2|y− x|2 +(2ε4 + ε−2)|y− x|3 +4|y− x|4]Φε(y− x).

The maximum error in making this approximation comes out, using (4.5.6), to be less than

niε||V ||(φ)1/2〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉1/2. (4.7.5)

By reasoning as in (4.3.7), we may write (4.7.4) as

(Dφ(y) · zΦε(z))∗δV (y),

which after the preceding approximation becomes

(ε2/2)[Dφ(y) ·DΦε(·)]∗δV (y),

which it will be helpful to write in component form as

(ε2/2)
n

∑
j=1

D jφ(y)[D jΦε(·)]∗δV (y) = −(ε2/2)
n

∑
j=1

D jφ(y)D j[Φε ∗δV ](y).

Then (4.7.1) becomes, after these approximations, less than

(ε2/2)
∣∣∣∣

n

∑
j=1
〈D jφD j[Φε ∗δV ],Φε ∗δV/Φε ∗ ||V ||〉

∣∣∣∣

= (ε2/4)

∣∣∣∣∣
n

∑
j=1
〈D jφ/Φε ∗ ||V ||,D j[Φε ∗δV ]2〉

∣∣∣∣∣ .



Now we integrate by parts to get

(ε2/4)

∣∣∣∣∣
n

∑
j=1
〈D jD jφ/Φε ∗ ||V ||−D j ·D jΦε ∗ ||V ||/(Φε ∗ ||V ||)2,(Φε ∗δV )2〉

∣∣∣∣∣ ,

which is less than, using the properties of φ from 4.1,

nε2〈iφ+ iφ|DΦε| ∗ ||V ||/Φε ∗ ||V ||,(Φε ∗δV )2/Φε ∗ ||V ||〉. (4.7.6)

To estimate this we write |DΦε(x)| = Fε(x)+Gε(x), where

Fε(x) =

{
|DΦε(x)| for 0 ≤ |x| ≤ ε1/2

0 for |x| > ε1/2,

Gε(x) =

{
0 for 0 ≤ |x| ≤ ε1/2

|DΦε(x)| for |x| > ε1/2.

Since |DΦε(x)| ≤ 2ε−2|x|Φε(x), we have

Fε(x) ≤ 2ε−3/2Φε(x).

Thus (4.7.6) is less than

nε2i〈φ,(Φε ∗δV )2/Φε ∗ ||V ||〉
+nε2i〈φ2ε−3/2Φε ∗ ||V ||/Φε ∗ ||V ||,(Φε ∗δV )2/Φε ∗ ||V ||〉 (4.7.7)

+nε2i〈φGε ∗ ||V ||,(Φε ∗δV/Φε ∗ ||V ||)2〉
Since (4.3.8) says |Φε ∗δV/Φε ∗ ||V || < ε−4, we have (4.7) less than

ni(ε2 +2ε1/2)〈φ,(Φε ∗δV )2/Φε ∗ ||V ||)+nε2〈Gε ∗ ||V ||,φε−8). (4.7.8)

The last part of (4.7.8) can be written as

nε2i〈Gε ∗ ||V ||,φε−8〉 = nε−6i〈||V ||,Gε ∗φ〉,
and by (4.5.7) this is less than

nε−6ic2(i,ε)||V ||(φ) (4.7.9)

Adding together (4.7.2), (3), (5), (8), and (9) gives

|δV (φhε)+〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉|
≤ (niε+2ε1/2)〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉1/2||V ||(φ)1/2

+ni(ε2 +2ε1/2)〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉+niε−6c2(i,ε)||V ||(φ).

Applying Minkowski’s inequality and recognizing that ε1/2 dominates ε and ε2 yields (i).
To prove (ii), note that for any convolutable function f , we have by Schwarz’ inequality

φ(x)|Φε ∗ f (x)|2 =
∣∣∣∣
∫

φ(x)1/2Φε(y− x) f (y)dy
∣∣∣∣
2

≤
∫

φ(y)Φε(y− x)| f (y)|2
∫

Φε(y− x)φ(x)/φ(y)dy

≤ Φε ∗ (φ f 2)
∫

Φε(y− x)exp(i|y− x|)dy by 4.2(i)

≤ Φε ∗ (φ f 2)(1+ εni),



where we have used (4.5.2) with φ ≤ 1. Hence

〈φ|Φε∗(ΦεδV/Φε ∗ ||V ||)|2, ||V ||〉(1+ εni)

≤ 〈Φε ∗ (φ|Φε ∗δV/Φε ∗ ||V |||2), ||V ||〉(1+ εni)

= 〈φ|Φε ∗δV |2/|Φε ∗ ||V |||2),Φε ∗ ||V ||〉(1+ εni)

= (1+ εni)〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉.

4.8 Showing that hε is an approximation of mean curvature
Proposition: If B < ∞, i ∈ N, 0 < ε < c1i−1, V ∈ ΩΩΩ, 〈Ω, |Φε ∗δV |2/Φε ∗ ||V ||〉 < B,
||V ||(Ω) < B, and g ∈ Bi, then

∣∣∣∣
∫

ht(x) ·g(x)d||V ||x+δV (g)
∣∣∣∣ < 2niεB.

Proof: From 4.6(i) we have
∣∣∣∣
∫

hε(x) ·g(x)d||V ||x+
∫

Φε ∗δV (x) ·g(x)dx
∣∣∣∣ ≤ niεB. (4.8.1)

We also have
∣∣∣∣
∫

Φε ∗δV (X) ·g(x)dx−δV (g)
∣∣∣∣ = |δV (φε ∗g)−δV (g)|

=
∣∣∣∣
∫

S(DΦε ∗g(x)−Dg(x))dV (x,S)
∣∣∣∣

≤
∫
|Φε ∗Dg(x)−Dg(x)| d||V ||x

≤
∫ ∣∣∣∣

∫
Φε(y− x)Dg(y)dy−Dg(x)

∣∣∣∣ d||V ||x

≤
∫ ∣∣∣∣

∫
Φε(y− x)(Dg(y)−Dg(x))dy

∣∣∣∣ d||V ||x

≤
∫ ∫

Φε(y− x)i((exp(|y− x|)−1)Ω(x)dyd||V ||x
≤ niε||V ||(Ω)
≤ niεB, (4.8.2)

where we used (2.6.3), 4.2(v), and (4.5.2). Combining (4.8.1) and (4.8.2) gives the desired result.

4.9 Approximate motion by mean curvature
The basic idea is to let a varifold move in tiny steps along the smoothod mean curvature, recal-
culating the smoothed mean curvature at each step. Then we let ε go to zero and take a limit of
approximations. However, this straightforward approach is inadequate to get the limit to be a solu-
tion of the original problem. Therefore I introduce a second type of step that takes care of all the
loose ends. This section describes the two types of steps.



For each m ∈ N pick ε(m) > 0 such that

ε(m) < c1m−20n−2, mεk! < 1, and

niε(m)−6c2(i,ε) < m−4 for i ≤ m. (4.9.1)

Define σ(m) = m−2 and ∆t(m) = 2−p, where p ∈ N is chosen so that ∆t(m) < ε(m)60.
For V ∈ ΩΩΩV and σ,w > 0, define E(V,σ,w) to be the set of all Lipschitz functions f1 : Rn → Rn

such that

(a) | f1(x)− x| ≤ σ for all x ∈ Rn and

(b) || f1#V ||(φ) ≤ ||V ||(φ) for all φ ∈ Aw.

Note that f1(x) = x satisfies (a) and (b), so E(V,σ,w) is nonempty. It follows from (a) and 2.8 that
f1# preserves ΩΩΩ and ΩΩΩI. For φ ∈ Am we shall denote

∆σ,w||V ||(φ) = inf{|| f1#F ||(φ)−||V ||(φ) : f1 ∈ E(V,σ,w)}.
For V ∈ ΩΩΩ and m ∈ N define f2 : Rn → Rn by

f2(x) = x+∆t(m)hε(m)(V )(x).

From 4.4 we conclude that f2 is a Lipschitz map with | f2(x)− x| bounded, so f2# also preserves ΩΩΩ
and ΩΩΩI.

Remark 1: The mapping f2 approximates motion by mean curvature. The mappings f1 are
meant to do away with irregularities that are too small to be detected by the smoothed mean curva-
ture. Condition (b) guarantees that f1 does not do too much.

Remark 2: One can model different processes by fiddling with the first type of mapping. For
example, instead of the varifold mapping defined in 2.8 one could define f#V = v( f (spt ||V ||)) ∈ ΩΩΩ.
This definition produces varifolds with density 1 everywhere and would be appropriate for modeling
soap films and other instances with uniform surfaces. This model can be called the reduced mass
model.

One could also require that f1 be a homotopy. This would be of interest if there were dimensional
obstructions to moving surfaces avoiding each other by making slight detours.

All the results of this chapter hold for all such models as long as conditions (a) and (b) are
satisfied.

4.10 Sufficient condition for belonging to E(V,σ,w)

Lemma: If V ∈ ΩΩΩ, σ > 0, w > 0, B is a closed subset of Rn, and f : Rn → Rn is a Lipschitz map
such that

(i) {x : f (x) 6= x}∪{ f (x) : f (x) 6= x} ⊂ B,

(ii) | f (x)− x| < σ for all x ∈ Rn, and

(iii) || f#V ||B ≤ exp(−w diam B)||V ||B,

then f ∈ E(V,σ,w).
Proof: Since (ii) is the same as condition (a) in 4.9, we need only check condition (b). Let

φ ∈ Aw. Then by (i), 4.2(i), and (iii),

|| f#V ||(φ)−||V ||(φ) =
∫

B
φ(x)d|| f#V ||x −

∫

B
φ(x)d||V ||x

≤ sup{φ(x) : x ∈ B}|| f#V ||B − inf{φ(x) : x ∈ B}||V ||B
≤ exp(w diam B) inf{φ(x) : x ∈ B}|| f#V ||B − inf{φ(x) : x ∈ B}||V ||B
≤ 0.



4.11 Approximation during small finite step
Proposition: If V ∈ ΩΩΩ, m ∈ N, φ ∈ Am, and f2 is as defined in 4.9, then

(i) |(|| f2#V ||(φ)−||V ||(φ))/∆t(m)−δV (V,φ)(hεi(m)(V ))| ≤ ε(m)41||V ||(φ),

(ii) |δ(V,φ)(hε(m)(V ))−δ( f2#V,φ)(hε(m)( f2#))| ≤ ε(m)16||V ||(φ), and

(iii) |〈Ω, |Φε(m) ∗δV |2/Φε(m) ∗ ||V ||〉−〈(Ω, |Φε(m) ∗δ f2#V |2/Φε(m) ∗ || f2#V ||〉 < ε(m)15||V ||(Ω).

Proof: Let ε = ε(m) and F = ∆t(m)hε(V ). Then 4.4 and 4.9 imp1y

|F | < ε−4∆t(m) < ε56, and (4.11.1)
||DF || < ε−8∆t(m) < ε52. (4.11.2)

One may calculate, using (1), (2), (4.9.1), and 4.2(i,ii),

| |∧k D f2 ◦S|−1| < 2k||DF || < ε−9∆t(m) < ε51,

| |∧k D f2 ◦S|−1−DF ·S| ≤ 7k2(k!)2||DF ||2
≤ ε42∆t(m), (4.11.3)

|φ( f2(x))−φ(x)| ≤ (exp(m|F(x)|)−1)φ(x) < ε55φ(x),
|φ( f2(x))−φ()x)−F(x) ·Dφ(x)| ≤ (m−1(exp(m|F(x)|)−1)−|F(x)|)φ(x)

< ε50∆t(m)φ(x).

Therefore, recalling 2.8 and (2.10.1),
∣∣[ || f2#V ||(φ)−||V ||(φ)]/∆t(m)−δ(V,φ)(hε(V ))

∣∣

=
∣∣∣∣
[∫

φ( f2(x))|∧k D f2(x)Ṡ|dV (x,S)−
∫

φ(x)dV (x,S)
]
/∆t(m)

−
∫

Dhε(V )(x) ·Sφ(x)+hε(V )(x) ·Dφ(x)dV (x,S)
∣∣∣∣

= ∆t(m)−1
∫
|[φ( f2(x))−φ(x)]|∧k D f2(x)◦S|

+[ |∧k D f2(x)◦S|−1]φ(x)−DF(x) ·Sφ(x)−F(x) ·Dφ(x)|dV (x,S)

≤ ∆t(m)−1
∫
|[φ( f2(x))−φ(x) [ |∧k D f2(x)◦S|−1]

+ [φ( f2(x))−φ(x)−F(x) ·Dφ(x)]
+ [ |∧k D f2(x)◦S|−1−DF(x) ·S]φ(x)|dV (x,S)

<
∫

(ε46 + ε50 + ε42)φ(x)d||V ||x
< ε41||V ||φ,

which proves (i).
For (ii), one may calculate

||D f2(x)(S)−S|| ≤ [2||DF(x)||]1/2 < 2ε26

|DΦε( f2(y)− x)| < εg−4Φε( f2(y)− x) < ε−5Φε(y− x),

|DΦε( f2(y)− x)−DΦε(y− x)| < ε47Φ(y− x).



Therefore, recalling (4.3.7) and (4.11.3).

|Φε ∗δ( f2#V )(x)−Φε ∗δV (x)|

=
∣∣∣∣
∫

T (DΦ(z− x))d f2#V (z,T )−
∫

S(DΦε(y− x))dV (y,S)
∣∣∣∣

=
∣∣∣∣
∫

D f2(y)(S)(DΦε( f2(y)− x)|∧k D f2 ◦S|−S(DΦε(y− x))dV (y,S)
∣∣∣∣

≤
∫
|DΦε( f2(y)− x)|

∣∣|∧k D f2(y)◦S|−1
∣∣

+ |D f2(y(S)−S||DΦε( f2(y)− x)|
+ |DΦε( f2(y)− x)−DΦε(y− x)|d||V ||y

<

∫
ε−5Φε(y− x)ε51 +2ε26ε−5Φε(y− x)+ ε47Φε(y− x)d||V ||y

< ε20Φε ∗ ||V ||(x).

(4.11.4)

Likewise,

|φε ∗ || f2#V ||(x)−Φε ∗ ||V ||(x)|

=
∣∣∣∣
∫

Φε( f2(y)− x)|∧k D f2 ◦S|−Φε(y− x)d||V ||y
∣∣∣∣

< ε51Φε ∗ ||V ||(x).

(4.11.5)

Hence ∣∣∣∣
Φε ∗δ f2#V (x)

Φε ∗ || f2#V ||(x) −
Φε ∗δV (x)

Φε ∗ ||V ||(x)

∣∣∣∣ < ε19,

and so

|hε( f2#V )(x)−hε(V )(x)| < ε19,

||Dhε( f2#V )(x)−Dhε(V )(x)|| < ε15.

Recalling (2.10.1) again,

|δ(V,φ)(hε(V ))−δ( f2#V )(hε( f2#V ))|

=
∣∣∣∣
∫

Dhε(v)(x) ·Sφ(x)+hε(v)(x) ·Dφ(y)dV (x,S)

−
∫

Dhε( f2#V )(y) ·T φ(y)+hε( f2#V )(y) ·Dφ(y)d f2#V (y,T )
∣∣∣∣

≤
∫ ∣∣Dhε(V )(x) ·Sφ(x)−Dhε( f2#V ( f2(x)) · (D f2(x)(S))φ( f2(x))

∣∣ · |∧k D f2(x)◦S|
+

∣∣hε(V )(x) ·Dφ(x)−hε( f2#V )( f2(x)) ·Dφ( f2(x))|∧k D f2(x)◦S| ∣∣dV (x,S)

≤ ε16||V ||(φ),

which proves (ii).
Conclusion (iii) follows from (4.11.4) and (4.11.5).

4.12 Constraints on motion
Here we deduce upper bounds on the rate of change of the integral of a test function analogous to
those of 3.4.



Proposition: If V ∈ ΩΩΩ and m ∈ N, then

(i) [ || f2#V ||(Ω)−||V ||(Ω)]/∆t(m)

≤ (−1+m−4)〈Ω, |Φε(m) ∗δV |2/Φε(m) ∗ ||V ||〉
+(1+m−4)〈Ω, |Φε(m) ∗δV |2/Φε(m) ∗ ||V ||〉1/2||V ||(Ω)1/2

+m−4||V ||(Ω),
(ii) if i ∈ N, i < m, and φ ∈ Ai, then

[ || f2#V ||(φ)−||V ||(φ) ]/∆t(m) ≤ 2i2||V ||(φ).

Proof: The proof of (i) will be a by-product of the proof of (ii).
Letting ε = ε(m) and hε = hε(V ), and using 4.11(i), (2.10.2), 4.7(i), and 4.6(i,iii),

(|| f2#V ||(φ)−||V ||(φ))/∆t(m) ≤ δ(V,φ)(hε)+ ε41||V ||(φ)

≤ δ(φhε)+
∫

hε(x) ·S⊥(Dφ(x))dV (x,S)+ ε41||V ||(φ)

≤ −〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉−〈Φε ∗δV,Dφ〉
+3niε1/2〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉
+[2niε+niε−6c2(i,ε)+ ε41]||V ||(φ)

+2niε〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉1/2||V ||(φ)1/2.

(4.12.1)

By (4.1.3), Schwarz’ inequality, and (4.5.1),

〈|Φε ∗δV |, |Dφ|〉 ≤ i〈|Φε ∗δV |,φ〉 (4.12.2)

≤ i〈|Φε ∗δV |2/Φε ∗ ||V ||,φ〉1/2〈Φε ∗ ||V ||,φ〉1/2

≤ 2i〈|Φε ∗δV |2/Φε ∗ ||V ||,φ〉1/2||V ||(φ)1/2.

Hence (|| f2#V ||(φ)−||V ||(φ)
)
/∆t(m)

≤ [−1+3niε1/2]〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉
+[2i+2niε]〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉1/2||V ||(φ)1/2

+[2niε+niε−6c2(i,ε)+ ε41]||V ||(φ),

(4.12.3)

which, by the properties of ε(m) in (4.9.1), is less than

[−1+m−4]〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉
+[2i+m−4]〈φ, |Φε ∗δV |2/Φε ∗ ||V ||〉1/2||V ||(φ)1/2 +m−4||V ||(φ).

(4.12.4)

Taking φ = Ω and i = 1 gives (i). The maximum value of expression (4.12.4) is

((1/4)[2i+m−4]2[1−m−4]−1 +m−4)||V ||(φ), (4.12.5)

which proves (ii).

4.13 Towards a varifold moving by its mean curvature
In this section we do the construction that will give us a varifold moving by its mean curvature.
The rest of the chapter is devoted to showing that we do indeed have a solution with the claimed
properties.



Let V0 ∈ ΩΩΩ. For all positive integers m and P, choose the varifolds V ∗
m,p∆t(m), Vm,p∆t(m) ∈ ΩΩΩ

inductively as fol1ows :

Vm,0 = V0, (4.13.1)
V ∗

m,(p+1)∆t(m) = f1#Vm,p∆t(m) (4.13.2)

Vm,(p+1)∆t(m) = f2#V ∗
m,(p+1)∆t(m),

where f1 ∈ E(Vm,p∆t(m),σ(m),m) is chosen so that

|| f1#V ||(Ω)−||V ||(Ω) ≤ (1−m−5)∆σ(m),m||V ||(Ω)

and
f2(x) = x+∆t(m)hε(m)(V

∗
m,(p+1)∆t(m)).

Let Q2 denote the set of nonnegative dyadic rationals, and let

QQQm = {p∆t(m) : p ∈ N}.

It follows from 4.12(ii) that for fixed t ∈ Q2 we have for large enough m

||Vm, t ||(Ω) ≤ e2t ||V0||(Ω).

By 4.1, the set
{V ∈ ΩΩΩV : ||V ||(Ω) ≤ e2t ||V0||(Ω)}

is compact in the Ω topology, so we may use a Cantor diagonal process to choose a subsequence mi,
i ∈ N, such that Ω limi→∞ Vmi, t exists for each t ∈ Q2. Without loss of generality, we may assume
Ωlimm→∞ Vm, t = Vt for each t ∈ Q2.

The reason for including V ∗
m,(p+1)∆t(m) explicitly instead of defining Vm,(p+1)∆t(m) directly from

Vm,p∆t(m) is that later we will need to talk about smoothed mean curvature and Lipschitz deformations
of the same varifold, Vm, t . That does not fit in with the alternating nature of the procedure just
defined, but by 4.11 the properties of the smoothed mean curvature of Vm, t are well approximated
by the properties of the smoothed mean curvature of V ∗

m, t . It follows from 4.12(ii) that for t ∈ Q2
we have

Ωlim
m→∞

||Vm, t || = ||Vt ||.

4.14 Continuity of ||Vt ||
Proposition: If V0 ∈ ΩΩΩ and Vt is as defined in 4.13, then

(a) We may extend the domain of definition of ||Vt || to all t > 0, t /∈ Q2, by defining measures on
Rn

||Vt || = Ωlim
s→t−,s∈Q2

||Vs||.

(b) If i ∈ N and φ ∈ Ai then for all t > 0

D̄||Vt ||(φ) ≤ 2i2||Vt ||(φ).

(c) ||Vt ||(φ) is a continuous function of t at almost every t > 0.

(d) If t0 > 0 and ||Vt ||(φ) is discontinuous at t0, then ||Vt ||(φ) has a jump decrease at t0.



(e) For any t > 0, Ω limt→t−0
||Vt || exists and

Ωlim
t→t−0

||Vt || ≥ Ωlim
t→t+0

||Vt ||.

(f) ||Vt || is a continuous function of t at almost all t ≥ 0.

(g) If ||Vt || is continuous at t0 and s1,s2, . . . and m1,m2, . . . are sequences with si ∈ QQQmi and
limi→∞ si = t0, then

||Vt0 || = Ω lim
i→∞

||Vmi,si ||.

Remark: The full, definition of Vt for all t will have to wait until we can show rectifiability.
Proof: If i ∈ N , φ ∈ Ai, m ∈ N, m > i, and r ∈ QQQm, then from 4.12(ii) we have

[ ||Vm,r+∆t(m)||(φ)−||Vm,r||(φ)
]
/∆t(m) ≤ 2i2||Vm,r||(φ), (4.14.1)

which implies
||Vs||(φ) ≤ exp(2i2|s− r|)||Vr||(φ) (4.14.2)

for all r,s ∈ Q2 with r < s. Therefore for any t > 0

lim
s→t,s∈Q2

||Vs||(φ) (4.14.3)

exists. Since the set of Radon measures µ on Rn with µ(Ω) bounded is compact in the Ω topology,
(3) says that we may define

||Vt || = lim
s→t,s∈QQQ2

||Vs||

for t /∈ QQQ2.
Now (b) follows from (4.14.2), and (c) and (d) follow from (b). Since a test function ψ ∈

ΩΩΩC(Rn) can be approximated by φ ∈ Ai for large enough i, (2) implies

lim
t→t−0

||Vt ||(ψ) ≥ lim
t→t+0

||Vt ||(ψ) (4.14.4)

which proves (e). Furthermore, ||Vt ||(ψ) can have only a countable number of discontinuities, and
since the space of test functions is separable, ||Vt || is a continuous function of t at almost all t > 0,
which is (f). Whenever ||Vt || is continuous at t0 conclusion (g) follows from (4.14.1) and the definiton
of ||Vt || in 4.13.

4.15 Agreement on smooth manifolds
If the initial varifold represents a smooth manifold, then it is clearly desirable that the approximation
procedure described in this chapter should agree with the more straightforward mapping approach
described in 3.1, at least as long as the latter works, Since the smoothed mean curvature would be
very near the mean curvature in such a case, we could say the two approaches agree if we can show
that the only eligible Lipschitz maps f1 would leave the varifold fixed.

Theorem: Suppose 0 < γ < 1. Then there is m0 ∈ N such that if m > m0, if M ∈ ΩΩΩ rep-
resents a k-dimensional manifold of class C3 without boundary embedded in Rn with a normal
neighborhood of radius γ/5 and with all sectional curvatures of magnitude less than 1/γ, and if
f ∈ E(M,σ(m),m) then

f#M = M



Proof: The theorem will follow if we can show that for large enough m there is φ ∈ Am such
that f#M 6= M implies || f#M||(φ) > ||M||(φ).

Let N be a normal neighborhood of spt ||M|| of radius γ/5 and let π : N→ spt ||M|| be the nearest
point retraction. Since spt ||M|| is a manifold without boundary, we have π◦ f (spt ||M||) = spt ||M||
and for any nonnegative continuous function ψ

||π# f#M||(ψ) ≥ ||M||(ψ).

Therefore it is sufficient to find conditions on φ that will guarantee

|| f#M||(φ) ≥ ||π# f#M||(φ), (4.15.1)

if f#M 6= π# f#M. We cannot take φ(x) = dist(x,M)2 because φ(x) 6= 0 by 4.2(i). From 2.8 we have

||π# f#M||(φ) =
∫
|∧k Dπ(x)◦S|φ(π(x))d f#M(x,S). (4.15.2)

To calculate |∧k Dπ(x)◦S|, suppose that π(x) = 0, spt ||M|| is the graph of F : Rk → Rk in a neigh-
borhood of 0, F(0) = 0, Tank(||V ||,0) = e1 ∧ . . .ek, and x is on the xk+1 axis. We may represent
S ∈ G(n,k) by

S = ∑
λ∈∧(n,k)

αλeλ1 ∧ . . .∧ eλk

with ∑α2
λ = 1 (see [FH 1.3.2]). Thus

∧kDπ(x)◦S = ∑
λ

αλDπ(x)(eλ1)∧ . . .∧Dπ(x)(eλk).

Clearly Dπ(x) = 0 for j > k, and for i < j < k calculation shows that

Dπ(x)(e j) = e j + xk+1

k

∑
i=1

(∂2Fk+1(0)/∂x j∂xi)ei.

Therefore, one may compute

|∧k Dπ(x)◦S| ≤ |Dπ(x)(e1)∧ . . .∧Dπ(x)(ek)|

≤ 1+ xk+1

k

∑
j=1

∂2Fk+1(0)/∂x2
j +(k +1)!γ−1x2

k+1.

From differential geometry, we have

h(M,0) =
n

∑
j=k+1

e j

k

∑
i=1

∂2Fj(0)/x2
j ,

so in general we have

|∧k Dπ(x)◦S| ≤ 1+(x−π(x)) ·h(M,π(x))+(k +1)!γ−1|x−π(x)|2.
It now follows from (4.15.2) that if φ ∈ Am and

||D2φ(y)−D2φ(π(y))|| < γ−1|y−π(y)|φ(y)) for y ∈ N, (4.15.3)

then, using Taylor’s formula on φ(π(x)),

||π# f#M||(φ) ≤
∫ [

1+(x−π(x)) ·h(M,π(x))+(k +1)!γ−1|x−π(x)|2]

·[φ(x)−Dφ(π(x))(x−π(x))

−D2φ(π(x))(π(x)− x,π(x)− x)/2
+γ−1|x−π(x)|3φ(π(x))

]
d|| f#M||x. (4.15.4)



If we require that

Dφ(z) = φ(z)h(M,z) and (4.15.5)
D2φ(z)(w,w) ≥ 4(k +1)!γ−1 (4.15.6)

for z ∈ M and w normal to M at z, then (4.15.4) becomes

||π# f#M||(φ) ≤ || f#M||(φ)+
∫
−D2φ(π(x))(π(x)− x,π(x)− x)/2

+(k +1)!γ−1φ(π(x))|π∗ x)− x|2 + γ−1|x−π(x)|3φ(π(x))d|| f#M||x
≤ || f#M||(φ)−

∫
φ(π(x))|π(x)− x|2γ−1 d|| f#M||x.

Clearly, for m depending on γ and k, there exists φ ∈ Am satisfying (4.15.3), (4.15.5), and (4.15.6).
Thus (4.15.1) holds unless π(x) = x is true || f#M|| almost everywhere.

4.16 Towards rectifiability
The next few sections show that if a sequence of varifolds in ΩΩΩ have bounded rates of mass loss,
then their limit varifold will be rectifiable. The main tasks are to prove a lower density bound and
that the limit has bounded first variation, since these conditions by [AW1 5.5(1)] imply rectifiability.
This first proposition states that for small balls of low density there are Lipschitz maps reducing
mass drastically.

Proposition: There is a constant c3 > 0 such that if V ∈ ΩΩΩ, 0 ∈ spt ||V ||, and ||V ||B(0,1) < c3
then there exist 0 < R < 1 and a Lipschitz map f : Rn → Rn such that

(i) f (x) = x for x /∈ B(0,R),

(ii) f (x) ∈ B(0,R) for x ∈ B(0,R), and

(iii) || f#V ||B(0,R) ≤ (1/2)||V ||B(0,R).

Proof: For r > 0 let µ(r) = ||V ||B(0,r). By [AF1.9(2)], for almost all r > 0 there exists a
Lipschitz map fr : Rn → Rn satisfying conclusions (i) and (ii) such that

|| fr#V ||B(0,r) ≤ 2[2n2kµ ′(r)]k/(k−1).

If conclusion (iii) were false, then for almost all 0 < r < 1

2[2n2kµ ′(r)]k/(k−1) ≥ µ(r)/2. (4.16.1)

Since 0 ∈ spt ||V ||, we have µ(r) > 0 for r > 0, so (4.16.1) may be integrated to

µ(1) ≥ [2n2k]−k2(k−1)4−k.

Thus we need only choose c3 = 4−k[2n2k]−k2/(k−1) .

4.17 Monotonicity
This lemma [AW1 5.1(3)] says that the rate of decrease of density ratios as a function of radius is
limited by the amount of curvature present.

Lemma: Suppose V ∈ Vk(Rn), 0 ≤ M < ∞, 0 < R1 < R2 < ∞, a ∈ Rn, and

||δV ||B(a,r) ≤ M||V ||B(a,r)

whenever R1 < r < R2. Then
exp(Mr)r−k||V ||B(a,r)

is nondecreasing in r for R1 < r < R2.



4.18 Curvature of limit
Proposition: If V1,V2, . . . ... ∈ ΩΩΩ, Ω limm→∞ Vm = V ∈ ΩΩΩV, i ∈ N, and φ ∈ Ai then

∫
|h(V,x)|2φ(x)d||V ||x ≤ liminf

m→∞
〈φ, |Φε(m) ∗δVm|2/Φε(m) ∗ ||Vm||〉.

Proof: Suppose C > 0 and
∫
|h(V,x)|2φ(x)d||V ||x > C2.

Then there exists a smooth g : Rn → Rn such that

sup{|D(φg)(x)|/Ω(x) : x ∈ Rn} ≤ ∞,∫
h(V,x) ·g(x)φ(x)d||V ||x = δV (φg) > C2, and

∫
|g(x)|2φ(x)d||V ||x < C2.

By 4.1 and (4.3.10) we have
δV (φg) = lim

m→∞
Φε(m) ∗δVm(φg),

hence, using Schwarz’ inequality,

C2 < lim
m→∞

Φε(m) ∗δVm(φg)

≤ liminf
m→∞

〈|Φε(m) ∗δVm|2/Φε(m) ∗ ||V ||,φ〉1/2 · 〈Φε(m) ∗ ||Vm||,φg2〉1/2

≤ C liminf
m→∞

〈|Φε(m) ∗δVm|2/Φε(m) ∗ ||V |,φ〉1/2.

Thus
C2 ≤ liminf

m→∞
〈φ, |Φε(m) ∗δVm|2/Φε(m) ∗ ||V ||〉

and the conclusion follows.
Remark: The possibility of inequality in this proposition is good evidence that we do not want

to require equality in (3.3.1).

4.19 Rectifiability
Now we show that if a sequence of varifolds has a common bound on the rate of mass loss, then a
limit varifold is rectifiable. This is not yet talking about Vt being rectifiable. That will be discussed
after we prove the corresponding result on integrality.

Theorem: If B > 0, V1,V2, . . . ∈ ΩΩΩ, Ω limm→∞ Vm = V ∈ ΩΩΩV, ||Vm||(Ω) < B and

〈Ω, |Φε(m) ∗δVm|2/Φε(m) ∗ ||V ||〉−∆σ(m),m||Vm||(Ω)/∆t(m) < B (4.19.1)

for all m ∈ N, then

θ∗k(||V ||,x) ≥ c3/16α for ||V || almost all x ∈ Rn, and (4.19.2)

V is rectifiable. (4.19.3)



Proof: For 0 < R < (4B)−1 define

FR = {x ∈ Rn : R−k||V ||B(x,R) < c3/16}.

If |x− y| < (1−21/k)R, then
B(y,2−1/kR) ⊂ U(x,R),

and so
(2−1/kR)−k||V ||B(y,2−1/kR) ≥ 2−1R−k||V ||U(x,R).

Since Ωlimm→∞ Vm = V and Ωlimm→∞ Φε(m) ∗V = V by (4.3.10), for each x there must be
M(x) ∈ N such that m > M(x) implies that for |x− y| < (1−2−1/k)R we have

(2−1/kR)−k||Φε(m) ∗V ||B(y,2−1/kR) < c3/8. (4.19.4)

Choose M1 ∈ N such that

||V ||(Ω|{x ∈ FR : M(x) ≤ M1}) > (1/2)||V ||(Ω|FR).

Define
GR = {y ∈ Rn : dist(y,{x ∈ FR : M(x) ≤ M1}) < (1−2−1/k)R}.

Since GR is open, there is an M2 > M1 such that if m > M2 then

||Vm||(Ω|GR) > (1/2)||V ||(Ω|GR) > (1/4)||V ||(Ω|FR). (4.19.5)

Choose M3 > M2 such that σ(M3) < R/2, and let m > M3. Define

E1(R,m) = {x ∈ GR∩spt ||Vm|| : θk(||Vm||,x) ≥ 1 and

σ(m)−k||Φε(m) ∗V ||B(x,σ(m)) > c3/4}
(4.19.6)

and

E2(R,m) = {x ∈ GR∩spt ||Vm|| : θk(||Vm||,x) ≥ 1 and

σ(m)−k||Φε(m) ∗V ||B(x,σ(m)) ≤ c3/4}
(4.19.7)

By the definition of ΩΩΩ, we have θk(||Vm||,x) ≥ 1 for ||V || almost all x ∈ Rn so

||Vm||(Ω|E1(R,m)∪E2(R,m)) = ||Vm||(Ω|GR). (4.19.8)

Suppose x ∈ E1(R,m). It follows from (4.19.4) , (4.19.6), and 4.17 that there is σ(m) < r(x) <
2−1/kR such that

||δΦε(m) ∗Vm||B(x,r(x)) ≥ (2−1/kR−σ(m))−1(ln2)||Φε(m) ∗Vm||B(x,r(x))

≥ (1/2R)||Φε(m) ∗Vm||B(x,r(x)).

Since δΦε(m) ∗Vm = Φε(m) ∗δVm by 4.3 and Ω(y) < Ω(z)exp |y− z| by 4.2(i), we have

||Φε(m) ∗δVm||(Ω|B(x,r(x) ≥ (exp(−2R)(1/2R)||Φε(m) ∗Vm||(Ω|B(x,r(x))). (4.19.9)

By the Besicovitch covering theorem 2.2, we may choose a family of disjoint balls B(x,r(x)) such
that, if we denote their union by W , then

||Φε(m) ∗Vm||(Ω|W ) ≥ B(n)−1||Φε(m) ∗Vm||(Ω|∪{B(x,r(x)) : x ∈ E1(R,m)}). (4.19.10)



Since r(x) > σ(m), it follows from the definition of ε(m) that

||Φε(m) ∗Vm||(Ω|∪{B(x,r(x)) : x ∈ E1(R,m)}) ≥ (1/2)||Vm||E1(R,m). (4.19.11)

Putting (4.19.9), (4.19.10) , and (4.19.11) together givee

||Φε(m) ∗δVm||(Ω) ≥ B(n)−1 exp(−2R)(1/4R)||Vm||E1(R,m)

or, by Schwarz’ inequality,

〈Ω, |Φε(m) ∗δVm|2/Φε(m) ∗ ||Vm||〉||Φε(m) ∗Vm||(Ω) ≥ [B(n)−1 exp(−2rR)(1/4R)||Vm||E1(R,m)]2.

Hypothesis (1) now implies that

limsup
m→∞

||Vm||E1(R,m) ≤ B(n)exp(2R)4R(B||V ||(Ω))1/2. (4.19.12)

Now suppose that x ∈ E2(R,m). It follows from the definition of ε(m) that

||Vm||B(x,2−1/kσ(m)) ≤ 2||Φε(m) ∗Vm||B(x,σ(m)),

so (4.19.7) implies that

(2−1/2σ(m))−k||Vm||B(x,2−1/kσ(m)) ≤ c3.

It follows from 4.16 that there exists 0 < r(x) < 2−1/kσ(m) and a Lipschitz map fx : Rn → Rn such
that

fx(y) = y for y /∈ B(x,r(x)),
fx(y) ∈ B(x,r(x)) for y ∈ B(x,r(x)), and
|| fx#Vm||B(x,r(x)) ≤ (1/2)||Vm||B(x,r(x)).

By the properties of Ω and σ(m),

|| fx#Vm||(Ω|B(x,r(x)) ≤ 2−1/2||Vm||(Ω|B(x,r(x))). (4.19.13)

By the Besicovitch covering theorem, we may choose a subset {xλ : λ ∈ Λ} ⊂ E2(R,m) such that
all the B(xλ,r(x)) are disjoint and

||Vm||(Ω|∪{B(xλ,r(xλ)) : λ ∈ Λ}0

≥ B(n)−1||Vm||(Ω|∪{B(x,r(x)) : x ∈ E2(R,m)})
≥ B(n)−1||Vm||(Ω|E2(R,m)).

(4.19.14)

Define the Lipschitz map f : Rn → Rn by

f (y) =

{
fxλ(y) if fxλ(y) 6= y for some λ ∈ Λ
y otherwise.

By (4.19.13) and 4.10, we have f ∈ E(Vm,σ(m),m). Therefore, by (4.19.13) and (4.19.14),

−∆σ(m),m||Vm||(Ω) ≥ (1−2−1/2)B9n)−1||Vm||(Ω|E2(R,m)).

Hypothesis (1) and ∆t(m) → 0 imply that

limsup
m→∞

||Vm||(Ω|E2(R,m)) = 0. (4.19.15)



Combining (4.19.12), (4.19.15), (4.19.8). and (4.19.5) yields

||V ||(Ω|FR) ≤ 4B(n)exp(2R)4RB.

This implies
lim
R→0

||V ||(Ω|FR) = 0.

Hence
θ∗k(||V ||,x) ≥ c3/16α

for ||V || almost all x in Rn, which proves (4.19.2).
By 4.18 and hypothesis (1), we have

∫
|h(V,x)|2Ω(x)d||V ||x ≤ B.

Hence ||δV || is a Radon measure, and we may apply [AWl 5.5(1)] to conclude that V ∈ RVk(Rn),
which proves (3).

4.20 Towards integrality
A sequence of integral varifolds will converge to an integral varifold under the same hypotheses as
we had for rectifiable varifolds in 4.19. To prove this is the purpose of the next several sections. The
proof follows the same ideas as the proof of the compactness theorem for integral varifolds in [AW1
6.4], but is necessarily more complex. We want to show that the densities of the limit are integers.
Knowing already that the limit varifold is rectifiable, we show that non-integral density ratios in the
approximation varifolds come from “holes” and therefore lead to large rates of mass loss. This first
lemma is analogous to 4.16 and handles holes too small for the smoothed mean curvature to detect.

Lemma: If ν ∈ N, 0 < µ < 1, and 0 < ζ < 1 then there is γ > 0 such that if

(1) V ∈ IVk(Rn), σ > 0, w > 0, 0 < R < σ, 0 < 2ρ < σ,
(1−ζ)/2ν > 1− exp(−4wσ), ρ/R > µ;

(2) T = e1∧ . . .∧ ek ∈ G(n,k);

(3) Y ⊂ T⊥, diam Y < σ, and ν = ∑{θk(||V ||,y) : y ∈ Y};

(4) for r > 0 and ξ > 0 we define

E(r,ξ) = {x ∈ Rn : |T (x)| ≤ r,dist(T⊥(x),Y ) < ξ}

(5) if 0 < r ≤ R then ∫

E(r,2ρ)
||S−T ||dV (x,S) < γαr k; and

(6) if 0 < r ≤ R then
∆σ,w||V ||E(r,ρ) > −γαRk;

then
||V ||E(R,ρ) ≥ (ν−ζ)αRk. (4.20.7)

Proof: Define

r = inf{s > 0 : ||V ||E(s,(1+ s/R)ρ) ≤ (ν−ζ)αsk}. (4.20.8)



Hypothesis (3) guarantees that r > 0. If r > R, then we are done. Otherwise, we look for a contra-
diction to (6). Letting ρ1 = (1+ r/R)ρ, the properties of Radon measures imply

||V ||E(r,ρ1) = (ν−ζ)αr k.

For the rest of this proof, we shall suppose that V = V E(r,ρ1). Noting that T#V is an integral
varifold, we define the set of “holes” A0 ⊂ Rn to consist of all a ∈ Uk(0,r) such that

θk(||T#V ||,a) ≤ ν−1.

Since
(ν−ζ)αr k ≥ ν(α−Hk(A0)),

we have
Hk(A0) ≥ ζν−1αr k.

Let 0 < ξ < ρr/R and η > 0 be arbitrary. By the definitions of induced mapping and density, there
are δ > 0 and A ∈ A0 such that

Hk(A) ≥ (1−ν)ζν−1αr k (4.20.9)

and for each a ∈ A we have |a|+δ < r,
∫

C(T,a,δ)
|∧k DT ◦S|dV (x,S) < (ν−1+η)αδk, and (4.20.10)

||V ||C(T,a,δ) < ηαδk−1. (4.20.11)

For each a ∈ A we will now construct a Lipschitz map f (a) : Rn → Rn that essentially expands
a hole to fill up E(r,c1), replacing V by a varifold whose mass we can estimate by (10) and (11).
Define a∗ = (1−δ/r)a,

E1(a) = {x ∈ Rn : |T (x)−a∗| ≤ 2δξ−1(ρ1−dist(T⊥(x),Y )),

|T (x)− z| < δ, and dist(T⊥(x),Y ) < ρ1},
E2(a) = {x ∈ Rn : |T (x)−a∗| ≤ 2rξ−1(ρ1−dist(T⊥(x),Y )),

|T (x)| ≤ r, and dist(T⊥(x),Y ),< ρ1} ∼ E1(a),

E3(a) = {x ∈ E2(a) : dist(T⊥(x),Y ) < ρ1−ξ}, and
E4(a) = E2(a) ∼ E3(a).

Let f (a) : Rn → Rn be the Lipschitz map which leaves Rn ∼ (E1(a)∪E2(a)) fixed, projects E2(a)
radially from {a∗}×Rn−k to ∂(E1(a)∪E2(a)), and expands E1(a) radially from {a∗}×Rn−k by a
factor of r/δ(a).

Next we calculate the mass of f (a)#V . At each x ∈ Rn define the orthonormal vectors

~a1 radial to {a∗}×Rn−k.

~a2, . . . ,~ak parallel to Rk×{0},

~ak+1 radial to Rk×{0}, and

~ak+2, . . . ,~an parallel to {0}×Rn−k.

Then one may calculate

|D f (a)(x)(~ai)| ≤





δ−1 if 1 ≤ i ≤ k and k ∈ E1(a),
0 if i = 1 and x ∈ E2(a),
2r/|T (x)−a∗| if 2 ≤ i ≤ k and x ∈ E2(a),
1 if i = k +1 and x ∈ E4(a),
0 otherwise.



Thus, recalling 2.8,

||F(a)#V ||(Rn) =
∫
|∧k D f (a)(x)◦S|dV (x,S)

≤
∫

E1(a)
r kδ−k|∧k DT ◦S|+δ1−kr k dV (x,S)

+
∫

E3(a)
||S−T ||[2/r/|T (x)−a∗|]k−1 dV (x,S)

+
∫

E4(a)
(4r2 +ξ2)1/2ξ−1||S−T ||[2r/|T (x)−a∗|]k−1 dV (x,S)

+ ||V ||(Rn ∼ E1(a)∪E2(a)].

Using (4.20.10) and (4.20.11) and various simplifications gives

|| f (a)#V ||(Rn) ≤ (ν−1+2ν)αr k

+(2r +ξ)ξ−1
∫
||S−T ||[2r/|T (x)−a∗ |]k−1 dV (x,S)

+ ||V ||[E(r,ρ1) ∼ E(r,ρ1−ξ)].

Integrating this over all a in A yields
∫

A
|| f (a)#V ||(Rn)dHka

≤ Hk(A)(ν−1+2ν)αr k

+(2r +ξ)ξ−1
∫
||S−T ||

∫
[2r/|T (x)−a∗|]k−1 dHka dV (x,S)

+Hk(A)||V ||[E(r,ρ1) ∼ E(r,ρ1−ξ)].

(4.20.12)

Now, since a∗ = (1+δ/r)a and A ∈ Bk(0,r−δ), we have for fixed x
∫

A
[2r/|T (x)−a∗|]k−1 dHka

<

∫

|T (x)−a∗|<2r
[2r/|T (x)−a∗|]k−1(1+δ/r)−k dHka∗

< k2kαr k.

(4.20.13)

It follows from (8) that

||V ||[E(r,ρ1) ∼ E(r,ρ1−ξ)] < k(ν−ζ)αrk−1ξR/ρ. (4.20.14)

Plugging (5), (4.20.13), and (4.20.14) into (4.20.12) yields
∫

A
|| f (a)#||(Rn)dHka = Hk(A)(ν−1+2n)αr k +(2r +ξ)ξ−1γαr kk2kαr k

+Hk(A)k(ν−ζ)αrk−1ξR/ρ.

Therefore, using (4.20.9), we conclude that there is an a ∈ A such that

|| f (a)#V |(Rn) ≤ [ν−1+2n+(1+η)ζ−1ν(2r +ξ)ξ−1γk2k + k(ν−ζ)ξR/ρr ]αr k.

Recalling that η and ξ were arbitrary and R/ρ < µ−1, we may choose η, ξ/r, and γ depending only
on ν, µ, k, and ζ so that (1−ζ)/2 > γ and

|| f (a)#V ||Rn ≤ ||V ||Rn−2−1(1− γ)αr k. (4.20.15)



By 4.10 we shall have f (a) ∈ E(V,σ,w) if

|| f (a)#V ||Rn ≤ exp[−w diam E(r,ρ1)]||V ||Rn.

This is implied by
2−1(1−ζ)(ν−ζ)−1 > 1− exp[−4wσ],

which is implied by hypothesis (1). Since (1−ζ)/2 > γ, (15) contradicts hypothesis (6).

4.21 Larger radii
The next two lemmas handle the case where the holes are large enough to be detected by the
smoothed mean curvature. This first lemma is a slight modification of [AW1 6.1], having r0 as
the lower bound of radii instead of 0.

Lemma: Suppose

(1) ν ∈ N, 0 < ξ < 1, 1 < M < ∞, 0 < r0 < R < ∞, T ∈ G(n,k), and
V ∈ Vk(Rn);

(2) Y is a subset of T⊥ with no more than ν+1 elements;

(3) (M +1)diam Y = R

(4) r0 < (3ν)−1diam Y

(5) R||δV ||B(y,r) ≤ ξ||V ||B(y,r) whenever y ∈ Y and r0 < r < R; and

(6)
∫

B(y,r) ||S−T ||dV (x,S) ≤ ξ||V ||B(y,r) whenever y ∈ Y and r0 < r < R.

Then there are V1,V2 ∈ Vk(Rn) and a partition of Y into subsets Y0,Y1,Y2 such that

(7) V ≥ V +1+V +2;

(8) Neither Y1 nor Y2 has more than ν elements;

(9) (M diam Y )||δVj||B(y,r) ≤ 2M(ν+1)(3νM)k+1 exp(ξ)ξ||V ||B(y,r) whenever j = 1,2,
y ∈ Yj and r0 < r < M diam Y ;

(10)
∫

B(y,r)||S−T ||dV (x,S) ≤ M(3νM)k exp(ξ)ξ||Vj||B(y,r) whenever j = 1,2, y ∈ Yj and
r0 < r < M diam Y ;

(11) Vj ≥ V {x ∈ Rn : dist(T⊥(x),Yi) ≤ r0} whenever j = 1,2, and

(12)

[(1+1/M)k+(ν+1)/M]exp(ξ)
||V ||{x : dist(x,y) ≤ R}

αRk

≥ ∑{||V ||B(y,r0)/α(k)rk
0 : y ∈ Y0}

+
||V1||{x : dist(x,Y1) ≤ M diam Y}

α(M diam Y )k

+
||V2||{x : dist(x,Y2) ≤ M diam Y}

α(M diam Y )k



4.22 Density ratios
This lemma corresponds to [AW1 6.2]. It shows that a nearly flat varifold passing through several
vertically separated points must have either several layers or a high rate of mass loss.

Lemma: Corresponding to each 1 < λ < 2 and v ∈ N , there is γ > 0 with the following
property: Suppose

(1) V ∈ Ω, T ∈ G(n,k), Y ⊂ T , Y has no more than ν elements, θk(||V ||,y) ∈ N for each y ∈ Y ,
0 < σ < R < ∞, diam Y < γR, ε < γ2σ, ω > 0 and
1/4ν > 1− exp(−4ωσ);

(2) R||Φε ∗δV ||B(y,r) ≤ γ ||Φε ∗V ||B(y,r) and

(3)
∫

B(y,r) ||S−T ||dΦε ∗V (x,S) ≤ γ ||Φε ∗V ||B(y,r) whenever y ∈ Y and γσ < r < R;

(4)
∫
{(x,S):|T (x)|≤r, dist(T⊥(x),Y )<σ} ||S−T ||dV (x,S) < γαr k and

(5) ∆σ,ω||V ||{x : |T (x)| ≤ r, dist(T⊥(x),Y ) < σ} >= γαr k for 0 < r < σ.

Then

(6) λ||Φε ∗V ||{x : dist(x,Y ) ≤ R} ≥ αRk ∑{θk(||V ||,y) : y ∈ Y}.

Proof: It follows from repeated application of 4.21 and 4.17 to Φε ∗V that there is a γ1 > 0 such
that if 0 < γ < γ1, r0 = γσ, and (1), (2) and (3) are satisfied, then there is a partition Y0,Y1,Y2, . . . ,Yj
of Y such that

diam Yi < σ for i = 1,2, . . . and (4.22.7)

λ1/4R−k||Φε ∗V ||{x : dist(x,Y ) ≤ R}
≥ ∑{r−k

0 ||Φε ∗V ||B(y,r0) : y ∈ Y0}

+
j

∑
i=1

σ−k||Φε ∗V ||{x : dist(T⊥(x),Yi),r0, |T (x)| < σ}.
(4.22.8)

From the definition of Φε ∗V and geometry, it follows that there exists γ2 > 0 depending only
on λ and ν such that if γ < γ2 and ε < γ2σ then

λ1/4||Φε ∗V ||B(y,γσ) ≥ ||V ||{x : |T (x)| < γσλ−1/4k, |T⊥(x)− y| < γσ(1−λ−1/4k)} (4.22.9)

for y ∈ Y0, and

λ1/4||Φε ∗V ||{x : dist(T⊥(x),Yi) < γσ, |T (x)| ≤ σ}
≥ ||V ||{x : dist(T⊥(x),Yi) < γσλ−1/4k, |T (x)| ≤ σλ−1/4k}

(4.22.10)

for i = 1,2, . . . , j.
It follows from (7) and 4.20 that there is a γ3 > 0 depending on λ and ν such that if γ < γ3 and

(4) and (5) are satisfied, then

λ1/4||V ||{x : |T (x)| < γσλ−1/4k, |T⊥(x)− y| < γσ(1−λ−1/4k)}
≥ αγkσkλ−1/4θk(||V ||,y) (4.22.11)

for y ∈ Y0 and

λ1/4||V ||{x : dist(T⊥(x),Yi) < γσλ−1/4k, |T (x)| ≤ σλ−1/4k}
≥ ∑{ασkλ−1/4θk(||V ||,y) : y ∈ Yi}

(4.22.12)

for i = 1,2, . . . , j.
Letting y = min(y1,y2,y3) and combining (4.22.8), (4.22.9), (4.22.10), (4.22.11), and (4.22.12)

gives the desired result.



4.23 Integral density ratios
This lemma is analogous to [AWl 6.3]. It shows that a nearly flat integral varifold must have a nearly
integral number of layers all over.

Lemma: Suppose V1,V2, . . . ∈ ΩΩΩI, 0 < d < ∞, T ∈ G(n,k), σi,εi,ωi > 0 for i = 1,2,3, . . .,

lim
i→∞

Vi = lim i → ∞Φεi ∗Vi = dv(T ), (4.23.1)

lim
i→∞

εi/σi = lim
i→∞

ωiσi = 0, (4.23.2)

and for some neighborhood W of 0

lim
i→∞

||δΦεi ∗Vi||W = 0, and (4.23.3)

lim
i→∞

∆σi,ωi ||Vi||W = 0. (4.23.4)

Then d is a nonnegative integer.
Proof: Suppose ν is the smallest positive integer greater than d. Choose 1 < λ < ∞ such that

λk+2d < ν. Let y be as in 4.22. Choose 0 < R < ∞ such that B(0,(λ2 +4iγ2)R) ⊂W .
For each i = 1,2, . . . let Ai be the set of those x ∈ B(0,(λ− 1)R) such that 2|T⊥(x)| < γR and

θk(||Vi||,x) is a positive integer. Let Bi be the set of those x ∈ Ai such that

R||δΦεi ∗Vi||B(x,r) ≤ γ ||Φεi ∗Vi||B(x,r)

and ∫

B(x,r)
||S−T ||dΦεi ∗V (y,S) < γ ||Φεi ∗Vi||B(x,r)

whenever σ < r < R. From the properties of convolution,

||Vi||(Ai−Bi) < (1+ εi/σi)||Φεi ∗Vi||{x : dist(x,Ai−Bi) ≤ σ}.

By the Besicovitch covering theorem 2.2,

||Φεi ∗Vi||{x : dist(x,Ai−Bi) ≤ σ}

≤ γ−1B(n)
[

R||δΦεi ∗Vi||B(0,λR)+
∫

B(0,λR)
||S−T ||dΦεi ∗Vi(x,S)

]
.

By hypotheses (1) and (3)

lim
i→∞

∫

B(0,λR)
||S−T ||dΦεi ∗Vi(x,S) = 0,

lim
i→∞

||Vi||[B(0,(λ−1)R)−Ai] = 0, and

lim
i→∞

||δΦεi ∗Vi||B(0,R) = 0.

Hence
lim
i→∞

||Vi||[B(0,(λ−1)R−Bi] = 0,

and so
lim
i→∞

Vi Bi = dv[T ∩B(0,(λ−1)R)]. (4.23.5)

For each i = 1,2, . . . let Ci be the set of a ∈ T ∩B(0,(λ−1)R) such that

∆σi,ωi ||Vi||{x : |F(x−a)| < r, |T⊥(x−a)| < 2γR} > −γαr k



and ∫

{(x,S):|T (x−a)|<r,|T⊥(x−a)|<2γR}
||S−T ||dV (x,S) < γαr k

whenever 0 < r < R.
By the Besicovitch covering theorem,

Hk[T ∩B(0,(λ−1)R) ≈ Ci]

≤ γ−1B(k)[−∆σi,ωi ||Vi||B(0,(λ2 +4γ2)1/2R)

+
∫

B(0,(λ2+4γ2)1/2R)
||S−T ||dVi(x,S)].

By hypothesis,

lim
i→∞

δσi,ωi ||Vi||B(0,(λ2 +4γ2)1/2R = 0 and

lim
i→∞

∫

B(0,(λ2+4γ2)1/2R)
||S−T ||dVi(x,S) = 0,

so, recalling (5),
lim
i→∞

Vi Bi∩T−1[Ci] = dv[T ∩B(0,(λ−1)R],

which in turn implies that

lim
i→∞

T#(Vi B− i∩T−1[Ci] = dv[T ∩B(0,(λ−1)R]. (4.23.6)

For each z ∈ T , let Yi(z) = Ai∩T−1[{z}∩Ci]. Inasmuch as

lim
i→∞

||Φεi ∗Vi||B(0,λR) = dα(λR)k,

we see that for large i

||Φεi ∗Vi||{x : dist(x,Yi(x)) < R} < λk+1dαRk

for all z ∈ T . By choice of λ and 4.22, we see that for large i

∑{θk(||Vi||,y) : y ∈ Y} ≤ λk+2d < ν

whenever z ∈ T and Y is a subset of Yi(z) consisting of no more than ν elements. Therefore, if i is
sufficiently large,

∑{θk(||Vi||,y) : y ∈ Yi(z)} ≤ ν−1

for all z ∈ T . The definition of mapping varifolds and the properties of Ci imply

||T#(Vi Bi∩T−1[Ci]||Rn =
∫

T
∑{θk(||Vi||,y) : y ∈ Yi(z)}dHk

≤ (ν−1)Hk[Ci]

≤ (ν−1)α((λ−1)R)k.

This combined with (6) implies d = ν−1.



4.24 Integrality
We conclude the first part of the proof of integrality with this adaptation of [AWl 6.4].

Theorem: Suppose 0 < B < ∞, V1,V2, . . . ∈ ΩΩΩI,

Ωlim
m→∞

Vm = V ∈ ΩΩΩV, (4.24.1)

||Vm||(Ω) < B, and (4.24.2)

〈Ω, |Φε(m) ∗δVm|2/Φε(m) ∗ ||Vm||〉−∆σ(m),m||Vm||(Ω)/∆t(m) < B (4.24.3)

for all m ∈ N. Then V is integral.
Proof: From 4.19 we know V ∈ RVk(Rn). For each pair of positive integers m and q let Am,q be

the set consisting of all x ∈ Rn such that

||δΦε(m) ∗Vm||B(x,r) < q||Φε(m) ∗V ||B(x,r) (4.24.4)

whenever σ < r < 1, and

∆σ(m),m||Vm||B(x,r) >= q∆t(m)||Vm||B(x,r) (4.24.5)

whenever 0 < r < 1. By using Schwarz’ inequality, (2) and (3) yield

||δΦε(m) ∗Vm||(Ω) ≤ [〈Ω, |Φε(m) ∗Vm|2/Φε(m) ∗Vm〉||Φε(m) ∗Vm||(Ω)]1/2 (4.24.6)

The Besicovitch covering theorem, (6), and the properties of Ω imply

||Vm||(Ω Rn ∼ Am,q) < 8q−1B(n)B. (4.24.7)

Let A consist of all x ∈ Rn such that for some q ∈ N there are xm ∈ Am,q for infinitely many m with
x = limm→∞ xm. Then (7) implies

||V ||(Ω Rn ∼ A) = 0. (4.24.8)

Let A∗ consist of all x ∈ A such that

0 < θk(||V ||,x) < ∞,

Tank(||V ||,x) ∈ G(n,k), and

lim
r→∞

µµµ◦ τ(−x)#V = θk(||V ||,x)v[Tank(||V ||,x)].

Since V ∈ RVk(Rn) it follows from (8) and [AWl 3.5(1)] that

||V ||(Ω Rn ∼ A∗) = 0. (4.24.9)

Let a ∈ A∗, and let q ∈ N and a1,a2, . . . be such that limm→∞ am = a and am ∈ Am,q. For each
positive integer j choose m( j) such that |a−am( j)| < j−1 and

lim
j→∞

(µµµ( j)◦ τττ(−x))#Vm( j) = lim
j→∞

(µµµ( j)◦ τττ(−x))#Φε(m( j)) ∗Vm( j)

= θk(||V ||,a)v[Tank(||V ||,a)]. (4.24.10)



With a view to applying 4.23 to µµµ( j)◦ τττ(−a)#Vm( j) we calculate

limsup
j→∞

||δΦε(m( j)) ∗µµµ( j)◦ τττ(−a)#Vm( j)||U(0,1)

= limsup
j→∞

||δ(µµµ( j)◦ τττ(−a))#(Φε(m( j)) ∗Vm( j)||U(0,1)

= limsup
j→∞

jk−1||δΦε(m( j)) ∗Vm( j)||U(a, j−1)

≤ limsup
j→∞

jk−1||δΦε(m( j)) ∗Vm( j)||B(am( j),2 j−1)

≤ limsup
j→∞

jk−1q||Φε(m( j)) ∗Vm( j)||B(am( j),2 j−1)

≤ limsup
j→∞

jk−1q2k j−kαθk(||V ||,a) = 0,

where we used (5) and (10) at the end. Also, by (6) and (10),

limsup
j→∞

−∆ jσ(m( j)),m( j)/ j||(µµµ( j)◦ τττ(−a))#Vm( j)||U(0,1)

= limsup
j→∞

− j k∆ jσ(m( j)),m( j)/ j||Vm( j)||U(a, j−1)

≤ limsup
j→∞

− j k∆ jσ(m( j)),m( j)/ j||Vm( j)||B(am( j),2 j−1)

≤ limsup
j→∞

j kq||Vm( j)||B(am( j),2 j−1)∆t(m( j))

≤ limsup
j→∞

j kq2k j−kθk(||V ||,a)∆t(m( j)) = 0

Applying 4.23 to (µµµ( j) ◦ τττ(−a))#vm( j) with σ j = jσ(m( j)), ε j = jε(m( j)),and ω j = m( j)/ j, we
conclude that θk(||V ||,a) must be a positive integer. Since this is true for ||V || almost all a ∈ Rn by
(9), we have V ∈ IVk(Rn).

4.25 Times of good behavior
As noted earlier, most of our estimates are in terms of rate of mass loss. Therefore we are very
interested in times where the rate of mass loss is small.

Suppose V0 ∈ ΩΩΩ and let Vm, t and ||Vt || be as defined in 4.13 and 4.14. For every pair of positive
integers q and m define

P(q,m) = {t ∈ Qm : 〈Ω, |Φε(m) ∗δVm, t |2/Φε(m) ∗ ||Vm, t ||〉 (4.25.1)
−∆σ(m),m||Vm, t ||(Ω)/∆t(m) < q},

PP(q,m) =
⋃
{[t, t +∆t(m)) : t ∈ P(q,m)}, and (4.25.2)

PP(q) = {t ∈ R+ : for all ν > 0 and M ∈ N there exist m ∈ N (4.25.3)
and s ∈ P(q,m) such that m > M and |t− s| < η}.

Proposition: Suppose V0 ∈ ΩΩΩ. Then:

(a) If q,m ∈ N, and s, t ∈ Qm with s < t and

||Vm,s||(Ω) < (q/16)exp(s− t), (4.25.4)



then

L1([s, t] ∼ PP(m,q)) ≤(2/q)(1−m−4)−1[ ||V ∗
m,s||(Ω)−||V ∗

m, t ||(Ω)

+2(1+m−4)||V ∗
m,s||(Ω)(t− s)exp(2(t− s))].

(4.25.5)

(b)
L1(R+ ∼ ∪qPP(q)) = 0.

Proof: If r ∈ [s, t]∩Qm, then by 4.13 and 4.12(i)
[ ||V ∗

m,r+t(m)||(Ω)−||V ∗
m,r||(Ω)

]
/∆t(m)

≤ (−1+m−4)〈Ω, |Φε(m) ∗δV ∗
m,r|2/Φε(m) ∗ ||V ∗

m,r||〉
+(1+m−4)〈Ω, |Φε(m) ∗δV ∗

m,r|2/Φε(m) ∗ ||V ∗
m,r||〉1/2||V ∗

m,r||(Ω)

+m−4||V ∗
m,r||(Ω)+(1−2−m)∆σ(m),m||Vm,r||(Ω)/∆t(m).

(4.25.6)

By 4.12(ii) and hypothesis (4) we have ||V ∗
m,r||(Ω) < q/16. Thus whenever

〈Ω, |Φε(m) ∗Vm,r|2/Φε(m) ∗ ||Vm,r||〉−∆σ(m),m||Vm,r||(Ω)/∆t(m) ≥ q (4.25.7)

we can infer from (6) and 4.11(iii) that
[
||V ∗

m,r+∆t(m)||(Ω)−||V ∗
m,r||(Ω)

]
/∆t(m) ≤ −(1−m−4)q/2. (4.25.8)

Since by 4.12(ii) we have for all r ∈ (s, t)∩Qm
[ ||V ∗

m,r+∆t(m)||(Ω)−||V ∗
m,r||(Ω)

]
/∆t(m) ≤ 2||V ∗

m,r||(Ω) (4.25.9)

≤ ||V ∗
m,s||(Ω)exp(2(t− s)), (4.25.10)

we must have, using (8) for r /∈ PP(q,m) and (9) for r ∈ PP(q,m)

||V ∗
m,s||(Ω)−(1−m−4)(q/2)L1([s, t] ∼ PP(q,m))

+(t− s)(1+m4)2||Vm,s||(Ω)exp(2(t− s))
≥ ||V ∗

m, t ||(Ω).

This implies

L1([s, t] ∼ PP(q,m)) ≤ 2q−1(1−m−4)−1[ ||V ∗
m,s||(Ω)−||V ∗

m, t ||(Ω)

+2(t− s)(1+m4)||V ∗
m,s||(Ω)exp(2(t− s))

]
,

which proves (a).
It follows from 4.12(ii) that for any m ∈ N with t ∈ Qm,

||Vm, t ||(Ω) ≤ exp(2t)||V0||(Ω). (4.25.11)

Thus for q ∈ N such that q > 16exp(2t)||V0||(Ω) we get from (5) that

L([0, t] ∼ PP(q,m)) ≤ 4q−1[1+2t exp(2t)]||V0||(Ω).

Recalling the definition (3) of PP(q), we see that

L1([0, t] ∼ PP(q,m)) ≤ liminf
m→∞

L1([0, t] ∼ PP(q,m))

< 4q−1[1+2t exp(2t)]||V0||(Ω).

Hence L1([0, t] ∼ ∪qPP(q)) = 0 for all t > 0, which proves (b).



4.26 Definition of Vt and basic properties
We now make ||Vt || determine Vt whenever possible, which we shall show is almost always.

Definition: Suppose V0 ∈ ΩΩΩ and ||Vt || is as defined in 4.14(a). Let T ∈ G(n,k) be arbitrary. For
any t > 0 define Vt ∈ ΩΩΩV by

Vt(A) = ||Vt ||{x : (x,Tank(||V ||t ,x)) ∈ A}
+ ||Vt ||{x : Tank(||V ||t ,x) /∈ G(n,k) and (x,T ) ∈ A},

(4.26.1)

whenever A ∈ Gk(Rn).
By [Aw1 3.5(1) (a)], the second quantity on the right hand side of (1) is zero whenever Vt is

rectifiable.
Theorem: (a) If V0 in ΩΩΩ, then Vt is rectifiable for almost all t > 0.
(b) If V0 ∈ ΩΩΩI, then Vt is integral for almost all t > 0.
Proof: Suppose q ∈ N, t ∈ PP(q), and ||Vt || is continuous at t. Then by the definition 4.25(3)

of PP(q) there exist sequences mi and ti, i = 1,2, . . . such that mi ∈ N, limi→∞ mi = ∞, ti ∈ P(q,m),
and t = limi→∞ ti. By 4.14(g) we have

||Vt || = Ωlim
i→∞

||Vmi,ti ||. (4.26.2)

Since
{V ∈ ΩΩΩV : ||V ||(Ω) ≤ ||Vt ||(Ω)+1}

is compact by 4.1, any sequence {Vmi,ti}∞
i=1 will have a convergent subsequence, and the limit W

of this subsequence will be rectifiable by 4.25(1) and 4.19. Being rectifiable, by [AWl 3.5(1)] W
is determined by ||W ||, which is ||Vt || by (2). Hence all subsequences have the same limit W , so
limi→∞ Vmi,ti = W . Since ||W || = ||Vt || and W is rectifiable, W is the same as the Vt defined by (1).
By 4.25(b), almost every t > 0 is in some PP(q), and by 4.14(f) ||Vt || is continuous at almost all
t > 0, so Vt is rectifiable for almost all t > 0.

If V0 ∈ ΩΩΩI, then the same argument as for (a) with 4.24 replacing 4.19 shows that Vt is integral
for almost all t > 0.

4.27 Motion on non-compact test functions
In this section we establish the inequality used to define motion by mean curvature on our sets Ai of
test functions. Compact support test functions are the subject of 4.30.

Proposition: If V0 ∈ ΩΩΩ, Vt is as defined in 4.26, i ∈ N, and φ ∈ Ai, then for almost all t > 0

D̄||Vt ||(φ) ≤ δ(Vt ,φ)(h(Vt , ·)). (4.27.1)

Proof: Suppose q ∈ N, t ∈ PP(q), d||Vt ||(w)/dt > −q, and ||Vt ||(Ω) < q/16.
Let n > 0. Choose j ∈ N so that

(1−50q/ j)(δ(Vt ,φ)(h(Vt , ·))+(2η/3)+(50q/ j)3i2||Vt ||(φ)
≤ δ(Vt ,φ)h(Vt , ·))+η

Suppose tm ∈ P(m, j) and limm→∞ tm = t. As was shown in the proof of 4.26,

Ωlim
m→∞

Vm,tm = Vt (4.27.2)

and Vt is rectifiable.



From 4.18 and 4.7(i) we have
∫
|h(Vt ,x)|2φ(x)d||Vt ||x ≤ liminf

m→∞
〈φ, |Φε(m) ∗Vm, tm |2/Φε(m) ∗ ||Vm, tm ||〉 ≤ j,

lim
m→∞

|δVm, tm(φhε(m)(Vm, tm))+ 〈φ, |Φε(m) ∗Vm, tm |2/φε(m) ∗ ||V m, tm||〉| = 0,
(4.27.3)

and hence
−

∫
|h(Vt ,x)|2φ(x)d||Vt ||x ≥ limsup

m→∞
δVm, tm(φhε(m)(Vm, tm)). (4.27.4)

Since
∫

S⊥(Dφ(·))dV (·)
t S is a ||Vt || measurable vectorfield, there are τ ∈ N and g ∈ Bτ such that

∫ ∣∣∣∣
∫

S⊥(Dφ(x))dV (x)
t S−g(x)

∣∣∣∣
2

φ(x)−1 d||Vt ||x ≤ η2/16 j. (4.27.5)

Since Vt is rectifiable, at ||Vt || almost all x there is a unique tangent plane, so
∫
|S⊥(Dφ(x))−g(x)|2φ(x)−1 dVt(x,S) < η2/16 j. (4.27.6)

It follows from (2) that

lim
m→∞

∫
|S⊥(Dφ(x))−g(x)|2φ(x)−1 dVm, tm(x,S) < η2/16 j. (4.27.7)

It follows from (2), (3) and 4.8 that

lim
m→∞

∫
hε(m)(Vm, tm)(x) ·g(x)d||Vm, tm ||x =

∫
h(Vt ,x) ·g(x)d||Vt ||x. (4.27.8)

We may infer from (3), (5), (6), (7), and (8) that
∫

S⊥(Dφ(x))·h(Vt ,x)dVt(x,S)+η/2

≥ limsup
m→∞

∫
S⊥(Dφ(x)) ·hε(m)(Vm, tm)(x)dVm, tm(x,S).

(4.27.9)

Together, (3) and (9) say that

δ(Vt ,φ)(h(Vt , ·))+η/2 ≥ limsup
m→∞

δ(Vm, tm ,φ)(hε(m))). (4.27.10)

It follows from the preceding argument, 4.9, 4.11(i), and 4.11(ii) that there are M1 ∈ N and
R1 > 0 such that if m > M1, |t− r| < R1 and r ∈ P(m, j) then

[ ||V ∗
m,r+∆t(m)||(φ)−||V ∗

m,r||(φ)
]
/∆t(m) ≤ δ(Vt ,φ)(h(Vt , ·))|2η/3. (4.27.11)

and if r /∈ P(m, j) then by 4.12(ii)
[ ||V ∗

m,r+∆t(m)||(φ)−||V ∗
m,r||(φ)

]
/∆t(m) < 3i2||Vt ||(φ). (4.27.12)

Since d||Vt ||(Ω)/dt > −q, there are M2 ∈ N and R2 > 0 such that if m > M2, |r− t| < R1, and
r ∈ Qm, then

||V ∗
m, t ||(Ω) < q/16, and (4.27.13)

|||V ∗
m,r||Ω−||V ∗

m, t ||(Ω)| < q|t− r|. (4.27.14)



Suppose M = max(M1,M2) and R = min(R1,R2,1/10), and suppose m > M, t−R < r < s <
t +R, and r,s ∈ Qm. By 4.25(a), (13), and (14)

L1([r,s) ∼ PP(m, j)) ≤ (2/ j)(1−m−4)−1[q[(s− r)+2(1+m−4)(q/16)(s− r)exp(2(s− r))]
< 40(s− r)q/ j. (4.27.15)

Combininq (11) , (12), and (15) yields
[ ||V ∗

m,s||(φ)−||V ∗
m,r||

]
/(s− r) ≤ (1−50q/ j)(δ(Vt ,φ)(h(Vt , ·))|2η/3)+(50q/ j)3i2||Vt ||(φ)

≤ δ(Vt ,φ)(h(Vt , ·))|η.

Hence [ ||Vs||(φ)−||Vr||(φ)
]
/(s− r) ≤ δ(Vt ,φ)(h(Vt , ·))+η,

and so, since η was arbitrary,
D||Vt ||(φ) ≤ δ(Vt ,φ)(h(Vt , ·)).

4.28 Upper semicontinuity of δ(V,ψ)(h(Vt , ·)) in V

The final step in this chapter is to pass from test functions without compact support to those with
compact support. But first we prove a semicontinuity result that will be needed for that final step.

Lemma: If ψ ∈ C2
0(Rn,R+), V0,V1, . . . ∈ Vk(Rn), V0 ψ ∈ RVk(Rn),

limsupi→∞ ||Vi||{s : ψ(x) > 0} < ∞ and limi→∞ Vi ψ = V0 ψ, then

limsup
i→∞

δ(V − i,ψ)(h(Vi, ·)) ≤ δ(V0,ψ)(h((V0, ·)).

Proof: Suppose the conclusion were false. Then we could choose η > 0 and a subsequence of
Vi (labeled the same) such that

lim
i→∞

δ(Vi,ψ)(h(Vi, ·)) > δ(v0,ψ)(h(V0, ·))+η. (4.28.1)

It follows from (1), 3.4, and the weak continuity of δV in V that there is B < ∞ such that

B ≥ limsup
i→∞

∫
|h(Vi,x)|2ψ(x)d||Vi||x

≥
∫
|h(V0,x)|2ψ(x)d||V0||x. (4.28.2)

Assume also that B satisfies
limsup

i→∞
||Vi||{x : ψ(x) > 0} < B. (4.28.3)

We cannot prove semicontinuity for ψ directly. Therefore we use the finiteness of
∫ |h|2ψd||V0||

to choose φ ∈ C2
0(Rn,R+) such that φ < ψ, sptφ ⊂ {x : ψ(x) > 0},

δ(V0,ψ−φ)(h(V0, ·)) > −η/4, (4.28.4)

and
sup{|Dψ(x)−Dφ(x)|2/|ψ(x)−φ(x)| : x ∈ Rn} < η/4B. (4.28.5)

Note that (3), (5), and 3.4 imply

limsup
i→∞

δ(Vi,ψ−φ)(h(Vi, ·)) < η/4. (4.28.6)



Now we study δ(Vi,φ)(h(Vi, ·)).
It again follows from the weak continuity of δV in V that

∫
|h(V0,x)|2φ(x)d||V0||x ≤ liminf

i→∞

∫
|h(Vi,x)|2φ(x)d||Vi||x. (4.28.7)

Since
∫

S⊥(Dφ(·))dV (·)
0 S is a ||V0|| measurable vectorfield and sptφ ⊂ sptψ, there is

g ∈ C1
0(Rn,Rn) such that sptg ⊂ sptφ and

∫ ∣∣∣∣
∫

S⊥(Dψ(x))dV (x)
0 S−g(x)

∣∣∣∣
2

ψ(x)−1 d||V0||x < η2/16B,

where we take the integrand to be 0 when ψ(x) = 0. Since V0 ψ is rectifiable, at ||V0|| ψ almost
all x there is a unique tangent plane, and so

∫ ∣∣∣∣
∫

S⊥(Dφ(x))dV (x)
0 S−g(x)

∣∣∣∣
2

ψ(x)−1 d||V0||x

=
∫
|S⊥(Dφ(x))−g(x)|2ψ(x)−1 dV0(x,S).

Now |S⊥(Dφ(x))−g(x)|2/ψ(x) is a continuous function on Gk(Rn) with support in
{x ∈ Rn : ψ(x) > 0}×G(n,k), so

lim
i→∞

∫
|S⊥(Dφ(x))−g(x)|2ψ(x)−1 dVi(x,S)

=
∫
|S⊥(Dφ(x))−g(x)|2ψ(x)−1 dV0(x,S)

< η2/16B.

(4.28.8)

Since sptg ⊂ {x ∈ Rn : ψ(x) > 0} we have
∫

g(x) ·h(V0,x)d||V0||x = lim
i→∞

δVi(g) (4.28.9)

= lim
i→∞

∫
g(x) ·h(Vi,x)d||Vi||x.



We may calculate, using Schwarz’ inequality, (2) and (8),
∫

S⊥(Dφ(x)) ·h(V0,x)dV0(x,S)

=
∫

g(x) ·h(V0,x)dV0(x,S)

+
∫

S⊥(Dφ(x))−g(x) ·h(V0,x)dV0(x,S)

≤ lim
i→∞

∫
g(x) ·h(Vi,x)dVi(x,S)

+
[∫

|S⊥(Dφ(x))−g(x)|2ψ(x)−1 dV0(x,S)
]1/2

· [
∫
|h(v0,x)|2ψ(x)d||V0||x

]1/2

≤ limsup
i→∞

∫
S⊥(Dφ(x)) ·h(Vi,x)dVi(x,S)

+ limsup
i→∞

∫
(g(x)−S⊥(Dφ(x))) ·h(Vi,x)dV (x,S)

+(η2/16B)1/2B1/2

≤ limsup
i→∞

∫
S⊥(Dφ(x)) ·h(Vi,x)dVi(x,S)

+ limsup
i→∞

[∫
|S⊥(Dφ(x))−g(x)|2ψ(x)−1 dVi(x,S)

]1/2

· [
∫
|h(Vi,x)|2ψ(x)dVi(x,S)

]1/2 +η/4

≤ limsup
i→∞

∫
S⊥(Dφ(x)) ·h(Vi,x)dVi(x,S)+η/4+η/4.

(4.28.10)

Combining (7) and (10) gives

δ(V0,φ)(h(V0, ·)) > limsup
i→∞

δ(Vi,φ)(h(Vi, ·)) = η/2. (4.28.11)

Finally, combining (4), (6), and (11) gives

δ(V0,ψ)(h(V −0, ·)) = δ(V0,ψ−φ)(h(V0, ·))+δ(V0,φ)(h(V0, ·))
> −η/4+ limsup

i→∞
δ(Vi,φ)(h(Vi, ·))−η/2

> −η/4+ limsup
i→∞

[δ(Vi,ψ)(h(Vi, ·))

−δ(Vi,ψ−φ)(h(Vi, ·))]−η/2
> −η+ limsup

i→∞
δ(Vi,ψ)(h(Vi, ·)),

which contradicts (1).

4.29 Motion on compact test functions
Proposition 4.27 applies to almost all times and to test functions in the sets Ai. We now establish
the key inequality for all times and for test functions with compact support.

Theorem: If V0 ∈ ΩΩΩ, Vt is as defined in 4.26, ψ ∈ C2
0(Rn,R+) and t > 0 then

(a) if D̄||Vt ||(ψ) > −∞ then Vt {(x,S) : ψ(x) > 0} is rectifiable,



(b) if V0 ∈ ΩΩΩI and D̄||Vt ||(ψ) > −∞ then Vt {(x,S) : ψ(x) > 0} is integral, and

(c) D̄||Vt ||(ψ) ≤ δ(Vt ,ψ)(h(Vt , ·)).
Proof: Suppose 0 < r < s. For any τ > 0, 4.14(b) implies that D̄||Vλ||(ψ + τΩ) has a finite

upper bound for 0 ≤ λ ≤ s. Since 4.27 applies for almost all λ > 0, we may calculate

||Vs||(ψ)−||Vr||(ψ)

= lim
τ→0+

(||Vs||(ψ+ τΩ)−||Vr||(ψ+ τΩ)
)

≤ liminf
τ→0+

∫ s

r
D̄||Vλ||(ψ+ τΩ)dλ

≤ liminf
τ→0+

∫ s

r
δ(Vλ,ψ)(h(Vλ, ·))+ τδ(Vλ,Ω)(h(Vλ, ·))dλ

≤
∫ s

r
δ(Vλ,ψ)(h(Vλ, ·))dλ+ liminf

τ→0+
τ
∫ s

r
||Vλ||(Ω)dλ

≤
∫ s

r
δ(Vλ,ψ)(h(Vλ, ·))dλ,

(4.29.1)

where we have used 3.4 to estimate

δ(Vλ,Ω)(h(vλ, ·)) ≤ ||Vλ||(Ω)

For each 0 < B < ∞ let EB ⊂ R+ consist of those u ∈ R+ such that Vu is rectifiable and

δ(Vu,ψ)(h(Vu, ·)) > −B. (4.29.2)

For η > 0, let
Wη = {x ∈ Rn : ψ(x) > η}. (4.29.3)

Then for 0 < u < t by definition

||δVu||Wη =
∫

Wη
|h(Vu,x)|d||Vu||x, (4.29.4)

so by Schwarz’ inequality,
∫
|h(Vu,x)|2ψ(x)d||Vu||x

≥ [∫

Wη
|h(Vu,x)|d||Vu||x

]2
/∫

Wη
ψ(x)−1 d||Vu|x

≥ η
[ ||δVu||Wη

]2/||Vu||Wη.

(4.29.5)

Since ψ has compact support, it follows by judiciously choosing φ in 4.14(b) that ||Vu||Wη has a
finite bound for 0 < u < t. Referring back to 3.4, we can conclude that for each 0 < B < ∞ there is
a 0 < C(B) < ∞ such that if ||δVu||Wη > C(B) then

δ(Vu,ψ)(h(Vu, ·)) < −B. (4.29.6)

Suppose D−||Vt ||(ψ) > −∞. By 3.4,

δ(Vu,ψ)(h(Vu, ·)) ≤ ||Vu||(|Dψ|2/ψ) (4.29.7)



and since |Dψ|2/ψ is bounded with compact support, 4.14(b) implies that there is a finite upper
bound K for ||V ||(|Dψ|2/ψ) for 0 < u < t. Hence for any 0 < B < ∞ we see from (1) for 0 < s < t

||Vt ||(ψ)−||Vs||(ψ) ≤
∫

[s, t]−EB

−Bdλ+
∫ t

s
K dλ (4.29.8)

≤ −BL1([s, t]−EB)+K(t− s).

Hence

limsup
s→t

L1([s, t]−EB)
t− s

≤ B−1[D−||Vt ||(ψ)−K]. (4.29.9)

Suppose u1,u2, . . . ∈ (0, t)∩EB and limi→∞ ui = t. By 4.14(e), limi→∞ ||Vui || |ψ = ||Vt || |ψ. Since
||δVui ||Wη < C(B), [AW1 5.6] would imply that [limi→∞ Vui ] Wη is rectifiable, so

[lim
i→∞

Vui ] Wη (4.29.10)

and Vt Wη would be rectifiable. Now (9) implies that there is some 0 < B < ∞ such that [s, t]∩EB
is nonempty for all s < t, so Vt Wη, is rectifiable.

Similarly, if V0 is integral, [AWl 6.5] in place of [AWl 5.6] implies Vt Wη is integral. The same
basic arguments hold if D+||Vt ||(ψ) > −∞. Since η was arbitrary, conclusions (a) and (b) follow.

In regard to conclusion (c), if D̄||Vt ||(ψ) = −∞, we are done. Suppose D−||Vt ||(ψ) > −∞, and
let η > 0. It follows from the first part of this proof and 4.28 that there is 0 < B < ∞ and 0 < s < t
such that whenever s < u < t then

L1([u, t]−EB) < (t−u)η/2K, (4.29.11)

and if λ ∈ [s, t]∩EB then

δ(Vλ,ψ)(h(Vλ, ·)) ≤ δ(Vt ,ψ)(h(Vt , ·))+η/2. (4.29.12)

using (1), (7) , (11), (12) and the definition of K,

||Vt ||(ψ)−||Vu||(ψ) ≤
∫

[u, t]∩EB

δ(Vt ,ψ)(h(Vt , ·))+η/2dλ+
∫

[u, t]−EB

K dλ

≤ (t−u)[λ(Vt ,ψ)(h(Vt , ·))+η/2
≤ (t−u)[δ(Vt ,ψ)(h(Vt , ·))|η.

Hence
D−||Vt ||(ψ) ≤ δ(Vt ,ψ)(h(Vt , ·))+η.

Since η was arbitrary, conclusion (c) follows. The same argument works if D+||Vt ||(ψ) > −∞.



Chapter 5

Perpendicularity of mean curvature

We shall show in this chapter that if V is an integral varifold and ||δV || is a Radon measure, then the
mean curvature vector h(V,x) is perpendicular to the varifold at ||V || almost all x. This says nothing
about singular first variation, but there will be no singular first variation present in our applications
in chapter 6.

One may think of the mean curvature vector as pointing in the direction of increasing mass. On
a smooth manifold, mass does not increase in any tangential direction because of the local flatness;
hence the mean curvature vector is perpendicular to the manifold. We shall show that the varifolds
under study have a certan amount of local flatness, and then the integral density hypothesis will
imply that there is very little tangential variation in mass.

By definition, integral varifolds are locally flat in the sense that they have approximate tangent
planes almost everywhere, but this is not quite flat enough. Therefore we have adapted the method
of [AW1 chap. 8]: first we show that a nearly flat piece of varifold can be approximated with a
Lipschitz function, and then we show that this function is nearly harmonic if the first variation is
not too badly behaved. Well-known properties of harmonic functions give the desired additional
flatness.

The Lipschitz approximation theorem 5.4 will be used frequently in chapter 6 and promises wide
application in future studies. Therefore it is proved in fairly broad generality.

5.1 Definitions
Let A(n,k) be the family of affine subsets S +a corresponding to S ∈ G(n,k) and a ∈ Rn.

Let χ : Rn → R+ be an infinitely differentiable function such that χ(x) is a decreasing func-
tion of |x|, sptχ ⊂ B(0,1), and χ(x) = 1 when |x| < 1− 1/100k. If 0 < R < ∞, define χ(R,x) =
χ(x/R). If T ∈ G(n,k), define χT (R,x) = X(T (x)/R). Set χ(R,x) = χ(x/R). If T ∈ G(n,k), define
χT (R,x) = χ(T (x)/R). Set

ρ = sup
x∈Rn

{|Dχ(x)|, ||D2χ(x)||, |Dχ(x)|2/χ(x)}

βββ =
∫

T
χ2(x)dHkx.

Note that βββ > (99/100)α. We will often use χ2 as an approximation to the characteristic function
of the unit ball. The square is technically convenient.

In several of the following theorems, there will occur the expression
∫
|h(V,x)|pφ(x)d||V ||x (5.1.1)
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where 1 ≤ p < ∞ and φ is nonnegative. We extend the meaning of (1) when ||δV ||sing > 0 by

∫
|h(V,x)|pφ(x)d||V ||x =

{
||δ||(φ) when p = 1
∞ when p > 1.

5.2 Multiple valued Lipschitz functions
A nearly flat piece of an integral varifold may be essentially multi-layered. To approximate varifolds
with this behavior, we shall consider Lipschitz functions f : Rk → Mν where ν ∈ N and Mν is the
quotient space of (Rn−k)ν under the equivalence relation (w1, . . . ,wν) ≡ (z1, . . . ,zν) if and only if
(w1, . . . ,wν) is a permutation of (z1, . . . ,zν). For y ∈ Rk we let ( f (y)1, . . . , f (y)ν) be any representa-
tive of f (y), and if f is differentiable at y, then we must understand D f (y) j in the sense of [D f (y)] j
rather than D[ f (y) j]. If we define F : Rk → Rk×Mν by F(y) = (y, f (y)), then we also define

DF(y) j = Dy⊕D f (y) j for j = 1, . . . ,ν.

We further define

*-imageF = {x ∈ Rn : x = F(y) j for some y ∈ Rk

and some j = 1, . . . ,ν}.

The quotient metric on Mν is

|w− z| = inf
π∈Π

( ν

∑
i=1
|wi− zπ(i)|2

)1/2

where Π is the set of permutations of ν elements. There is a bi-Lipschitz imbedding of Mν in a
higher dimension Euclidean space, and the image of Mν is a Lipschitz retract of the whole space.
Therefore Kirszbraun’s theorem [FH 2.10.43] on the extension of Lipschitz functions applies to Mν,
but the Lipschitz constant of the extension may be greater than that of the original map by some
factor c(ν).

5.3 Multilayer monotonicity
This lemma shows that if a nearly horizontal varifold passes through ν vertically separated points
and has small first variation, then the varifold has at least ν layers in a neighborhood of those points.

Lemma: : Corresponding to each λ, ξ and ν such that 0 < λ < 1, 1 < ξ < ∞ , and v ∈ N, there
is γ > 0 with the following property:

If V ∈ IVk(Rn), Y ⊂ Rn, card Y ≤ ν, T ∈ Gk(n,k), 0 < R < ∞, b ∈ T , |b| ≤ R,

|y− z| ≤ ξ|T⊥(y− z)| whenever y,z ∈ Y, (5.3.1)

θk(||V ||,y) ∈ N for y ∈ Y, (5.3.2)

∑{θ,(||V ||,y) : y ∈ Y} ≥ ν, (5.3.3)
∫

B(y,r)
||S−T ||dV (x,S) ≤ γ ||V ||B(y,R) (5.3.4)

whenever 0 < r < R+ |b|, y ∈ Y , and b 6= 0 or ν ≥ 2, and

r||δ||B(y,r) ≤ γ||V ||B(y,r) (5.3.5)



whenever 0 < r < R+ |b| and y ∈ Y , then

||V ||{x : dist(x−b,Y ) < R} ≥ λναRk. (5.3.6)

Proof: Because of the behavior of the various quantities under homothety and translation, we
nay assume T = e1∧ . . .ek and R = 1.

Suppose the lemma were not true. Then for each m ∈ N in there would be Vm ∈ IVk(Rn) and
Ym ∈ Rn and bm ∈ T satisfying

|y− z| ≤ ξ|T⊥(y− z)| whenever y,z ∈ Ym, (5.3.7)

θk(||Vm||,y) ∈ N for y ∈ Ym, (5.3.8)

card Y ≤ ν, ∑{θk(||Vm||,y) : y ∈ Ym} ≥ ν, (5.3.9)
∫

B(y,r)
||S−T ||dVm(x,S) < (1/m)||Vm||B(y,r) (5.3.10)

whenever 0 < r ≤ 1+ |bm|, y ∈ Ym, and bm 6= 0 or ν ≥ 2,

r||δVm||B(y,r) ≤ (1/m)||Vm||B(y,r) (5.3.11)

whenever 0 < r ≤ 1+ |bm| and y ∈ Ym, and

||Vm||{x : dist(x−bm,Ym) < 1} < λναRk. (5.3.12)

Define Rm to be the supremum of those r < 1 for which

||Vm||{x : dist(x−abm,Y ) ≤ s} ≥ λναsk

for 0 < s ≤ r. Condition (9) guarantees R > 0. Now let

Wm = µµµ(1/Rm)#V −m,

Y ∗m = R−1Ym, and
Am = {x : dist(x−bm,Y ∗m) < 1}.

We will be concerned only with Vm Am, so by cutting out and moving around chunks of varifold,
we may assume that there is some bounded set containing every Am.

It follows from the definition of Rm that

||Wm||Am = λνα (5.3.13)

and (11) implies that
lim

m→∞
||δWm||Am = 0. (5.3.14)

To each Y ∗m associate a ν-tuple Zm = (ym1, . . . , tmν) such that {ym1, . . . ,ymν} = Y ∗m and

card{ j : ymi = ym j} ≤ θk(||Wm||,yi)

for i = 1, . . . ,ν. Then, by the compactness theorem for integral varifolds [AWl 6.4] and the com-
pactness properties of Euclidean spaces, there are convergent subsequences (labelled the same)

Wm Am →W ∈ IVk(Rn),
bm → b, Zm → Z, Am → A, Y ∗m → Y.



It follows from the definition of Rm that

||W ||{x : dist(x− sb,Y ) < s} ≥ λναsk (5.3.15)

for 0 < s ≤ 1. By (14), W is stationary in A.
In case ν = 1, b = 0, and Y = {y}, we see that y ∈ spt ||W ||. Hence θk(||W ||,y) ≥ 1 by the

upper semicontinuity of density for stationary varifolds [AWl 8.6]. The monotonicity lemma 4.17
yields ||W ||U(y,1) > α , which contradicts (13).

Otherwise, it follows from (10) that S = T for W almost all (x,S) ∈ Gk(Rn). Being stationary
in A, W must be of the form

W = ∑
j
[qiv(T +d j) A], (5.3.16)

where q j ∈ {0}∪N and d j ∈ Rn. We may suppose Y = {d1, . . . ,dν}. By (7), if i, j ≤ ν and di 6= d j,
then |T⊥(di−d j| > 0. Hence (15) implies ∑ν

j=1 q j > λν. But since W is integral, it must be true that
∑ν

j=1 q j > λν. Then (16) says that ||W ||A ≥ να, which contradicts (13) again.
Remark: The essential difference between this lemma and [AW1 6.2] is that hypothesis (5)

involves r||δV (y,r)||B(y,r) instead of R||δV ||B(y,r). This seemingly slight difference is actually
the key to chapter 6, for it gives rise to αpk/(k−p) in (5.4.10) instead of αp, and this in turn permits
things to happen in finite time in 6.7. The proof shows why we are assuming a discrete range of
values for θk(||V ||,x) rather than a continuous range bounded below away from zero.

5.4 Lipschitz approximation
Theorem: For each p, ν, and ε with 1 ≤ p < ∞, ν ∈ N, and 0 < ε < 1, there exists P with 0 < P <
∞ such that if

V ∈ IVk(Rn), T = e1∧ . . .∧ ek ∈ G(n,k), (5.4.1)
(ν−1+ ε)α < ||V ||B(0,1), (5.4.2)

||V ||B(0,3) ≤ (ν+1− ε)α3k,

αp =
∫

B(0,7)
|h(V,x)|p d||V ||x, (5.4.3)

β2 =
∫

B(0,7)
||S−T ||2 dV (x,S), (5.4.4)

1 ≤ q ≤ ∞ and µq =
∫

B
(0,7)||T⊥(x)|q d||V ||x, (5.4.5)

then there are Lipschitz maps f : T → Mν and F : T → T ×M such that

F(z) = (z, f (z)) for z ∈ T, (5.4.6)
| f (z1)− f (z2)| ≤ c(ν)|z1− z2| for z1,z2 ∈ T, (5.4.7)

sup{| f (z)i| : z ∈ T, i = 1, . . . ,ν} ≤ 4(µq/α)1/(k+q), (5.4.8)

and if

Y = {z ∈ B(0,1) : F(zi) ∈ B(0,1) and (5.4.9)

θk(||V ||,F(z)i) = card{ j : F(z)i = F(z) j} for i = 1, . . . ,ν},
S = B(0,1)∩ *-image F ∩T−1(Y )



then

||V ||(B(0,1) ∼ X)+Hk(B(0,1) ∼ Y )

≤
{

P[αpk/(k−p) +β2 +µq] if p < k,
P[β2 +µ2] if p ≥ k.

(5.4.10)

Proof: The basic idea of the proof is that the points to which we can apply the multilayer
monotonicity lemma 5.3 cannot stack up more than ν deep and are related in a Lipschitzian manner
in horizontal directions.

Let 2/3 < A < 1 and 0 < y < 1 be such that

λ(ν+1)(3− γ)k > (ν+1− ε)3k, (5.4.11)

λν(2− γ)k ≥ ν2k−4−k−1,

and γ works in 5.3 for λ and ν + 1 with ξ = 21/24. Let A be the set of those y ∈ B(0,2) such that
θk(||V ||,y) ∈ N, T⊥(y)| < γ/4 and

r ||δV ||B(y,r) < γ ||V ||B(y,r) and (5.4.12)∫

B(y,r)

||S−T ||2 dV (x,S) < γ2||V ||B(y,r) (5.4.13)

whenever 0 < r ≤ 5. Define

B = {x ∈ B(0,2) ∼ A : θk(||V ||,x) ∈ N},
C = T (B). (5.4.14)

Suppose z ∈ Bk(0,2) ∼ C. Then for y ∈ A, T (y) = z, and 0 < r ≤ 5 we have from (13) and
Schwarz’ inequality, ∫

B(y,r)

||S−T ||dV (x,S) < γ ||V ||B(y,r). (5.4.15)

Applying the multilayer monotonicity lemma 5.3 with b = z and R = 3− γ shows that if

∑{θk(||V ||,y) : y ∈ A,T (y) = z} ≤ ν (5.4.16)

does not hold, then
||V ||B(0,3) > λ(ν+1)α(3− γ)k. (5.4.17)

By the choice of λ and γ in (11), (17) would contradict hypothesis (2). Therefore (16) does hold.
Next, we put a bound on |T⊥(y)| for y ∈ A. Let c = 4[µq/α]1/(k+q) and suppose that |T⊥(y)| > σ

for some y ∈ A. Then by the monotonicity lemma 5.3 we get

||V ||B(y,σ/2) ≥ (α/2)(σ/2)k,

which certainly means that
∫

b(0,6)

|T⊥(x)|q d||V ||x ≥ (α/2)(σ/2)k+q

≥ 2k+q−1µq,

which contradicts the definition of µ. Hence

sup{|T⊥(y) : y ∈ A} ≤ 4[µq/α]1/(k+q). (5.4.18)



Now define the set E to consist of those z ∈ B(0,2) ∼ C such that

∑{θk(||V ||,y) : y ∈ A,T (y) = x} = ν

and define f : E → Mν and F : E → T ×Mν so that F(z)i = (z, f (z)i) ∈ A and

card{ j : f (z) j = f (z)i} = θk(||V ||, f (z)i)

for i = 1, . . . ,ν and z ∈ E. To see that F is Lipschitz, suppose z1,z2 ∈ E. If |z1− z2| < γ/2, then the
components of F(z1) and F(z2) can be paired off so that |F(z1)i−F(z2)i| < 21/2|z− z2|, or else we
could pick v+1 points from F(z1)∪F(z2) and apply 5.3 to get a contradiction to (3). Thus

| f (z1)− f (z2)| ≤
[
∑

I
| f (z1)i− f (z2)i|2

]1/2

≤ 2ν1/2|z1− z2|. (5.4.19)

Since | f (z)i| < γ/4 holds by the definition of A, we see that (19) also holds if |z1− z2| > γ/2, and
so f has Lipschitz constant 2ν1/2 on E. We then use Kirszbraun’s Theorem as noted in 5.2 to obtain
Lipschitz extensions f : T → Mν and F : T → T ×Mν satisfying (6), (7), and (8).

The rest of the proof verifies (10). First, we estimate ||V ||B. Suppose b ∈ B. If it is (12) that
fails for b, then we can choose r(b) such that 0 < r(b) < 5,

||V ||B(b,r(b)) ≥ (1/2)αr(b)k and (5.4.20)

r(b)||δV ||B(b,r(b)) ≥ γ ||V ||B(b,r(b)), (5.4.21)

either by choosing the smallest r(b) for which (21) holds and using monotonicity lemma 4.17 to
get (20), or otherwise using θk(|V ||,b) ≥ 1 to get (20) and (21) to hold for the same r. Hölder’s
inequality applied to (21) yields

r(b)p
∫

B(b,r(b))

|h(V,x)|p d||V ||x ≥ γ p||V ||B(b,r(b)),

so, using (20) ∫

B(b,r(b))

||S−T ||2 dV (x,S) ≥ i(γ p/2)αr(b)k−p. (5.4.22)

If p ≥ k, then P can be chosen large enough so that either (10) holds trivially or else α must be so
small that (22) cannot hold and B is empty. Otherwise, if p < k,

r(b) ≤ [2αp/γ pα]1/(k−p)

and (21) may be replaced by
∫

B(b,r(b))

|h(V,x)|p d||V ||x ≥ γ p[γ pα/2αp]p/(k−p)||V ||B(b,r(b)). (5.4.23)

If (12) does hold for b, then either |T⊥(b)| > γ/4 or there is some r(b) with 0 < r(b) ≤ 5 and
∫

B(b,r(b))

||S−T ||2 dV (x,S) ≥ γ2||V |B(b,r(b)). (5.4.24)



Hence the Besicovitch covering theorem 2.2 implies

||V ||B ≤ (4/γ)q
∫

B(0,2)

|T⊥(x)|q d||V ||x (5.4.25)

+B(n)γ−p[2αp/γpα]p/(k−p)
∫

B(0,2)

|h(V,x)|p d||V ||x

+B(n)(γ−2
∫

B(0,7)

||S−T ||2 dV (x,S)

≤ (4/γ)qµq +B(n)γ−kp/(k−p)(2/α)p/(k−p)αkp/(k−p) +B(n)γ−2β−2,

but recall that the α term is absent if p ≥ k.
Our next aim is to find out how much of Bk(0,2) is covered by less than ν layers of A. Recall

that E is where A has ν layers, and let Q = Bk(0,2) ∼ E. When G is any Hk measurable subset of
B(0,2),

||V ||[B(0,2)∩T−1(G)] ≤||V ||[A∩T−1(E ∩G)]

+ ||V ||[A∩T−1(Q∩G)]+ ||V ||B.

Since A has no more than ν layers,

νHk(E ∩G) ≥
∫

A∩T−1(E∩G)

|∧k T ◦S|dV (x,S)

≥
∫

A∩T−1(E∩G)

1− k||S−T ||2 dV (x,S).

Likewise, since A has no more than ν−1 layers over Q,

(ν−1)Hk(Q∩G) ≥
∫

A∩T−1(Q∩G)

1− k||S−T ||2 dV (x,S). (5.4.26)

Hence

||V ||[B(0,2)∩T−1(G)] ≤ νHk(E ∩G)(+(ν−1)Hk(Q∩G)

+ k
∫

B(0,2)
||S−T ||2 dV (x,S)+ ||V ||B.

(5.4.27)

Now consider G = Bk(0,1). We see from (25) that ||V ||B is small if α,β, and µ are small. Thus we
can pick P large enough so that either (10) holds trivially, or else α,β, and µ are small enough so
that (2) and (26) imply that E ∩B(0,1) is nonempty. Then by the multilayer monotonicity theorem
and (11)

||V ||B(0,2) ≥ λνα(2− γ)k

≥ να2k−4−k−1α.

Hence, using (26) with G = Bk(0,2),

να2k−4−k−1α ≤ νHk(G)−Hk(Q)+ kβ2 + ||V ||B.

Thus, for large enough P, we may assume

Hk(Q) < 4−kα.



Next, let Q∗ = Q∩Bk(0,1). Since Hk almost every point of Q∗ is a Lebesgue point of Q∗, and
since Hk(Q) < 4−kα, we can for Hk almost every w ∈ Q∗ choose r(w) with 0 < r(w) < 1 and

Hk[Ω∩Bk(w,r(w))] = 4−kαr(w)k. (5.4.28)

By the Besicovitch covering theorem 2.2. there is a collection B of disjoint balls B(w,r(w)) with
w ∈ Q∗ and

Hk(Q∩B) ≥ Hk(Q∗)/B(k). (5.4.29)

Using G = ∪B in (26) produces

||V ||(B(0,2)∩T−1(∪B)) ≤ νHk(E ∩∪B)+(ν−1)Hk(Q∩∪B)+ kβ2 + ||V ||B.

But the condition (28) guarantees that in each B(w,r(w)) there is x(w) ∈ E with |x(w)−w| <
r(w)/2. Hence the multilayer monotonicity theorem 5.3 implies that

||V ||{y ∈ B(0,2) : |T (y)−w| ≤ r(w)} ≥ λναr(w)k

and so
||V ||(B(0,2)∩T−1(∪B) > λνHk(∪B).

Thus, using (27) with G = ∪B,

λνHk(∪B) ≤ νHk(∪B)−Hk(Ω∩∪B)+ kβ2 + ||V ||B. (5.4.30)

It follows from (26) that
Hk(∪B) = 4kHk(Ω∩∪B),

and so (28) becomes

Hk(Ω∩∪B) ≤ (1−λ)ν4kHk(Ω∩∪B)+ kβ2 + ||V ||B.

Using the properties of λ,
Hk(Ω∩∪B) ≤ 2(kβ2 + ||V ||B).

Thence, by (28),
Hk(Q∗) ≤ 2B(k)(kβ2 + ||V ||B). (5.4.31)

Now to verify (10). We have

B(0,1) ∼ X ⊂ B∪ [A∩T−1(Q∗)],

so, using (25) with G = Q∗,

||V ||[B(0,1)−X ] < ||V ||B+(ν−1)Hk(Q∗)+ kβ2. (5.4.32)

Since Bk(0,1) ∼ Y = Q∗, we see from (25) , (31), (32) and the earlier constraints placed on P that
there is P < ∞ such that

||V ||[B(0,1) ∼ X ]+Hk(Q∗) ≤
{

P[αpk/(k−p) +β2 +µq] if p < k,
P[β2 +µ2] if p ≥ k,

which verifies conclusion (10).



5.5 Tilt of tangent planes
Here we estimate the total tilt of the tangent planes of a varifold near a k-plane in terms of more
convenient quantities.

Lemma: If V ∈ IVk(Rn), T ∈ G(n,k), φ ∈ C1
0(Rn,R+), p = 1 or p = 2,

αp =
∫
|h(V,x)|pφ(x)2 d||V ||x, (5.5.1)

µ2 =
∫
|T⊥(x)|2φ(x)2 d||V ||x, (5.5.2)

ξ2 =
∫
|T⊥(x)|2|Dφ(x)|2 d||V ||x, and (5.5.3)

β2 =
∫
||S−T ||2φ(x)2 dV (x,S), (5.5.4)

then

β2 ≤ 4kα2/3µ2/3 +16ξ2 if p = 1, (5.5.5)

β2 ≤ 2αµ+16ξ2 if p = 2. (5.5.6)

Proof: Let g(x) = φ(x)2T⊥(x) for x ∈ Rn. Then for S ∈ G(n,k) we have

Dg(x) ·S = 2φ(x)S(T⊥(x)) ·Dφ(x)+φ(x)2T⊥ ·S
and hence

(φ((x)||S−T ||)2 ≤ φ(x)2T⊥ ·S
≤ Dg(x) ·S +2φ(x)|S(T⊥(x)) ·φ(x)|
≤ Dg(x) ·S +2φ(x)||S−T || |T⊥(x)| |Dφ(x)|.

Therefore
∫

φ(x)2||S−T ||2 dV (x,S) ≤ |δV (g)|+2
∫

φ(x)||S−T || |T⊥(x)| |Dφ(x)|dV (x,S)

≤ |δV (g)|+2
[∫

||S−T ||2φ(x)2 dV (x,S)
∫
|T⊥(x)|2|Dφ(x)|2 d||V ||s].

If β2 ≤ 4βξ, then
β2 ≤ 16ξ2. (5.5.7)

Otherwise, we must have β2 ≤ 2|δV (g)|. If p = 2, then we use Schwarz’ inequality:

2|δV (g)| ≤ 2
∫
|h(V,x)|φ(x)2|T⊥(x)|d||V ||x (5.5.8)

≤ 2
[∫

|h(V,x)|2φ(x)2 d||V ||x
∫
|T⊥(x)|2φ(x)2 d||V ||x]1/2

,

and we get conclusion (6) by adding (7) and (8). If p = 1, then we must be more devious. For a
temporarily unfixed constant M > 0, decompose g into g1 +g2, where

g1(x) =

{
φ(x)2T⊥(x) if |T⊥(x)| ≤ 1/M,

φ(x)2T⊥(x)/M|T⊥(x)| if |T⊥(x)| ≥ 1/M,

g2(x) =

{
0 if |T⊥(x)| ≤ 1/M,

φ(x)2T⊥(x)/(1−1/M|T⊥(x)|) if |T⊥(x)| ≥ 1/M,



One may calculate that for S ∈ G(n,k),

|Dg2(x) ·S| ≤ 2φ(x)|Dφ(x)||T⊥(x)|+ kφ(x)2

≤ |Dφ(x)|2|T⊥(x)|2 +(k +1)φ(x)2

≤ |Dφ(x)|2|T⊥(x)|2 +(k +1)M2|T⊥(x)|2φ(x)2

when |T⊥(x)| ≥ 1/M. Then

|δV (g)| ≤ |δV (g1)|+ |δV (g2)|
≤ (1/M)||δV ||(φ2)+

∫
|Dg2(x) ·S|dV (x,S)

≤ α/M +ξ2 +(k +1)M2µ2.

The value of M that minimizes this expression is

|δV (g)| ≤ (2k +2)1/3α2/3µ2/3 +ξ2 +2−2/3(k +1)1/3α2/3µ2/3,

which, together with (7), implies conclusion (5).

5.6 Blowing up and shrinking down
This is the basic theorem for getting improved flatness. It shows that if there is little mean curvature
in a region compared to the bumpiness of the varifold, then a smaller region must be flatter. The
basic idea is to blow up the varifold. more vertically than horizontally, to get a harmonic function,
rather than just a tangent plane.

Theorem: If ν ∈ N then there exists a constant c4 < ∞ such that:
If 0 < θ < 1/18 and M < ∞ then there exists 0 < η < 1 with the following property:
If

V ∈ IVk(Rn), a ∈ Rn, 0 < R < ∞, A ∈ A(n,k), (5.6.1)

(ν−1/2)α(R/9)k ≤ ||V ||B(a,R/a), (5.6.2)

||V ||B(a,R/3) ≤ (ν+1/2)α(R/3)k,

||V ||{x ∈ B(a,R) : θk(||V ||,x) 6= ν} < ηRk, (5.6.3)
dist(a,A) ≤ ηR, (5.6.4)

R−k−2
∫

B(a,R)

dist(x,A)2 d||V ||x = µ2 < η, and (5.6.5)

R−k+1||δV ||B(a,R) = α < Mµ2, (5.6.6)

then there is A∗ ∈ A(n,k) such that

(θR)−k−2
∫

B(a,θR)

dist(x,A∗)d||V ||x ≤ c2
4θ2µ2. (5.6.7)

Proof: Fix ν, θ, and M and define

c2
4 = 81[2+2(c(ν)+1)kνc2

39k+2kα/(k +4)], (5.6.8)

where c3 is the constant appearing in (48) and (49) below.



Owing to the behavior of the various quantities appearing in (1)-(7) with respect to transforma-
tion by homothetities and Euclidean motions, we see that were the theorem false there would exist
T ∈ G(n,k) and to each i ∈ N there would correspond ni, Vi, and ai such that

lim
i→∞

ηi = 0, (5.6.9)

Vi ∈ IVk(Rn), ai ∈ T−1(0), (5.6.10)
(ν−1/2)α ≤ ||Vi||B(ai,1), (5.6.11)

||Vi||B(ai,3) ≤ (ν+1/2)α3k,

||Vi||{x ∈ B(ai,9) : θk(||Vi||,x) 6= ν} < 9kηi (5.6.12)
|ai| < 9ηi, (5.6.13)

9−k−2
∫

B(ai,9)

dist(x,T )2 d||V ||x = µ2
i < ηi, (5.6.14)

9−k+1||δV |B(ai,9) = αi < Mµ2
i , (5.6.15)

and for every A∗ ∈ G(n,k)

(9θ)−k−2
∫

B(ai,9θ)

dist(x,A∗)2 d||V ||x > c2
4θ2µ2

i . (5.6.16)

It is not too hard to see that these conditions imply that

lim
i→∞

ai = 0 and (5.6.17)

lim
i→∞

Vi U(ai,9) = νv(T ∩U(0,9)). (5.6.18)

For each i ∈ N we let
β2

i =
∫

B(0,7)

||S−T ||2 dVi(x,S), (5.6.19)

and we note that (15) implies µi > 0.
We apply the Lipschitz approximation theorem 5.3 with ε = 1/2 to obtain a real number P and

mappings f : T → Mν such that

Fi(y) = (y, fi(y)) for y ∈ T, (5.6.20)
| fi(y)− fi(z)| ≤ c(ν)|y− z| for y,z ∈ T, (5.6.21)

if C = B(0,1), D = Uk(0,1), and

Xi = C∩*-image Fi∩T−1(Yi), (5.6.22)

Yi = {y ∈ D : θk(||Vi||, fi(y)m) = card{ j : fi(y) j = fi(y)m}
and fi(y)m ∈ B(0,1) for m = 1, . . . ,ν}

then

||Vi||(C ∼ Xi)+Hk(D ∼ Yi)

≤
{

P[(9kMµ2
i )

k/(k−1) +β2
i +µ2

i ] if k > 1,

P[β2
i +µ2

i ] if k = 1,

and (5.6.23)

sup{| fi(y)m| : y ∈ T,m = 1, . . . ,ν} < 4(9k+2µ2
i /α)1/(k+2. (5.6.24)



From (14), (15), and the tilt lemma 5.5 with φ = χ(8, ·) we calculate

β2
i ≤ (9k−1Mµ2

i )
2/3(9k+2µ2)1/3 +16(ρ/8)29k+2µ2

i

≤ [9kM2/3 +9k+2ρ2/2]µ2. (5.6.25)

Therefore, there is a positive real number N so that for all i ∈ N we have

sup{β2
i , ||Vi||(C ∼ Xi)+Hk(D ∼ Yi)} ≤ Nµ2

i . (5.6.26)

Since Fi and fi are Lipschitz, we use Rademacher’s theorem [FH 3.1.6] to see that Fi and fi are
differentiable at Hk almost all points y ∈ T , and by (21)

|D fi(y)m| ≤ c(ν), |DFi(y)m| ≤ c(ν)+1 (5.6.27)

for m = l, . . . ,ν. Moreover, we see from (22) and the integrality of V that

∫

Xi

ζ(x,S)dVi(x,S) =
∫

Yi

ν

∑
m=1

ζ(Fi(y)m, image DFi(y)m)|∧k DFi(y)m|dHk
y (5.6.28)

whenever ζ is a bounded Baire function on Gk(Rn).
We make the following estimates for sufficiently large i: By (28) and the definition of µi,

∫

Yi
∑
m
| fi(y)m|2 dHky ≤

∫

Yi
∑
m
| fi(y)m|2|∧k DFi(y)m|dHky

≤
∫

Xi

dist(x,T )2 d||Vi||x (5.6.29)

≤ 9k+2µ2
i .

By (20), (27), (25), and (26),
∫

Yi
∑
m
|D fi(y)m|2 dHky ≤

∫

Yi
∑
m
|DFi(y)m|2||image DFi(y)m−T ||2 dHk

≤ (c(ν)+1)2
∫

Yi
∑
m
||image DFi(y)m−T ||2|∧k DFi(y)m|dHk

≤ (c(ν)+1)2
∫

Xi

||S−T ||2 dVi(x,S) (5.6.30)

≤ (c(ν)+1)2Nµ2
i .

By (24) and (26), ∫

D∼Yi

∑
m
| fi(y)m|2 dHky ≤ 16ν[9k+2µ2

i /α]2/(k+2)Nµ2
i . (5.6.31)

By (27) and (26) ∫

D∼Yi

∑
m
|D fi(y)m|2 dHky ≤ c(ν)2Nµ2

i . (5.6.32)

We see from these estimates, (9), and (14) that

limsup
i→∞

µ−2
i

∫

D
(| fi|2 + |D fi|2)dHk < ∞, and (5.6.33)

limsup
i→∞

µ−2
i

∫

D
| fi|2 dHk ≤ 9k+2. (5.6.34)



Using the same reasoning that is well known in the case of single-valued functions, passing to a
subsequence if necessary, we may find an Mν valued Hk D summable function h∗ such that

lim
i→∞

∫

D
|h∗−µ−1

i fi|2 dHk = 0. (5.6.35)

It follows from (12) that h∗ is single-valued, i.e. there is a T⊥ valued Hk D summable function h
such that h∗(y) = (h(y), . . . ,h(y)). Clearly, by (34),

lim
i→∞

∫

D
|h|2 dHk ≤ 9k+2. (5.6.36)

We will now show that h is Hk D almost equal a harmonic function on D. In order to do this, it
will suffice to show in view of (35) that for each smooth function φ : D → T⊥

lim
i→∞

µ−1
i

∫

D
∑
m

D fi(y)m ·Dφ(y)dHky = 0. (5.6.37)

Fixing φ, let

B = sup{|φ(y)|+ |Dφ(y)| : y ∈ D}, (5.6.38)

a1,i =
∫

D∼Yi

∑
m

D fi(y)m ·Dφ(y)dHky, (5.6.39)

a2,i =
∫

Yi
∑
m

D fi(y)m ·Dφ(y)− [image DFi(y)m · (Dφ(y)◦T )]|∧k DFi(y)m|dHk, (5.6.40)

a3,i =
∫

Yi
∑ image DFi(y)m · (Dφ(y)◦T )|∧k DFi(y)m|dHky−δVi(φ◦T ), and (5.6.41)

a4,i = δVi(φ◦T ). (5.6.42)

Note that

µ−1
i

∫

D
∑
m

D fi(y)m ·φ(y)dHky = µ−1
i

4

∑
j=1

a j,i. (5.6.43)

We now estimate the four quantities a j,i for large i : using (27) and (26) and (38)

|a1,i| ≤ c(ν)BNµ2
i . (5.6.44)

Using c
2

as in [AWl 8.14] and (30),

|a2,i| ≤ c
2
B

∫

Yi
∑
m
||D fi(y)m||2 dHky

≤ c
2
B(c(ν)+1)2Nµ2

i . (5.6.45)

Using (28) and (26),

|a3,i| ≤
∣∣

∫

C∼Xi

D(φ◦T )(x) · dVi(x,S)
∣∣

≤ B||Vi||(C ∼ Xi) (5.6.46)

≤ BNν2
i .

Using (15) and (17)
|a4,i| ≤ 9k+2MBµ2

i . (5.6.47)



Because ηi → 0 and µi → 0, (37) holds and h is harmonic. As is well known [FH 5.2.5], there is a
positive real number c3, independent of h, such that when |y| < 1/2

sup{|h(0)|, ||Dh(0)||} ≤ c3
(∫

D
|h|2 dHk)1/2 and (5.6.48)

|h(y)−h(0)− y ·Dh(0)| ≤ c3
(∫

D
|h|2 dHk)1/2|y|2. (5.6.49)

Whenever i is sufficiently large, we let

Li(y) = y+µiy ·Dh(0) for y ∈ T, (5.6.50)
Ki(x) = Li(T (x))+µih(0) for x ∈ Rn, (5.6.51)

A∗i = image Ki 6= A(n,k). (5.6.52)

If x ∈ C then
x−Ki(x) = T⊥(x)−µih(0)−µiT (x) ·Dh(0), (5.6.53)

so that, using (48) and (36)

dist(x,A∗i ) ≤ |x−Ki(x)| (5.6.54)

≤ dist(x,T )+2c39(k+2)/2µi.

If y ∈ Yi and m = 1, . . . ,ν then

Fi(y)m−Ki(Fi(y)m) = fi(y)m−µih[h(y)−h(0)− y ·Dh(0)] (5.6.55)

so that, using (49) and (36), for |y| < 1/2

∑
m

dist(Fi(y)m, Ãi)2 ≤ 2| fi(y)−µih∗(y)|2 +2νc2
39k+2µ2

i |y|4. (5.6.56)

Heading into the home stretch, we have
∫

B(0,9θ)

dist(x,A∗i )
2 d||Vi||x ≤

∫

B(0,9θ)∩Xi

dist(x,A∗i )
2 d||Vi||x

+
∫

(C∼Xi)∩B(0,9θ)

dist(x,A∗i )
2 d||Vi||x.

(5.6.57)

Using (28), (56), and (27),
∫

B(0,9θ)∩Xi

dist(x,A∗i )
2 d||Vi||x ≤

∫

B(0,9θ)∩Yi

∑
m

dist(Fi(y)m,A∗i )
2|∧k DFi(y)m dHky

≤ 2(c(ν)+1)k
[∫

D
| fi(m)−µih∗(y)|2 dHky (5.6.58)

+νc2
39k+2µ2

i

∫

B(0,9θ)

|y|4 dHky
]
.

By simple calculus, ∫

Bk(0,9θ)

|y|4 dHky = (kα/(k +4)(9θ)k+4. (5.6.59)



Define
Zi = {z ∈ B(0,9θ) : |T⊥(z)| > µ1/(k+2)} (5.6.60)

Then, using (54) and (60)
∫

(C∼Xi)∩B(0,9θ)

dist(x,A∗i )
2 d||Vi||x ≤

∫

(C∼Xi)∩B(0,9θ)

2|T⊥(x)|2 +8c2
37k+2µ2

i d||Vi||x

≤ 2
∫

Zi

|T⊥(x)|2 d||Vi||x+(2µ2/(k+2)
i +8c2

39k+2µ2
i )||Vi||(C ∼ Xi).

(5.6.61)

We shall now show that for sufficiently large i

||Vi||Zi ≤ (9θ)k+4µ2
i . (5.6.62)

Suppose not. Then it follows from the Besicovitch covering theorem 2.2 and (15) that there is z ∈ Z
with θk(||Vi||,z)1 such that for 0 < r < |T⊥(z)|/2,

||δVi||B(z,r) ≤ B(n)||δVi||B(ai,9)||Vi||B(z,r)/||Vi||Zi

≤ B(n)Mµ2
i 9k−1µ−2

i (9θ)−k−4||Vi||B(z,r). (5.6.63)

Letting γ correspond to λ = 1/2 and ν = 1 in the monotonicity lemma 5.3, we have, for sufficiently
large i,

r||δVi||B(z,r) ≤ (µ1/(k+2)
i /2), (5.6.64)

||δVi||B(z,r) < γ(||V ||B(z,r).

So by the monotonicity theorem 5.3,

||Vi||B(z, |T⊥(z)/2|/2) ≥ (α/2)|T⊥(z)|k2−k. (5.6.65)

Recalling the definition of µ2
i from (14) and the definition of Zi from (60), we have

9k+2µ2
i > (α/2)|T⊥(z)|k+22−k−2

> (α/2)µi2−k−2, (5.6.66)

which contradicts limi→∞ µi = 0. Therefore (62) holds.
Combining (57), (58), (35), (59), (61), (26), (62), (9), and (14) yields

limsup
i→∞

µ2
i (9θ)−k−2

∫

B(0,7θ)

dist(x,A∗i )
2 d||Vi||x

≤ [2+2(cν)+1)kνc2
39k+2kα/(k +4)](9θ)k+4(9θ)−k−2,

(5.6.67)

which, together with (36) and (48), contradicts (8) and (16).
Remark: The theorem remains true if hypothesis (6) is replaced by

R−k+2
∫

B(a,R)

|h(V,x)|2 d||V ||x < η2. (5.6.68)



5.7 Flatness
Theorem: If V ∈ IVk(Rn) and ||V || is a Radon measure, then for V almost all (y,T ) ∈ Gk(Rn)

R−k+2
∫

B(a,R)

|h(V,x)|2 d||V ||x < ν2. (5.7.1)

Proof: For V almost all (y,T ) we know that

θk(||V ||,y) ∈ N, (5.7.2)

Tank(||V ||,y) = T, (5.7.3)
h(V,y) ∈ Rn, (5.7.4)

and hence for V almost all (y,T ),

lim
r→∞

r−k||V ||{a ∈ B(y,r) : θk(||V ||,y) 6= θk(||V ||,x)} = 0, (5.7.5)

lim
r→∞

r−k−2
∫

B(y,r)

|T⊥(x− y)|2 d||V ||x = 0, and (5.7.6)

sup
0<r<1

{r−k||δV ||B(y,r)} = B for some B < ∞. (5.7.7)

Suppose y and T satisfy (2)-(7). Assume y = 0, let ν = θk(||V ||,0), define

µ(r)2 = inf
A∈A(n,k)

r−k−2
∫

B(y,r)

dist(x,A)2 d||V ||x, (5.7.8)

and let the infimum be obtained for A(r). By the existence of a tangent plane at y,

lim
r→∞

ν−1dist(0,A(r)) = 0 and (5.7.9)

lim
r→∞

r−2µ(r)2 = 0. (5.7.10)

We wish to show that limr→0 r−1µ(r)2 = 0,
If limsupr→0 r−1µ(r)2 > 0, then there is ε > 0 such that for arbitrarily small ν

r−1µ(r)2 > ε. (5.7.11)

Choose θ < c−4
4 and let M = θ−k−3ε−1B. Let η be as found in 5.6, and choose R0 > 0 so that 5.6

(2), (3), (4), and (5) hold for a = 0, 0 < r ≤ R0, and A = A(r). Choose m ∈ N so that

θ(1−m)/2εR0 > η. (5.7.12)

Suppose 0 < r < θmR0 and r−1µ(r)2 > ε. By the minimality of A(r)

r−k−2µ(r)2 < (r/θ)−r−2µ(r/θ)2. (5.7.13)

Hence
(r/θ)−1µ(r/θ)2 > θk+εε. (5.7.14)

We carefully choose M so that

(r/θ)−k+1||δV ||B(0,r/θ) < Mµ(r/θ)2, (5.7.15)



which is hypothesis (6) of 5.6. Hence 5.6 says that

µ(r)2 ≤ c2
4θ2µ(r/θ)2, (5.7.16)

or, by choice of θ and µ(r)2,
(r/θ)−1µ(r/θ)2 > θ−1/2ε. (5.7.17)

Thus we may repeat this process until we get p ∈ N with p ≥ m, θR0 ≤ r/θp ≤ R0, and

(r/θp)−1µ(r/θp)2 > θ−p/2ε. (5.7.18)

But by the choice of m, we then have

µ(r/θp)2 > θR0θ−m/2ε > η,

which contradicts µ(R)2 < η for R < R0. Hence limr→0 r−1µ(r)2 = 0.
It remains to replace A(r) by T . We do this by comparing A(r) and A(r/2). For each r > 0,

let A(r) = T (r)+ b(r), where T (r) ∈ G(n,k) and b(r) ∈ T (r)⊥. For small r, where V is nearly a
k-plane, a little geometry shows that for some constant c we must have

|b(r)−b(r/2)| < cνµ(r) and
||T (r)−T (r/2)|| ≤ cµ(r).

Because there is a tangent plane at 0, clearly

lim
r→0

b(r) = 0, lim
r→0

T (r) = T.

Thus, when µ(s)2 < s for all s < r

|b(r)| ≤
∞

∑
m=0

cr2−mµ(r/2m)

≤
∞

∑
m=0

cr3/22−3m/2 ≤ 2cr3/2 and

||T (r)−T || ≤
∞

∑
m=0

cµ(r/2m)

≤
∞

∑
m=0

cr1/22−m/2 ≤ 4cr1/2.

Hence A(r) is close enough to T that r−1µ(r)2 → 0 implies

lim
r→0

r−k−3
∫

B(0,r)

|T⊥(x)|2 d||V ||x = 0.

Remark: When ||δV ||sing = 0 and H(V, ·) is locally square integrable with respect to ||V ||, then
r−k−3 may be replaced by r−k−4+δ for any δ > 0.

5.8 Perpendicularity
Theorem: If V ∈ IVk(Rn) and ||δV || is a Radon measure, then

T (h(V,y)) = 0 (5.8.1)



for V almost all (y,T ) ∈ Gk(Rn).
Proof: To prove (1), it is sufficient to show that

lim
r→0

r−kδV (χ2(r, ·− y)w) = 0 (5.8.2)

for every w ∈ T with |w| = 1.
From chapter 2 and 5.7 we know that V almost all (y,T ) ∈ Gk(Rn) satisfy

h(V,y) ∈ Rn, (5.8.3)

θk(||V ||,y) ∈ N, (5.8.4)

Tank(||V ||,y) = T, (5.8.5)

sup
0<r<1

{r−k||δV ||B(y,r)} = B for some B < ∞, and (5.8.6)

lim
r→0

r−k−3
∫

B(4,r)

|T⊥(x)|2 d||V ||x = 0. (5.8.7)

Suppose (y,T ) satisfies (3)-(6), w ∈ T , |w| = 1, and c > 0. We may assume tbat y = 0 and
T = e1∧ . . .∧ ek. Let ν = θk(||V ||,0). For sufficiently small r > 0 we have:

(ν−1/4)αr k < ||V ||B(0,r), (5.8.8)

||V ||B(0,3r) ≤ (ν+1/4)α(3r)k, and
∫

B(0,9r)

|T⊥(x)|2 d||V ||x < εr k+3. (5.8.9)

Let f : T → Mν and F : T → T×Mν be the Lipschitz approximations constructed in 5.4, scaled
down to B(0,r), and let X and Y also be as in 5.4.

Let ζ(x) = χ(r,x)2. From 2.9 we have

δV (ζw) =
∫

Dζ(x)⊗w ·SdV (x,S), (5.8.10)

and by symnetry we have

ν
∫

T
Dζ(y) ·wdHky = 0. (5.8.11)

To connect (10) and (11) we define quantities a1, . . . ,a5 as follows:

a1 =
∫

Dζ(x)⊗w · (S−T )dV (x,S), (5.8.12)

a2 =
∫

B(0,r)∼X

Dζ(x) ·wd||V ||x,

a3 =
∫

X
Dζ(x) ·w(1−|∧k R ·S|−1 dV (x,S),

a4 =
∫

Y
∑
m

[Dζ(F(y)m)−Dζ(y)] ·wdHky, and

a5 =
∫

Bk(0,r)∼Y

νDζ(y) ·wdHky.

By (10), (11), and Dζ(x)⊗w ·T = Dζ(x) ·w,

δV (ζw) = a1 +a2 +a3 +a4 +a5. (5.8.13)



Using the tilt lemma 5.4 with φ(x) = χ(8r,x), p = 1, α = B(8r)k from (6), µ2 = εrk+3 from (9),
ζ2 = (p/8r)2εrk+3 from (9) and the properties of χ we get

∫

B(0,7r)

||S−T ||2 dV (x,S) ≤ (B8kr k)2/3(εrk+3)1/3 +(ρ2ε/4)rk+1

≤ (B2/34kε1/3 +ρ2ε/4)rk+1. (5.8.14)

We estimate: using |S(w)−w| ≤ ||S−T ||2 and (14),

|a1| ≤
∫

B(0,r)

(2ρ/r)||S− T̃ ||2 dV (x,S) (5.8.15)

≤ 2ρ(B2/34kε1/3 +ρ2ε/4)r k;

using (5.4.10) with appropriate scaling, (6), (9), and (14),

|a2|+ |a5| ≤ ν(2ρ/r)P[(B7kr)k/(k−1) +(B2/34kε1/3 +ρ2ε/4)r +(ρ/8)2εr]r k; (5.8.16)

using |1−|λkT̃ ◦S|−1| < k||S−T ||2 and (14),

|a3| ≤ (2ρ/r)(B2/34kε1/3 +ρε/4)rk+1; (5.8.17)

and using the properties of χ, (9), and F(y)m ·w = y ·w,

|a4| =
∣∣∣∣
∫

Y
∑
m

[ |Dζ(y)|y/|y|− |Dζ(F(y)m)|F(y)m/|F(y)m|
] ·wdHky

∣∣∣∣

≤
∫

Y
∑
m
|(|Dζ(y)|− |Dζ(F(y)m)|)y/|y|

+ |Dζ(F(y)m)|y(|y|−1−|F(y)m|−1|dHky

≤
∫

Y
∑
m

sup
x∈Rn

{D2ζ(x)}| |y|−−|F(y)m| |

+ sup
x∈Rn

{Dζ(x)/|x|}| |y|− |F(y)−m| |dHk

≤
∫

B(0,r)

(4ρ/r2)|T⊥(x)|2 +(2ρ/r2)|T⊥(x)|2 d||V ||x

≤ 6ρεrk+1. (5.8.18)

The estimates (15)-(18) are all of order no more than ε1/3r k, so as ε → 0,

lim
r→0

δV (χ2(r, ·)w) = 0.



Chapter 6

Regularity

In this chapter we investigate the regularity of integral varifolds moving by their mean curvature.
Because of the close relationship to parabolic partial differential equations, in particular the heat
equation, one would expect that such a varifold would be an infinitely differentiable manifold, except
perhaps on a set of measure zero where several sheets join. We shall prove in 6.13 that an integral
varifold moving by mean curvature has the desired regularity, but only under the hypothesis that the
varifold has unit density almost everywhere at almost all times. Indeed, it is not even known if a
stationary integral varifold, i.e. one with zero first variation, is regular when multiple densities are
permitted. The next section describes an example showing the problems stemming from multiple
densities. The existence theory of chapter 4 is not yet known to produce varifolds with unit density,
as remarked in 4.9. However, the physical surfaces that varifolds model always seem to have unit
density.

The idea of the proof is to show that a flat enough piece of a varifold moving by its mean
curvature can be represented as the graph of a Lipschitz function; the theory of parabolic partial
differential equations then quickly gives the infinite differentiability. To get the Lipschitz represen-
tation we show that surplus mass quickly disappears, that a mass deficit means holes which cause
the varifold to pop like a soap film, and that otherwise things tend to average out, analogous to the
diffusion of heat.

6.1 A multiple density example
We will construct an integral varifold V ∈ IV2(R3) with bounded mean curvature such that there is
a set A ∈ R3 with ||V ||A > 0 for which no element x of A has a neighborhood in which V can be
represented by the graph of a function1 even a multiple valued function.

It is well known that a catenoid has zero mean curvature. Having in mind a radius R > 0 and an
upper bound B for the mean curvature, one can take a catenoid with a very small central hole and
gradually bend the two sheets together away from the hole to get a varifold that has mean curvature
bounded by B that is a double density plane outside radius R, and has a hole in the middle.

To construct V , start with a double density plane in R3. Remove a disjoint collection of disks
whose union is dense in the plane yet leaves behind a set A of positive area. Replace each disk
with a section of bent catenoid with a hole so that the edges match smoothly. The resulting integral
varifold V has integral densities and bounded mean curvature, yet if x ∈ A, then V has holes in every
neighborhood of A and hence cannot be represented as the graph of a function.

This example is not a varifold moving by its mean curvature (the construction does not work for
zero mean curvature), and it would mostly instantaneously vanish under the construction given in
chapter 4, but it cannot yet be ruled out that some slowly changing version of V would be moving by
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its mean curvature. In any case, V does show the need for the unit density hypothesis for the method
used in this chapter. Note that in V the holes are surrounded by single density, and the bad points of
A are double density. By eliminating the double density, we eliminate the possibility of holes with
small mean curvature.

6.2 Regularity and square integrable mean curvature
It was shown in [AW1 chap. 8] under the unit density hypothesis that a k-dimensional varifold is
almost everywhere a Hölder continuously differentiable manifold if the mean curvature is locally
integrable to a power greater than k. We know from 3.4 that a varifold moving by its mean curvature
has locally square integrable mean curvature. Hence the above result gives some degree of regularity
only for k = 1.

To see what happens in higher dimensions, note that a k-sphere of radius A has mean curvature
k/R and hence total squared mean curvature of k(k + l)αRk−2. Thus for k > 2 one can scatter
infinitely many tiny spheres densely throughout space while keeping the mean curvature square
integrable. The support of the varifold would be the whole space, so there would be no chance of
regularity.

We can prove a regularity theorem for a varifold moving by its mean curvature because tiny
spheres and like things quickly wipe themselves out.

6.3 Clearing out
This lemma shows that a region with little mass in it quickly becomes empty.

Lemma: If 2 < m < ∞ then there exists c(m) > 0 such that if Vt is an integral varifold moving
by its mean curvature,

0 ≤ η < ∞, t0 ∈ R+, 0 < R0 < ∞, a ∈ Rn, (6.3.1)

φ(x) =

{
1−|x−a|2/R2

0 for 0 ≤ |α−a| ≤ R0

0 for |x−a| ≥ R0,
(6.3.2)

||Vt0 ||(φm) < ηRk
0, (6.3.3)

t1 > t0 + c(m)η2/(k+2m)R2
0 and (6.3.4)

R2
1 = R2

0−4k(t1− t0),

then
||Vt1 ||B(a,R1) = 0. (6.3.5)

Proof: We will use a fast shrinking test function, similar to the barrier function of 3.7. Mass
near the edge will be left behind, and mass in the interior must have high mean curvature, which will
wipe it out.

Because of the behavior of the various quantities under translation and homothety, it suffices to
prove the lemma with t0 = 0, R0 = 1, and a = 0. We shall let ε = 1/(k +2m).

For 0 < t < 1/4k, define R(t) and φ(t, ·) : Rn → R+ as follows:

R(t)2 = 1−4kt (6.3.6)

φ(t,x) =

{
R(t)2−|x|2 if 0 ≤ |x| ≤ R(t)
0 if |x| ≥ R(t).



Also let ξ(t) = ||Vt ||(φ,(t, ·)m) . In what follows, φ always refers to the time varying function just
defined, and ξ means ξ(t).

By 3.5,
D̄ ≤ δ(Vt ,φm)(h(Vt , ·))+ ||Vt ||(∂φm/∂t), (6.3.7)

so by 3.2(3) and the perpendicularity of mean curvature,

D̄ξ(t) ≤ −
∫
|h(Vt ,x)|2φn(t,x)d||Vt ||x

+
∫

h(Vt ,x)) ·Dφm(t,x)d||Vt ||x+ ||Vt ||(∂φm/∂t).
(6.3.8)

By the definition of mean curvature in 2.9,
∫

h(Vt ,x) ·Dφm(t,x)d||Vt ||x = −δV (Dφm) (6.3.9)

= −
∫

D2φm(t,x) ·SdVt(x,S)

= −
∫

[4m(m−1)φm−2(t,x)(x⊗ x)−2mφm−1(t,x)I] ·SdVt(x,S)

=
∫
−rm(m−1)φm−2(t,x)|S(x)|2−2kmφm−1(t,x)dVt(x,S).

Since ∂φm/∂t = −4kmφm−1, we have

D̄ξ(t) ≤ −
∫
|h(Vt ,x)|2φm(t,x)d||Vt ||x

−4m(m−1)
∫
|S(x)|2φm−2(t,x)dVt(x,S)

−2km
∫ ∫ m−1

(t,x)d||Vt ||x.

(6.3.10)

We wish to show D̄ξ(t) ≤ −cξ(t)1−2ε for a yet to be determined constant c. If not, then we will
have, for some t,

∫
|h(Vt ,x)|2φm(t,x)d||Vt ||x < cξ(t)1−2ε, (6.3.11)

∫
|S(x)|2φm−2(t,x)dVt(x,S) < cξ(t)1−2ε, and

∫
φm−1(t,x)d||Vt ||x < cξ(t)1−2ε.

It follows from the Besicovitch covering theorem 2.2 that there is a point b ∈ Rn such that
θk(||Vt ||,b) ≥ 1 and

∫

B(b,r)

|h(Vt ,x)|2φm(t,x)d||Vt ||x < 3cB(n)ξ−2ε
∫

B(b,r)

φm d||Vt ||, (6.3.12)

∫

B(b,r)

|S(x)|2φm−2(t,x)dVt(x,S) < 3cB(n)ξ−2ε
∫

B(b,r)

φm d||Vt ||, (6.3.13)

∫

B(b,r)

φm−1(t,x)d||Vt ||x < 3cB(n)ξ−2ε
∫

B(b,r)

φm d||Vt ||. (6.3.14)

for every 0 < r < ∞. From (14), as r → 0, we see that φ(t,b) > ξ2ε/3cB(n).



Now consider Vt φm. If g is a test vectorfield, then

δ(Vt φm)(g) =
∫

Dg(x) ·Sφm(t,x)dVt(x,S) (6.3.15)

=
∫

D(φm(t,x)g(x)) ·S−g(x)⊗Dφm(t,x) ·SdVt(x,S)

=
∫
−h(t,x) ·g(x)φm(t,x)−g(x) ·S(Dφm(t,x))dVt(x,S).

Therefore, since Dφm(t,x) = mφm−1(t,x)(−2x),

||δ(Vt φm)||B(b,r) ≤
∫

B(b,r)

|h(b,r)|h(Vt ,x)|φm(t,x)d||Vt ||x

+2m
∫

B(b,r)

|S(x)|φm−1(t,x)dV (x,S).
(6.3.16)

for all r > 0. Then by Schwartz’ inequality, (8), and (9),

||δ(Vt φm)||B(b,r) ≤
[ ∫

B(b,r)

|h(Vt ,x)|2φm(t,x)d||Vt ||x
∫

B(b,r)

φm(t,x)d||Vt ||x
]1/2

+2m
[ ∫

B(b,r)

|S(x)|2φm−2(t,x)dVt(x,S)
∫

B(b,r)

φm(t,x)d||Vt ||x
]1/2

≤ [3cB(n)]−1/2ξ−ε||Vt φm||B(b,r)

+2m[3cB(n)]1/2ξ−ε||Vt φm||B(b,r)

(6.3.17)

for all r > 0. Let r(b) = [3cB(n)]−1/2ξε/(2m + 1). Then the monotonicity lemma 4.17 and (17)
imply

||Vt φm||B(b,r(b)) ≥ e−1αr(b)kθk(||Vt φm||,b). (6.3.18)

By the density hypothesis in b, we clearly have

θk(||Vt φm||,b) ≥ φm(t,b) ≥ [ξ2ε/3cB(n)]m (6.3.19)

Hence (18) yields

||Vt φm||B(b,r(b)) ≥ e−1α[3cB(n)]−m−k/2(2m+1)−kξ(m+k/2)ε

≥ e−1α[3cB(n)]−m−k/2(2m+1)−kξ. (6.3.20)

Thus, if c is small enough, we have a contradiction to ξ = ||Vt φm||Rn.
Now that we have established

Dξ(t) ≤ −cξ(t)1−2ε (6.3.21)

we need only integrate to find that ξ(t) = 0 for t > ξ(0)2ε/2cε. Since ξ(0) ≤ η, we have established
the lemma with c(m) = 1/2cε.

6.4 Cylindrical growth rates
We will later be dealing with nearly flat varifolds and cylinders nearly perpendicular to them, and
we will need estimates of the rate of growth of the mass in a cylinder as a function of radius. Note



that we get both upper and lower bounds, as contrasted with the lower bounds of the spherical
monotonicity theorem 4.1.7.

Theorem: Suppose

T ∈ G(n,k), 0 < R1 < R2 < ∞, 0 ≤ α < ∞, 0 ≤ β < ∞, (6.4.1)
V ∈ IVk(Rn) and spt ||V ||∩C(T,0,R2) is compact, (6.4.2)

φ ∈ C3
0(Rn,R+), sptφ < C(T,0,1), φ(x) depends only on |T (x)|, (6.4.3)∫
|h(V,x)|2φ(x/r)d||V ||x < α2r k for R1 ≤ r ≤ R2, and (6.4.4)
∫
||S−T ||2φ(x/r)dV (x,S) < β2r k for R1 ≤ r ≤ R2. (6.4.5)

Then
∣∣R−k

2 ||V ||(φ(x/R2))−R−k
1 ||V ||(φ(x/R1))

∣∣ < kβ2 log(R2/R1)+αβ(R2−R1)+β2. (6.4.6)

Proof: We assume that a = 0. Recall that under our assumptions, (4) implies
||δV ||singC(T,0,R2) = 0.

For R1 ≤ r1 ≤ R2, 2.9 and the boundedness of spt ||V ||∩C(T,0,R2) guarantee the validity of

δV (φ(x/r)T (x)/r) = r−1
∫

T ·Sφ(x/r)dV (x,S)

+ r−1
∫

T (x)⊗Dφ(x/r) ·SdV (x,S).
(6.4.7)

Because φ(x) depends only on |T (x)|, we have

Dφ(x/R) = r(∂φ(x/r)/∂r)T (x). (6.4.8)

Using the perpendicularity of mean curvature, Schwarz’ inequality, (4) , and (5)

|δV (φ(x/r)T (x)/r)| =
∣∣∣∣
∫

h(V,x) ·S⊥(T (x)/r)φ(x/r)dV (x,S)
∣∣∣∣

≤
[∫

|h(V,x)|2φ(x,r)d||V ||x ·
∫
||S−T ||2φ(x/r)dV (x,S)

]1/2

≤ αβr k. (6.4.9)

It is not too hard to see that
∣∣T ·S− k|S(T (x))|2|T (x)|−2∣∣ ≤ k||S−T ||2 (6.4.10)

We use (8), (9), and (10) in (7) and rearrange:
∣∣∣∣(d/dr)

∫
|S(T (x))|2|T (x)|−2φ(x/r)dV (x,S)

− (k/r)
∫
|S(T (x))|2|T (x)|−2φ(x/r)dV (x,S)

∣∣∣∣
≤ r−1kβ2r k +αβr k.

(6.4.11)

Integrating this from R1 to R2 yields
∣∣r−k

∫
|S(T (x))|2|T (x)|−2φ(x/r)dV (x,S)|R2

R1

∣∣

≤ kβ2 log(R2/R1)+αβ(R2−R1).
(6.4.12)



Because
1−|S(T (x))|2|T (x)|−2 ≤ ||S−T ||2

we can combine (5) with (12) to get
∣∣R−k

2 ||V ||(φ(x/R2))−R−k
1 ||V ||(φ(x/R1))

∣∣ ≤ kβ2 log(R2/R1)+αβ(R2−R1)+β2.

6.5 Expanding holes
Here we show that, for a nearly flat varifold, thin spots will expand and thick spots will contract. For
later convenience, the spots expand or contract non-isotropically.

Lemma: If V is an integral varifold moving by its mean curvature, 0 ≤ µ < ∞, T ∈ G(n,k),
a ∈ Rn, 0 ≤ t1 < t2 < ∞, 0 < R1, R2 < 1, σ = (R2

2−R2
1)/(t2− t1), R(t)2 = R2

1 +σ(t− t1), φt(x) =
χT ([x/R(t)]−a),

∫

C(T,0,R(t))

|T⊥(x)|2 d||Vt ||x = µ2(t) ≤ µ2R(t)k+2 and (6.5.1)

α(t)2 =
∫
|h(Vt ,x)|2φ2

t (x)d||Vt ||x (6.5.2)

for t ∈ [t1, t2], then
δ(V,φ2

t )(h(Vt , ·)) < −α(t)2 +32ρ2R(t)−4µ(t)2 (6.5.3)

for all t ∈ [t1, t2] and there is M < ∞ depending on σ such that

R−k
2 ||Vt2||(φ2

t2) ≤ R−k
1 ||Vt1 ||(φ2

t1)+Mµ2| logR2/R1|. (6.5.4)

Proof: By 3.3 and because Dφt lies in T , we have, using Minkowski’s inequality,

δ(Vt ,φ2
t )(h(V, ·)) = −

∫
|h(Vt ,x)|2φ2

t (c)d||Vt ||x

+
∫

2h(Vt ,x)S⊥(Dφt(x))φt(x)dVt(x,S) (6.5.5)

≤ −α(t)2 +2
∫
|h(Vt ,x)| ||S−T || |Dφt(x)|φ(x)dV (x,S)

≤ −α(t)2 +(1/4)
∫
|h(Vt ,x)|2φ2

t (x)d||Vt ||x

+4
∫
||S−T ||2|Dφt(x)|2 dV (x,S).

A slight modification of the derivation of 5.5 yields
∫
|Dφt(x)|2||S−T ||2 dVt(x,S)

≤ 16
∫
|T⊥(x)|2|D|Dφt(x)| |2 d||Vt ||x

+2
[∫

|h(Vt ,x)|2φ2
t (x)d||Vt ||x ·

∫
|T⊥(x)|2|Dφt(x)|2φ−2

t (x)d||V ||x
]1/2

≤ 16ρ2R(t)−4µ(t)2 +2α(t)ρR(t)−2µ(t)

≤ α(t)2/4+32ρ2R(t)−4µ(t)2.

(6.5.6)



Combining (5) and (6) yields (3).
For (4), we need to find ||Vt ||(∂φ2

t /∂t). From the definition of φt , we get

∂φ2
t (x)/∂t = −2φt(x)Dφt(x) · x(R′(t)/R(t)) (6.5.7)

We also have

δVt(φ2
t (x)T (x)) = −

∫
h(Vt ,x) ·T (x)φ2

t (x)d||Vt ||x (6.5.8)

=
∫

2φt(x)Dφt(x)⊗T (x) ·S +φ2
t (x)T ·SdVt(x,S).

One finds from (8) that
∫
−2φt(x)Dφt(x) · xd||Vt ||x ≤ k||Vt ||(φ2

t )+2
∫

φt(x)Dφt(x) · (S(T (x))− x)dVt(x,S) (6.5.9)

+
∫

h(Vt ,x) ·T (x)φ2
t (x)d||Vt ||x+

∫
φ2(x)(T ·S− k)dVt(x,S).

By the properties of G(n,k) in 2.5, the perpendicularity of mean curvature, sptφt ⊂ C(T,0,R(t)),
Minkowski’s inequality,

∫
−2φt(x)Dφt(x) · xd||Vt ||x ≤ k||Vt ||(φ2

t )+2
∫

φt(x)|Dφt(x)| ||S−T ||2|T (x)|dVt(x,S)

+
∫
|h(Vt ,x)| ||S−T || |T (x)|φt(x)d||Vt ||x

+
∫

φt(x)||S−T ||2 dVt(x,S) (6.5.10)

≤ k||Vt ||(φ2
t )+(1+ |σ|+ k)

∫
φt(x)||S−T ||2 dVt(x,S)

+ |R(t)2/4σ|
∫
|h(Vt ,x)|2φ2

t (x)d||Vt ||x

+R(t)2
∫
|Dφt(x)|2||S−T ||2 dVt(x,S)

≤ k||Vt ||(φ2
t )+(k + |σ|+1)[2α(t)µ(t)+16ρ2R(t)−2µ(t)2]

+ |R(t)2α(t)2/4σ|+[2α(t)µ(t)+16ρ2R(t)−2µ(t)2]

≤ k||Vt ||(φ2
t )+ |R(t2α(t)2/2σ|+(k + |σ|+2)2|σ|R(t)−1µ(t)2

+(k + |σ|+2)16ρ2R(t)−2µ(t)2.

By 3.5, (3), (7), (10), and (1)

D̄||Vt ||(φ2
t ) ≤ δ(Vt ,φ2

t )(h(Vt ,x))+ ||Vt ||(∂φ2
t /∂t)

≤ −α(t)2/2+32ρ2µ2R(t)k−2 (6.5.11)

+ k(R′(t)/R(t))||Vt ||(φ2
t )+R′(t)R(t)α(t)2/2|σ|

+(R′(t)/R(t))[(k + |σ|+2)2|σ|+16(k + |σ|+2)ρ2]µ2.

Since σ = 2R′(t)R(t), we have

R(t)−kD̄||Vt ||(φ2
t )−kR′(t)R(t)−k−1||Vt ||(φ2

t )

≤ |R′(t)R(t)−1|[64ρ2/|σ|+(k + |σ|+2)2|σ|+16(k + |σ|+2)ρ2]µ2.
(6.5.12)

If we let M be the quantity in brackets, then integration of (12) gives

R(t2)−k||Vt2 ||(φ2
tt )−R(t1)−k||Vt1 ||(φ2

t1) ≤ Mµ2| logR2/R1|.



6.6 Popping soap films
The Lipschitz approximation theorem 5.4 shows that a nearly flat varifold either has nearly integral
density ratios or else has considerable first variation. Here we show that in a moving varifold, this
first variation quickly drives density ratios towards integers.

Lemma There are constants c10, c11 < ∞ such that if Vt is an integral varifold moving by its
mean curvature, spt ||Vt ||∩C(T,0,1) is bounded,

T ∈ G(n,k), 0 < t1 < t2 < ∞, 0 ≤ µ ≤ ∞, ν = 0,1, or 2, (6.6.1)∫

C(T,0,1)

|T⊥(x)|2 d||Vt ||x < µ2 for t1 ≤ t ≤ t2, and (6.6.2)

||Vt ||(χ2
T ) ≤ (ν+1)βββ− c10µ2 (6.6.3)

then for t1 + c11 < t < t2
||Vt ||(χ2

T ) ≤ νβββ+ c10µ2. (6.6.4)

Proof: Suppress the t variable temporarily. Define

α2 =
∫
|h(V,x)|2χ2

T (x)d||Vt ||x, (6.6.5)

β2 =
∫
||S−T ||2χ2

T (x)d||V ||x. (6.6.6)

Then the tilt lemma 5.5 and (2) say that

β2 ≤ 2αµ+16ρ2µ2. (6.6.7)

Suppose that ν = 0,1, or 2 and

(ν−1/2)βββ ≤ ||V ||(χ2
T ) ≤ (ν+1/2)βββ. (6.6.8)

We want to apply the Lipschitz approximation theorem 5.4 to B(0,1/9), so we must check (5.4.2).
Define r1 = 1+1/100k. Then, using a little geometry,

||V ||B(0,1/9) ≥ ||V ||C(T,0,r1/9) (6.6.9)

−||V ||{x ∈ C(T,0,r1/9) : |T⊥(x)| > (r1−1)1/2/9}
≥ ||V ||(χ2

T (r1/9, ·))−8100kµ2 and

||V ||B(0,1/3) ≤ ||V ||(χ2
T (r1/3), ·)). (6.6.10)

By the cylindrical, growth lemma 6.4 and (8),

(r2/9)−k||V ||(χ2
T (r1/9, ·)) ≥ ||V ||(χ2

T )−4kβ2−αβ (6.6.11)

≥ (ν−1/2)βββ−4kβ2−αβ and

(r1/3)−k||V ||(χ2
T (r1/3, ·)) ≤ (ν+1/2)βββ+4kβ2 +αβ. (6.6.12)

We may choose c10 large enough so that either (3) is satisfied trivially, or else

8100kµ2 < (α/8)9−k. (6.6.13)

Combining (9)-(13) with the properties of r1 and χ yields

9k||V ||B(0,1/9) ≥ (ν−5/8)α−4kβ2−αβ−α/8, (6.6.14)

3k||V ||B(0,1/3) ≤ (ν+5/8)α+8kβ2 +2αβ (6.6.15)



Therefore either
4kβ2 +αβ > α/8 (6.6.16)

or else we may apply 5.4 with c = 1/8. In the latter case, we deduce from 5.4 that there is P < ∞
such that ∣∣9k||V ||(χ2

T (1/9, ·))−νβββ
∣∣ ≤ P[α2k/(k−2) +β2 +µ2]. (6.6.17)

Recall from 5.4 that α2k/(k−2) is not present when k = 1,2. Using the cylindrical growth lemma 6.4
again, ∣∣9k||V ||(χ2

T (1/9, ·))−||V ||(χ2
T )

∣∣ ≤ 4kβ2 +αβ. (6.6.18)

Combining (7), (17), and (18), we see that there is M < ∞ such that
∣∣||V ||(χ2

T )−νβββ
∣∣ ≤ M sup{α2k/(k−2),αµ,µ2}. (6.6.19)

If c10 > M and we let E = ||V ||(χ2
T )−νβββ, then either (3) holds or

α2 ≥ inf{(|E|/M)(k−2)/k,E2/µ2M2}. (6.6.20)

If, instead, (16) holds, we infer using (7) that

(8k +4p)αµ+21/2α2/3µ1/2 +64ρ2µ2 ≥ α/8. (6.6.21)

If c10 is large enough, then either (3) holds or there is a constant δ > 0 such that (21) implies

α2 > δ. (6.6.22)

Then 6.6, (20), and (22) imply

δ(V,χ2
T )(h(V, ·)) ≤ −(1/4) inf{(|E|/M)(k−2)/k,E2/µ2M2,δ}. (6.6.23)

Restoring the variable t, we have

D̄E(t) ≤ −(1/4) inf{(|E(t)|/M)(k−2)/k,E(t)2/µ2M2,δ}. (6.6.24)

Thus the maximum length of time (8) can hold and (3) not hold is

∆t = sup{4kβββk/2M(k−2)/k,βββ/2,βββ/28}.
If E(t1) starts out greater than c10µ2, then we see that E(t) < c10µ2 for t > t1 + ∆t. If E(t1) ≤
−c10µ2, then E(t1 + ∆t) ≤ −βββ/2, and we can go through the above with ν− 1 instead of ν. Thus,
we take c11 = 2∆t.

Remark: This lemma can be done with ν ≥ 2, but it would require χ approximating the charac-
teristic function of B(0,1) better.

6.7 Truncated heat kernel
We would like to exploit the close similarity between heat transfer and motion by mean curvature to
show that a varifold smoothes itself out. To this end define a truncated kernel for the heat equation
as follows: Fix T ∈ G(u,k). For 0 < t < 1 and x ∈ Rn let

ψ(t,x) = σσσt−k/2χT (1/2,x)exp[−|T (x)|2/4t], (6.7.1)

where σσσ is chosen so that
∫

T ψ(t,x)dHkx = 1.
One way calculate that

|∂ψ/∂t−∆ψ| < (4ρ/t)(4πt)−k/2 exp[−1/16t]. (6.7.2)



6.8 Near diffusion
Here we show that instantaneously the height of a nearly flat moving varifold is diffusing like heat.
This is done by looking at the behavior of the varifold with respect to the truncated heat kernel just
defined. The estimate is in terms of an upper bound in one direction, but we will later look in all
directions to get a complete estimate.

Lemma: Suppose

V ∈ IVk(Rn), T = e1∧ . . .∧ ek ∈ G(n,k), (6.8.1)
m ∈ {k +1, . . . ,n}, τ.0, 0 < t < 1,

||V ||∩C(T,0,9) ⊂ {x ∈ Rn : τ < xm < 3τ}, (6.8.2)

θk(||V ||,x) = 1 for ||V || almost all x ∈ C(T,0,9), (6.8.3)
||V ||B(0,1) > α/2, and (6.8.4)

||V ||B(0,3) < (3α/2)3k, ||V ||C(T,0,9) < 2 ·9kα. (6.8.5)

Then there is c15 < ∞ such that
∫

Bk(0,1/3)

max{0,δ(V,xmψ(t,x− z))(h(V,x))−||V ||(xm∂ψ(t,x− z)/∂t)}dHkz

< c15 t−1[τ2 +
∫

B(0,8)

|h(V,x)|2 d||V ||x+ τt−k/2 exp(−1/16t)
]
.

(6.8.6)

Proof: By the convention of 3.2, the conclusion is trivial unless the first variation of V is entirely
represented by the mean curvature in B(0,8). In the latter case, for each z ∈ Bk(0, l/3), by 3.2,

δ(V,xmψ(t,x− z))(h(V,x)) = −
∫
|h(V,x)|2xmψ(t,x−a)d||V ||x

+
∫

xmh(V,x) ·S⊥(Dψ(t,x− z))dV (x,S) (6.8.7)

+
∫

h(V,x) ·S⊥(em)ψ(t,x− z)dV (x,S).

The first term on the right hand side of (7) is nonnegative and thus can be neglected for conclusien
(6). To estimate the second term, we use the fact that ψ depends only on |T (x)| and Minkowski’ s
inequality:

∣∣∣∣
∫

xmh(V,x) ·S⊥(Dψ(t,x− z))dV (x,S)
∣∣∣∣ ≤ 3τ

∫
|h(V,x)| |Dψ(t,x− z)| ||S−T |dV (x,S)

≤ 3τ
∫
|H(V,x)|2|Dψ(t,x− z)|d||V ||x (6.8.8)

+3τ
∫
||S−T ||2|Dψ(t,x− z)|dV (x,S).

We will return to (8) later.
The third term of (7) is the significant one. Dy the perpendicularity of mean curvature and the

definitions of 2.9,
∫

h(V,x) ·S⊥(em)ψ(t,x− z)dV (x,S) =
∫

h(V,x) · emψ(t,x− z)dV (x,S)

= −δV (em ·S(Dψ(t,x− z))dV (x,S). (6.8.9)



We next estimate tbis integral using the Lipschitz approximations f : T → T⊥ and F : T → Rn

constructed in 5.4 for ν = 1 and p = 2. Let X and Y be as in 5.4, and note that since ν = 1 we may
take Lip( f ) = 1. Estimating as in 5.6 (39)-(41),

∫
em ·S(Dψ(t,x− z))dV (x,S)−

∫
D fm(y) ·ψ(t,y− z)dHky

=
∫

B(0,1)∼X

em ·S(Dψ(t,x− z))dV (x,S)

+
∫

Y
em · image DF(y)(Dψ(t,y− z))|∧k DF(y)|−D fm(y) ·Dψ(t,y− z)dHk

+
∫

B(0,1)∼Y

D fm(y) ·Dψ(t,y− z)dHky

≤
∫

B(0,1) ∼ X ||S−T ||2|Dψ(t,x− z)|dV (x,S)

+ c
2

∫

X
||S−T ||2|Dψ(t,x− z)|dV (x,S)

+
∫

B(0,1)∼Y

|Dψ(t,y− z)|dHky,

(6.8.10)

where c
2

is from [AW1 8.14]. These error estimates are not simplified further because later they will
be integrated with respect to z.

Since f is Lipschitz and ψ has compact support, we can integrate by parts:
∫

T
D fm(y) ·Dψ(t,y− z)dHky = −

∫

T
fm(y)∆ψ(t,y− z)dHky. (6.8.11)

We then make a similar set of estimates to get back to the varifold:

−
∫

T
fm(y)∆ψ(t,y− z)dHy+

∫
xm∆ψ(t,x− z)d||V ||x

=
∫

B(0,1)∼X

xm∆ψ(t,y− x)d||V ||x

+
∫

Y
fm(y)∆ψ(t,y− z)[ |∧k DF(y)|−1]dHk

+
∫

Bk(0,1)∼Y

fm(y)∆ψ(t,y− z)dHk

≤ 3τ
∫

B(0,1) ∼ X |∆ψ(t,x− z)|d||V ||x

+3τc
2

∫

X
||S−T ||2|∆ψ(t,x− z)|dV (x,S)

+3τ
∫

B(0,1)∼Y

|∆ψ(t,y− z)|dHky.

(6.8.12)

∫
xm∆ψ(t,x− z)d||V ||x −

∫
xm∂ψ(t,x− z)/∂t d||V ||x

≤ 3τ|∆ψ−∂/∂t|||V ||C(T,0,1)

< 3τ(4ρ/t)σσσt−k/2 exp[−1/16t]α3k+1.

(6.8.13)



To facilitate integrating these estimates over z, define

ζ1(t,x) =
∫

Bk(0,1/3)

|Dψ(t,x− z)|dHkz and (6.8.14)

ζ2(t,x) =
∫

Bk(0,1/3)

|∆ψ(t,z− x)|dHkz. (6.8.15)

Therefore, adding (8), (10)-(13), and integrating over z,
∫

Bk(0,1/3)

max{0,δ(V,xmψ(t,x− z))(h(V,x))−||V ||(xm∂ψ(t,x− z)/∂t)}dHk

≤ 3τ
∫
|h(V,x)|2ζ1(t,x)d||V ||x

+
∫

B(0,1)∼X

ζ1(t,x)+3τζ2(t,x)d||V ||x

+ c
2

∫

X
||S−T ||2(ζ1(t,x)+3τζ2(t,x))dV (x,S)

+
∫

B(0,1)∼Y

ζ1(t,y)+3τζ2(t,y)dHk

+3τ(4ρ/t)σσσt−k/2 exp[−1/16t]α3k+1HkB(0,1/3).

(6.8.16)

One may compute that

sup{ζ1(t,x) : x ∈ Rn} ≤ kt−1/2 and (6.8.17)

sup{ζ2(t,x) : x ∈ Rn} < kt−1. (6.8.18)

Therefore (16) becomes
∫

B(0,1/3)

max(0,δ(V,xmψ(t,x− z))(h(V,x))−||V ||(xm∂ψ(t,x− z)/∂t)}dHk

≤ 3τkt−1/2
∫

B(0,1)

|h(V.x)|2 d||V ||x

+(kt−1/2 +3τkt−1
∫

B(0,1)×G(n,k)

||S−T ||2 dV (x,S)

+3τ(4ρ/t)σσσt−k/2 exp[−1/16t]3α2.

(6.8.19)

From the Lipchitz approximation theorem 5.4

||V ||(B(0,1) ∼ X)+Hk(B(0,1) ∼ Y )

< p
[ ∫

B(0,7)

|h(V,x)|2 d||V ||x+
∫

B(0,7)

||S−T ||2 dV (x,S)+
∫

B(0,7)

|T⊥(x)|2 d||V ||x
]
.

(6.8.20)



Also, from 5.5 (6) with φ = χT (8, ·) and Minkowski’s inequality,
∫

B(0,7)

||S−T ||2 dV (x,S) ≤ 16(ρ/8)2
∫

B(0,8)

|T⊥(x)|2 d||V ||x

+2
[∫

B(0,8)|h(V,x)|2 d||V ||x ·
∫

B(0,8)

|T⊥(x)|2 d||V ||s
]1/2

≤ ρ2τ2||V ||B(0,8)+
∫

B(0,8)

|h(V,x)|2 d||V ||x.

(6.8.21)

Since t < 1, we have t−1/2 < t−1, so we see from (5), (19), (20), and (21) that there is a constant
c15 < ∞ such that the conclusion of the lemma holds.

6.9 Flattening out
We apply the previous lemma to a moving varifold to show that if the varifold is reasonably flat
on a certain scale to start with, then later it is much flatter on a much smaller scale. This result is
somewhat like that of 5.6, but with time thrown in. However the proof is much different, relying
on the heat analogy rather than blowing up. In 5.6, the curvature had to be small compared to the
roughness, but here it is large, although we are able to put a bound on the ratio. This is the lemma
where the unit density hypothesis is critical.

We say that a varifold Vt moving by its mean curvature has unit density if θk(||Vt ||,x) = 1 for
||Vt || almost all x ∈ Rni for almost all t > 0.

Lemma: For any ε > 0 there exists θ(ε) > 0 such that if 0 < R < θ(ε) then there exist 0 <
η1 < 1 with the following property:

If Vt is a unit density integral varifold moving by its mean curvature,

T = e1∧ . . .ek ∈ G(n,k), 0 < τ < η1, 0 ≤ t0 < t1 < ∞; (6.9.1)

spt ||Vt ||∩C(T,0,9) ⊂ {x : |T⊥(x)| < τ}, (6.9.2)

βββ/2 ≤ ||V ||(χ2
T ) ≤ 3βββ/2, (6.9.3)

||Vt ||B(0,3) ≤ (3α/2)3k, ||Vt ||C(T,0,9) < 2 ·9kα, (6.9.4)

for almost all t ∈ [t0, t1];

c11 is as in 6.7 and t0 + c11 +1 < s0 < t1− c11−1; (6.9.5)

then there exists A ∈ A(n,k) such that if A = T ∗+a , T ∗ ∈ G(n,k), and a ∈ T⊥, then

||T ∗−T || ≤ 2τ, |a| < 2τ, (6.9.6)

spt ||Vt ||∩C(T ∗,a,R) ⊂ {x : dist(x,A) < R2−ετ}, (6.9.7)

βββ/2 ≤ (R/9)−k||Vt ||(χ2
T ∗(R/9, ·)) ≤ 3βββ/2, and (6.9.8)

||Vt ||B(a,R/3) ≤ (3α/2)(R/3)k, ||Vt ||C(T ∗,a,R) ≤ 2αRk (6.9.9)

for s0 ≤ t ≤ s0 +4(c11 +1)R2.
Proof: We may assume that (2)-(4) hold for all t ∈ [t0, t1] because we will be concerned with

integrals over t. Applying 6.6 with µ2 = 2ατ2, we see from (3) that

− c2
10µ2 < ||Vt ||(χ2

T )−βββ < c2
10µ2 (6.9.10)



for t0 + c11 < t < t1− c11. This means that there is a limited amount of mass to be lost in this time
interval, and hence a limited amount of mean curvature. In fact, defining

α(t)2 =
∫
|h(V,x)|2χ2

T (x)d||Vt ||x, (6.9.11)

by 6.5 (3) we must have
∫ s

s−1
−α(t)2/2+32ρ2µ2 dt ≥

∫ s

s−1
D̄||Vt ||(χ2

T )dt

> ||Vs||(χ2
T )−||Vs−1||(χ2

T ) (6.9.12)

> −2c10µ2.

Hence ∫ s

s−1
α(t)2 dt < 4(c10 +16ρ2)µ2, (6.9.13)

where the relationship of s to s0 will be defined at eq. (24).
To apply the previous lemma, 6.8, let p = τ1/2 and q ≈ 36rε− p, where q will be pinned down

later. Let y be a unit vector in T , and assume y = em. Define Wt = τττ(2τem)#Vt so that

spt ||W ||∩C(T,0,1) ⊂ {x : τ < xm < 3τ}. (6.9.14)

Adjusting for the different scale in 6.8, we infer from 3.6 and 6.10 that
∫

Bk(0,1/27)

max{0, ||Ws||(ψ(p,x− z))−||Ws−q||(ψ(p+q,x− z))}dHkz

≤
∫

B(0,1/27)

∫ s

s−q
max{0, D̄||Wt ||(ψ(p+ s− t,x− s))}dt dHkz

≤
∫ s

s−q

∫

B(0,1/27)

max{0,δ(Wt ,ψ(p+ s− t,x− z))(h(W,x))

+ ||Wt ||(∂ψ(p+ s− t,x− z)/∂t)}dHkzdt

≤
∫ s

s−q
c15(p+ s−q)−1[τ2 +α(t)2 + τ(p+ s− t)−k/2 exp(−1/16(p+ s− t))]dt,

(6.9.15)

where the scaling factor involved in applying 6.8 has been absorbed into c15. Using (13) and
p ≤ p+ s− t ≤ p+q, we have

∫

Bk(0,1/27)

max{0, ||Ws||(ψ(p,x− z))−||Ws−q||(ψ(p+q,x− z))}dHkz

≤ c15 p−1[1+4(c10 +16ρ2)]τ2 + c1532(p+q)(2−k)/2 exp(−1/16(p+q))τ.

(6.9.16)

Define an affine map L : T → R by

L(z) = ||Ws−q||(xmψ(p+q,x)− xm)− xmz ·Dψ(p+q,x)). (6.9.17)

To calculate how much W deviates above the plane xm = L(T (x)), we first compute how far
||Ws−q||(xmψ(p+q,x− z)) deviates. By Taylor’s formula with remainder,

ψ(p+q,x− z) =ψ(p+q,x)− z ·Dψ(p+q,x)+
∫ 1

0
(1−θ)(z⊗ z) ·D2ψ(p+q,x−θz)dθ.

(6.9.18)



One may calculate from 6.7 that for W ∈ T

Dψ(t,w) = [D2χ(1/2,w)−Dχ(1/2,w)⊗w/t−χ(1/2,w)T/2t

+χ(1/2,2)(w⊗w)/4t2](4πt)−k/2 exp(−|w|2/4t). (6.9.19)

Therefore,

||Ws−q||(xmψ(p+q,x− z))−L(z)

≤ 3τ
∫ 1

0
(1−ζ)||Ws−q||((z⊗ z) ·D2ψ(p+q,x−ζz))dζ

≤ 3τ|z|24ρ(4π(p+q))−k/2 exp[−1/16(p+q)]||Ws−q||C(T,0,1)

+3τ|z|2(2ρ/(p+q))(4π(p+q))−k/2 exp[−1/16(p+q)]||Ws−q||C(T,0,1)

+3τ
∫ 1

0
(1−ζ)(|z|2/2(p+q))·

∫
[1+(|T (x)|2 + |z|2)/(p+q)]ψ(p+q,x−ζz)d||Ws−q||xdζ.

(6.9.20)

We may find q with 36Rε < p+q < 72Rε and

α2(s−q) < 8(c10 +16ρ2)µ2/q. (6.9.21)

Then we may use the Lipschitz approximation theorem 5.4 to see that there is a constant c18 such
that when |T (z)|2 < p+q we have

∫
[1+(|T (x)|2 + |z|2)/(p+q)ψ(p+q,x−θz)d||Ws−q||x

≤ 3+ c18(p+q)−(k+2)/2τ2.

(6.9.22)

Hence, in case (19) holds,

||Ws−q||(xmψ(p+q,x− z))−L(z) ≤ 3τ(|z|2/2(pq))(3+ c18(p+q)−(k+2)/2τ2 (6.9.23)

< 6τ|z|2/(p+q) if c18(p+q)−(k+2)/2τ2 < 1.

We shall take τ small enough compared to R so that (23) does hold.
We have already seen that ||Ws−q||(xmψ(p + q,x− z)) approximates ||Ws−q||(xmψ(p,x− z)), so

let’s see how the graph of ||Ws||(xmψ(p,x− z)) as a function of z approximates Ws. This is where
the unit density hypothesis is critical.

By (13), we may find s with s0−2(c11 +1)R2 < s < s0 and

α(s)2 < 4(c10 +16ρ2)µ2R−2. (6.9.24)

Then letting f : T → T⊥ be the Lipschitz approximation constructed in 5.4, we see using (24), 5.5,
and (14) that there is a constant c19 such that

||Ws||{x ∈ C(T,0,1/27) : xm > L(T (x))+6τ|T (x)|2/(p+q)}
< Hk{z ∈ B(0,1/27) : fm(z) > L(z)+6τ|z|2/(p+q)}+ c19τ2R−2

(6.9.25)

and
∫

B(0,1/27)

∣∣||Ws||(xmψ(p,x− s))−
∫

T
fm(y)ψ(p,y− z)dHky

∣∣dHkz < c19τ2R−2. (6.9.26)



Estimate (26) is similar to those made in 6.8. Next, we may calculate
∫

B(0,1/27)

∣∣ fm(z)−
∫

T
fm(y)ψ(p,y− z)dHky

∣∣dHkz

≤
∫

B(0,1/27)

∣∣
∫ p

0

∫

T
∂ψ(t,y− z)/∂t fm(y)dHkydt

∣∣dHkz

≤
∫

B(0,1/27)

∣∣
∫ p

0

∫

T
∆ψ(t,y− z) fm(y)dHkydt

∣∣dHkz

+3τα2
∫ p

0
|∂ψ/∂t−∆ψ|dt

≤
∫

B(0,1/27)

∣∣
∫ p

0

∫

T
Dψ(t,y− z) ·D fm(y)dHkydt

∣∣dHkz

+ rτα2
∫ p

0
(4ρ/t)(4πt)−k/2 exp[−1/16t]dt

≤
∫ p

0

∫

T
ζ1(t,y)|D fm(y)|dHkydt + pτ where ζ1 is as in (6.8.14)

≤
∫ p

0

∫

T
kt−1/2|D fm(y)|dHk dt + pτ

≤ 2kp1/2
∫

B(0,1/27)

|D fm(y)|dHk + pτ

≤ c19 p1/2τR−1 + pτ.

(6.9.27)

Combining (25) , (27) , (26) , (16) , and (23) , we got
∫

B(0,1/27)

max{0,xm−L(T (x))−6τ|T (x)|2/(p+q)}d||Ws||x

≤
∫

B(0,1/27)

max{0, fm(z)−L(z)−6τ|z|2/(p+q)}dHkz+3τ · c19τ2R−2

≤
∫

B(0,1/27)

∣∣ fm(z)−
∫

T
fm(y)ψ(p,y− z)dHky

∣∣dHkz

+
∫

B(0,1/27)

∣∣
∫

T
fm(y)ψ(p,y− z)dHky−||Ws||(xmψ(p,x− z))

∣∣dHkz

+
∫

B(0,1/27)

max{0, ||Ws||(xmψ(p,x− z))−||Ws−q||(xmψ(p+q,x− z))}dHk

+
∫

B(0,1/27)

max{0, ||Ws−q||(xmψ(p,x− z))−L(z)−6τ|z|2/(p+q)}dHkz

+3c19τ3R−2

≤ c19 p1/2τR−1 + pτ+ c19τ2R−2 + c15[p−1[1+4(c10 +16ρ2)]τ2

+32(p+q)(2−k)/2 exp(−1/16(p+q))τ]+0+3c19τ3R−2.

(6.9.28)

For convenience, write this last quantity as δτ.



Now consider the ball B(b,R0) that has radius R0 = (p + q)/12τ and center b in the plane
spanned by T and em and is tangent to the graph of the paraboloid

G = {x ∈ Rn : xm = L(T (x))+6τ|T (x)|2/(p+q)} (6.9.29)

at the point (0,L(0)) ∈ Rk×Rn−k. Note that B(b,R0) is is entirely “above” G.
We want to apply the clearing out lemma 6.3 to B(b,R0). Letting

φ(x) =

{
1−|x−b|2/R2

0 for 0 ≤ |x−a| ≤ R0

0 for |x−a| ≥ R0,
(6.9.30)

note that

φ3(x) = R−6
0 (R0 + |x−b|)3(R0−|x−b|)3 (6.9.31)

≤ 8R−3
0 4τ2(R0−|x−b|) and

R0−|x−b| < xm−L(T (x))+6τ2|T (x)|2/(p+q) (6.9.32)

for x ∈ B(b,R0)∩spt ||V ||∩C(T,0,1). Even though it may be that (B(b,R0) is not entirely contained
in C(T,0,1), we can check that B(b,R0)∩{x : xm < 3τ} is in C(T,0,1). We may thus modify φ to
vanish outside C(T,0,1) without affecting the following calculations. From (28), (30), and (31) we
find that

||Ws||(φ3) ≤ 32R−3
0 δτ3 (6.9.33)

≤ 32(12/(p+q))k+3δτk+6Rk
0.

Hence, by the clearing-out lemma 6.3 with m = 3, we have

||Ws+∆s||B(b,R1) = 0 (6.9.34)

when ∆s ≥ ∆s0, where

∆s0 = c(3)[32(12/(p+q))k+3τ6+kδ]2/(k+6)[(p+q)/12τ]2

= c(3)322/(k+6)(12/(p+q))k/(k+6)δ2/(k+6), and
R0−R1 = 4k∆s/(R0 +R1) (6.9.35)

≥ 2k∆s/R0

≥ c(3)322/(k+6)(12/(p+q))k/(k+6)δ2/(k+6)τ.

We want to have τ, p, and q so that
∆s0 < R2 (6.9.36)

and
R0−R1 < R2−ετ/3 (6.9.37)

when
∆s < 8(c11 +1)R2. (6.9.38)

We also want for (23) that
τ2 < c−1

18 (p+q)(k+2)/2. (6.9.39)

With p = τ1/2 and p + q = 36Rε, we see that the only term of δ in (26) that does not contain a
positive power of τ is the exponential term. For Rε small enough, this term is small compared to the
relevant powers of R. Then r can be chosen small enough compared to R so that δ is small enough
that (36), (37), and (38) hold.



Now go back to Vt . Let the sought-for A ∈ A(n,k) be the graph of the affine map L : T → T⊥
defined by

L∗(z) = ||Vs−q||(T⊥(x)ψ(p+q,x)−T⊥(x)z ·Dψ(p+q,x)).

We see that (6) is easily satisfied. To check (7), note that

|L∗(z)+2τe−L(z)| ≤ 2τ
∣∣||Vs−q||(ψ(p+q,x))−1

∣∣+2τ|z|
∣∣||Vs−q||(Dψ(p+q,x))

∣∣.
We use the Lipschitz approximation lemma 5.4 as above to see that

||Vs−q||(ψ(p+q,x))−
∫

T
ψ(p−q,y)dHky < c18(p+q)−k/2τ2

and
∣∣||Vs−q||(Dψ(p+q,x))

∣∣−
∫

T
Dψ(p−q,y)dHky < c18(p+q)(−k−1)/2τ2

< R2−ετ/3

which shows that

|L∗(z)+2τem−L(z)| < 2c18(p+q)−k−1)/2τ2

< R2−ετ/3

for small τ.
Since em was in an arbitrary direction, and the choices made of times and such did not depend

on em, we put everything together to conclude that for x ∈ spt ||Vt || and for s+∆s0 < t < s+∆s0 +
8(c11 +1)R2

|T (x)−L∗(T (x))| ≤ 2[6τ|T (x)|2/(p+q)]+R0−R1 +R2−ετ/3.

Hence for |T (x)| < R,

|T (x)−L∗((x))| ≤ (R2−ετ+R2−ετ+R2−ετ)/3.

Finally, we verify (7) and (8). The various upper bounds clearly hold for V , and by the film
popping lemma 6.6 they remain true. If any of the lower bounds were violated at time t, then 6.6
would lead to violation of the lower bounds in the hypotheses at time t +2c11.

6.10 Infinite differentiability
Here we show that a nearly flat varifold becomes smooth after a little time. This is done by using the
previous theorem inductively. to get spt ||Vt || to be the graph of a Hölder continuously differentiable
function, and then using the near-diffusion lemma 6.8 again to get the function to have continuous
second derivatives and to be a solution of the non-parametric quasi-linear parabolic partial differen-
tial equation mentioned in 3.1. Standard P.D.E. theory then gives the infinite differentiability.

Theorem: There are constants c21 < ∞ and τ0 > 0 such that:
If V is a unit density integral varifold moving by its mean curvature,

T ∈ G(n,k), a ∈ Rn, 0 ≤ t0 < t1 < ∞, 0 < R < ∞; (6.10.1)
spt ||Vt ||∩B(a,R) ⊂ {x : dist(x,T +a) < τ0R}, (6.10.2)

βββ/2 ≤ (R/9)−k||Vt ||(χ2
T (R/9, ·)) ≤ 3βββ/2, (6.10.3)

||V − t||B(a,R/3) ≤ (2α/2)(R/3)k and (6.10.4)

||Vt ||C(T,a,R) < 2αRk



for all t ∈ [t0, t1], then

{(t,x) ∈ (t0 + c21R2, t1− c21R2)×U(a,R/3) : x ∈ spt ||Vt ||} (6.10.5)

is an infinitely differentiable manifold.
Proof: We may assume that T = e1∧ . . .∧ ek, a = 0, t0 = 0, and R = 3.
Let t > 0 be arbitrary, and let θ = θ(ε) be as in 6.9. Let y ∈ Bk(0,1). We can apply 6.9 to Vt

in C(T,y,1)∩B(0,3) because of the boundedness of spt ||V || given by (2). Applying 6.9 repeatedly,
with slightly tilted and ever smaller cylinders of radius θm around y, we find that if

(c11 +1)
∞

∑
m=0

(θm)2 < t < t2− (c11 +1)
∞

∑
m=0

(θm)2 (6.10.6)

then there are Am(t,y) ∈ A(n,k) and F(t,y) ∈ T−1(y) such that

spt ||Vs||∩C(T,y,θm)∩B(0,3) ⊂ {x : dist(x,Am(t,y)) < θ(2−ε)mτ0} (6.10.7)

for t−θ2m < s < t +θ2m, and

A∞(t,y) = lim
m→∞

Am(t,y) (6.10.8)

= Tank(spt ||Vt ||,F(t,y))+F(t,y).

We take c21 = (c11 + l)∑∞
m=0(θm)2.

Let f (t,y) = T⊥(F(t,y)). Clearly, (7) shows that f is differentiable in y and Hölder continuous
in t with exponent 1− ε/2.

Now we establish a little more differentiability for f . If A(t,y) = Tm(t,y)+am(t,y) with
Tm(t,y) ∈ G(n,k) and am(t,y) ∈ T−1(y), then by 6.9 (6),

||Tm(t,y)−Tm+1(t,y)|| < 2θm(1−ε)τ0, (6.10.9)

|am(t,y)−am+1(t,y)| < 2θ(2−ε)mτ0. (6.10.10)

Consider y1,y2 ∈ B(0,1). Suppose m ∈ N is such that

θm+1/2 ≤ |y1− y2| < θm/2. (6.10.11)

Then since (7) holds for y1 and y2

dist(x,Am(t,y)) < θ(2−ε)mτ0

dist(x,Am(t,y2)) < θ(2−ε)mτ0 (6.10.12)

for x ∈ spt ||Vt ||∩C(T1(y1 + y2)/2,θm/2)∩B(0,3). Hence

||Tm(t,y1)−Tm(t,y2)|| < θ(2−ε)mτ0/(θm/2)

< 2θ(1−ε)mτ0 (6.10.13)

< 4τ0θε−1|y1− y2|1−ε.

Then by (9),

||T∞(t,y1)−T∞(t,y2)|| < ||T∞(t,y1)−Tm(t,y1)||
|||Tm(t,y1)−Tm(t,y2)||+ ||Tm(t,y2)−T∞(t,y2)||

< 4τ0θ−1/2|y1− y2|1/2 +2τ0 ∑q = m∞θ(1−ε)q−1 (6.10.14)

< 4τ0θ−1/2|y1− y2|1/2 +4τ0θ(1−ε)m−1(1−θ1−ε)−1



Hence f (t,y) is Hölder continuously differentiable in y with Hölder exponent 1− ε.
Likewise, we can show that D f (t,y) is Hölder continuous in t. If y ∈ B(0,1),

9c21 < t2 < t3 < t1−9c21 and
θ2(m+1 < |t2− t3| < θ2m, (6.10.15)

then we may assume that Am(t2,y) = Am(t3,y), and therefore by (9) again

||T∞(t2,y)−T∞(t3,y)|| ≤ 4τ0θ(1−ε)m−1 (6.10.16)

≤ 4τ0θε−2|t2− t3|(1−ε)/2.

Now we re-examine the error estimates for near-diffusion as in 6.8 using our much improved
smoothness. Letting τ, p. q, m and z serve the same role as in 6.8, and noting that the Lipschitz
approximations are exact, we can extract from 6.8 (8), (10), (12), (13) the estimate

δ(V,xmψ(t,x− z))(h(V,x))−||V ||(xm∂ψ(t,x− z)/∂t)

≤ 3τ
∫
||S−T ||2|x− z|2/t2ψ(t,x− z)dV (x,S)

+ c
2

∫
||S−T ||2|Dψ(t,x− z)|dV (x,S)

+3τc
2

∫
||S−T ||2|∆ψ(t,x− z)|dV (x,S)

+3τ(4ρ/t)σσσt−k/2 exp[−1/16t]α3k+1.

(6.10.18)

Take a specific time t2 and a radius R > 0. Re-orient everything so that f (t2,0) = 0 and D f (t2,0) =
0. Let M be a general purpose constant. Then, from the first part of this theorem, we can take

xm ≤ M|t− t2|1−ε/2 +M|T (x)|2−ε and (6.10.19)

||S−T || < M|T (x)|−1 +M|t− t2|(1−ε)/2

for ||Vt || almost all (x,S) ∈ B(0,1)×G(n,k) and all t ∈ [t2, t2 +R2]. Thus

δ(Vt ,xmψ(tz−2+ t,x− z))(h(Vt ,x))−||vt ||(xm∂ψ(t2 + t,x− z)/∂t)

≤ M3[t1−3ε/2 + |z|2−2εt−1/2 + |z|4−3εt−1 + |z|2−εt−(1+ε)/2]

+ c
2
M2[ |z|2−2εt−1/2 + t1/2−ε]

+M3[t1−ε/2 + |z|2−εt−ε/2 + |z|4−3εt−1 + |z|2−εt−(1−ε)/2]

+M
[
t1−ε/2 + |z|2−ε]t−k/2−1 exp[−1/16t].

(6.10.20)

Integrating t from t2−q to t2, we find

||Vt2 ||(xmψ(p,x− z))−||Vt2−q||(xmψ(p+q),x− z))

≤ 2M3(p+q)2−3ε/2 + |z|2−2ε(p+q)1−ε/2 + |z|4−3ε| log p|+ |z|2−ε(p+q)(1−ε)/2]

+ c
2
M2[ |z|2−2ε(p+q)1/2 +(p+q)3/2−ε]

+M
[
(p+q)2−ε/2 + |z|2−ε(p+q)

]
(p+q)−k/2−1 exp[−1/16(p+q)].

(6.10.21)



Now take p+q = Rε and p = R3. Then for |z| < R

||Vt2 ||(xmψ(p,x− z))−||Vt2−q||(xmψ(p+q,x− z))

≤ 2M3[R3−9ε/4 +R7/2−11ε/4 +R4−3ε| logR3|+R11/4−7ε/4]

+ cM2[R11/4−2ε +R9/4−3ε/2]

+M
[
R3−3ε/4 +R7/2−ε]R−3k/4−3/2 exp[−1/16R3/2]

< R17/8/3

(6.10.22)

for ε = 1/100 and small enough R.
Next, we show that ||Vt2 ||(xmψ(p,x− z)) is a good approximation to fm(t2,z). By judicious

rewriting and using the estimates from (19), we find

||Vt2 ||(xmψ(p,x− z)) =
∫

T
fm(y)ψ(p,x− z)|∧k DF(y)|dHky

=
∫

T
fm(z)ψ(p,x− z)dHky

+
∫

T
(y− z) ·D fm(z)ψ(p,x− z)dHky (6.10.23)

+
∫

T
[ fm(y)− fm(z)− (y− z) ·D fm(z)]ψ(p,x− z)dHky

+
∫

T
fm(y)ψ(p,x− z)[ |∧k DF(y)|−1]dHky

> fm(z)+0−
∫

M|y− z|2−εψ(p,x− z)dHky

−
∫

fm(y)ψ(p,x− z)k||S−T ||2 dHky

≥ fm(z)−Mp1−ε/2− kM2[p2−3ε/2 + |z|2−2ε p1−ε/2 + |z|4−3ε + |z|2−ε p(1−ε)/2]

≥ fm(z)−MR3− kM2[R6−4ε/2 +R5−7ε/2 +R4−3ε +R7/2−5ε/2]

≥ fm(z)−R17/8/3

Next, the smoothness of ||Vt2 ||(xmψ(p,x− z)). Let H : T → R be defined by

H(z) = ||Vt2−q||
(
xm

[
ψ(p+q,x)− z ·Dψ(p+q,x)+(z⊗ z/2) ·D2ψ(p+q,x)

])
. (6.10.24)

by Taylor’s theorem with remainder

||Vt2−q||(xmψ(p+q,x− z))−H(z)

≤
∫ ∫ 1

ζ=0
(1/2)(1−ζ)2(z⊗ z⊗ z⊗ z) ·D3ψ(p+q,x−ζz)dζd||Vt2−q||x

≤ |z|3M(p+q)−3/2

≤ R3−3ε/2

< R17/8/3.

(6.10.25)

Thus, combining (22) , (23) , and (25)

fm(t2,z) < H(z)+R17/8 (6.10.26)

for |z| < R. Looking at things from the opposite direction, we likewise have

τ− fm(t2,z) < ||Vt2−q||(τ− xm)
[
ψ(p+q,x)− z ·Dψ(p+q,x)

+(z⊗ z/2) ·D2ψ(p+q,x)
]
+R17/8. (6.10.27)



Hence

fm(t2,z) > H(z)+ τ− τ||Vt2−q||(ψ(p+q,x))

+ τ||Vt2−q||
[
z ·Dψ(p+q,x)+(z⊗ z/2) ·D2ψ(p+q,x)

]
.

(6.10.28)

Using the estimates of (19) again,

||Vt2−q||(ψ(p+q,x)) <
∫

T
ψ(p+q,x)(1+ kD f (t2,x)2)dHkx

< 1+ kM2(p = q)1−ε, (6.10.29)

||Vt2−q||[z ·Dψ(p+q,x)] <

∫
x ·Dψ(p+q,x)dHkx

+
∫
|z| |Dψ(p+q,x)|kD f (t2,x)2 dHkx

< kM2|z|(p+q)1/2−ε, and

||Vt2−q||[(z⊗ z/2) ·D2ψ(p+q,x) < kM2|z|2(p+q)−ε.

Since t < R, we have for |z| < R

fm(t2,z) > H(z)−2R17/8. (6.10.30)

By applying Euclidean motions before and after the foregoing analysis, we may find such an H
for any direction, any center y ∈ Bk(0,1), any time t with c21 < t < t1− c21, and any small enough
R, i.e. we have H(t,y,R) : T → T⊥ such that

| f (t,z)−H(t,y,R)(z)| < R17/8 (6.10.31)

for |y− z| < R. As in 6.9, we find that limR→0 H(t,y,R) exists, so f (t,z) has second derivatives in z.
By comparing H(t,y1,R) and H(t,y2,R), we see that D2 f (t,z) is Hölder continuous with exponent
1/8.

If D f (t,0) = 0, then our estimates imply that

∂ f (t,0) = lim
q→ 0

||Vt ||(T⊥(x)∂ψ(q,x)/∂t)

= lim
q→0

||Vt ||(T⊥(x)∆ψ(q,x))

= ∆ f (t,0).

Again, this can be made to apply to any point in Bk(0,1), so f (t,z) is a classical solution to the non-
parametric quasi-linear parabolic partial differential equation discussed in 3.1 for c21 < t < t1−c21
and |z| < 1. It now follows from standard P.D.E. theory, for example [ES], that f (t,z) is infinitely
differentiable.

6.11 Local regularity
The smoothness theorem 6.10 requires an absolute bound on the distance of spt ||Vt || from a plane
T . However, what is available in practice is a bound on the integral of the square of the distance.
This lemma links the two.



Lemma: There are constants c22, c23, and η0 such that 0 < c22 < c23 and η0 > 0 and if ||Vt || is
a unit density integral varifold moving by its mean curvature,

T ∈ G(n,k), 0 ≤ t0 < ∞, 0 < R < ∞, (6.11.1)∫

B(0,R)

|T⊥(x)|2 d||Vt0 ||x < η0Rk+2, and (6.11.2)

α/2 < (R/2)−k||Vt ||B(0,R/2) < 3α/2 (6.11.3)

R−k||Vt ||B(0,R) < 3α/2.

then
{(t,x) ∈ (t0 + c22R2, t0 + c23R2)×U(0,R/2) : x ∈ spt ||Vt ||}

is an infinitely differentiable manifold.
Proof: We use the clearing out lemma 6.3. We may assume that T = e1 ∧ . . .∧ ek, t0 = 0, and

R = 4.
Suppose b ∈ Bk(0,2) and y ∈ T⊥+b with |y−b| = 1. Then B(y,1) ⊂ B(0,4). Define

φ(x) =

{
1−|y− x|2 for |y− x| ≤ 1
0 for |y− x| ≥ 1.

(6.11.4)

Since 1−|y− x|2 < 2|T⊥(x)| for x ∈ B(y,1), we have

||V0||(φ2) < 4
∫

B(y,1)
|T⊥(x)|2 d||V0||x < 4k+3η0. (6.11.5)

Hence, by lemma 6.3, for t > c(2)[4k+3η0]2/(k+4)

||Vt ||B(y,R(t)) = 0 for R(t)2 = 1−4kt. (6.11.6)

Now take t0 and c21 as in 6.10 and let

r = τ0/24kc21, ∆ = τ2
0/432k2c21, (6.11.7)

and choose η0 so that
c(2)[4k+3η0]2/k+4 = ∆t. (6.11.8)

Then for ∆t < t < 4∆t, it follows from (6) that, for all x ∈ spt ||Vt ||∩ (Bk(b,r)×B(0,1)),

y ·T⊥(x) < (1−R(t))+ r2 (6.11.9)

< 2k ·4∆t + r2 (6.11.10)

< τ2
0/54kc21 + rτ0/24kc21 (6.11.11)

< 7τ0r. (6.11.12)

Since the direction of y was arbitrary, we actually have |T⊥(x)| < τ0r. Also, by (7), we have ∆t >
c21r2. Lemma 6.5 and (3) ensure that 6.10 (4) holds where needed, so theorem 6.10 says that

{(t,x) ∈ (2∆t,3∆t)×Uk(k,r/2)×Bn−k(0,1) : x ∈ spt ||Vt ||}

is an infinitely differentiable manifold.
Note that r, ∆t, and η0 are fixed constants, independent of b and Vt , so the above analysis holds

for all b ∈ Bk(0,2).



6.12 Main regularity theorem
Finally, we show that Vt is almost everywhere an infinitely differentiable manifold, except when
there is a jump decrease in mass.

Theorem: Suppose Vt is a unit density integral varifold moving its mean curvature, t0 > 0, a ∈
Rn, 0 < R0 < ∞, and limt↑t0 ||Vt ||(χ2(R0,x−a)) = ||Vt0 ||(χ2(R0,x−a)). Then there is a closed set
B ⊂ Rn with Hk(B) = 0 such that if x0 ∈ B(a,R/2) ∼ B, then spt ||Vt || is an infinitely differentiable
manifold in some neighborhood of (t0,x0) in R+×Rn.

Remark: Saying “for all x /∈ B with Hk(B) = 0” is stronger than saying “for ||Vt0 || almost all
x.” Indeed, it is possible to have a unit density integral varifold W such that spt ||W || is a smooth
manifold in some neighborhood of ||W || almost every point, yet not in any neighborhood of a very
large set of points. An example may be constructed by taking W to be an infinite collection of
tiny k-spheres that stay away from each other, yet the closure of the set of spheres has positive Hk

measure.
Proof: We may suppose that R0 = 1 and a = 0.
If B is the set of points where regularity fails, then B is the complement of a union of open balls,

and hence closed. By the unit density hypothesis and [FH 2.10.19], for almost all x ∈ Rn either
θk(||Vt0 ||,x) = 1 and Tank(||Vt0 ||,x) ∈ G(n,k), or θk(||Vt0 ||,x) = 0. We shall show that in the first
case the local regularity theorem 6.11. can be applied shortly before t0 axcopt on a set B1 with
Hk(B1) = 0. In the second case, the clearing out lemma 6.3 will show that a neighborhood of (t0,x)
is empty, except for a set B2 with Hk(B2) = 0.

Let B1 be the set of x ∈ B(0, l/2) such that θk(||Vt0 ||,x) = 1 and Tank(||Vt0 ||,x) ∈ G(n,k), but
spt ||Vt || is not a smooth manifold in any neighborhood of (t0,x). Consider some b ∈ B1, and let
T = Tank(||Vt0 ||,b). Pick R(b) > 0 so that

∫
|T⊥(x)|2χ2(R,x−b)d||Vt0 ||x < η0Rk+22−k−3 and (6.12.1)

βββ−1/8 < R−k
∫

χ2(R,x−b)d||Vt0 ||x < βββ+1/8 (6.12.2)

for 0 < R < R(b). In order for 6.11 not to provide a nice neighborhood of (t0,b), one of the follow-
ing must hold for every t and R with t = t−c21R2/2:

∫
|T⊥(x)|2χ2(R,x−b)d||Vt ||x ≥ η0Rk+22−k−2, (6.12.3)

R−k
∫

χ2(R,x−b)d||Vt ||x < βββ−1/8, or (6.12.4)

R−k
∫

χ2(R,x−b)d||Vt ||x > βββ+1/8. (6.12.5)

Let B3(t), B4(t), and B5(t) be the subsets of B1 where (3), (4), or (5), respectively, fail at time t.
Define

α2
b(t) =

∫

B

(b,R)|h(Vt ,x)|2 d||Vt ||x and (6.12.6)

µ2
b(t) =

∫
|T⊥(x)|2χ2(R,x−b)d||Vt ||x. (6.12.7)

We shall estimate how fast various integrals can change in terms of α and µ.
Let χ̃ ∈ C3

0(Rn,R+) be like χ in depending only on |x|, having spt χ̃ ⊂ B(0,1), and χ̃(x) = 1
for x ∈ B(0,3/4), but also suppose χ̃(x) ≤ χ(x) and |Dχ̃(x)|, ||D2χ̃(x)|| < M χ(x) for all x for some
constant M.



Let us look at B3(t1) for a particular time t1. Consider a point b ∈ B3(t2). In going from (3)
holding at t1 to (1) holding at t0, something must happen to the excess |T⊥(z)|. First, we find out
what happens if the excess tries eaving towards T .

Let R be the above-mentioned radius corresponding to t1. Define functions ζb, ζ1b, ζ2b ∈
C3

0(Rn,R+) by

ζ1b(x) = χ̃2(R,x−b)(1−|T⊥(x−b)|2/R2),

ζ2b(x) = χ2(R,x−b)|T⊥(x−b)|2/R2, and (6.12.8)
ζb(x) = ζ1b(x)+ζ2b(x0).

These functions will be used to detect the motion.
Suppose t1 < t < t0. Using 3.3 and Schwarz’ inequality,

δ(Vt ,ζ1)(h(Vt , ·)) = −
∫
|H(Vt ,x)|2ζ1(x)d||Vt ||x +

∫
h(Vt ,x) ·S⊥(Dζ1(x))dVt(x,S)

≤
∫

h(Vt ,x) ·S⊥
[
2χ̃(R,x)Dχ̃(R,x)(1−|T⊥(x)|2/R2)

−2χ̃2(R,x)T⊥(x)R2]dVt(x,S)

≤
∫

2|h(Vt ,x)|
[
χ̃(R,x)|S⊥(Dχ̃(R,x))|+ χ̃2(R,x)|T⊥(x)|R−2]dVt(x,S)

≤ 4
[∫

|h(Vt ,x)|2χ̃2(R,x)d||Vt ||x

−
∫
|S⊥(Dχ̃(R,x))|2 +R−4χ̃2(R,x)|T⊥(x)|2 dVt(x,S)

]1/2

(6.12.9)

From the properties of χ̃,

|S⊥(Dχ̃(R,x))| ≤ |T⊥(Dχ̃(R,x))|+ ||S⊥−T⊥|| |Dχ̃(R,x)|
≤ MR−2|T⊥(x)|χ(R,x)+ ||S−T || |Dχ̃(R,x)|,

so, using 5.4 with φ = |Dχ̃(R,x)|,
∫
|S⊥(Dχ̃(R,x))|2 dVt(x,S)

≤ 2M2R−4
∫
|T⊥(x)|2χ2(R,x)d||Vt ||x

+2
∫
||S−T ||2Dχ̃(R,x)|2 dVt(x,S) (6.12.10)

≤ 2M2R−4µ2
b(t)+32

∫
|D|Dχ̃(R,x)||2|T⊥(x)|2 d||Vt ||x

+4
[∫

|h(Vt ,x)|2|Dχ̃(R,x)|2 d||Vt ||x
∫
|Dχ̃(R,x)|2|T⊥(x)|2 d||Vt ||x

]1/2

≤ 2M2R−4µ2
0(t)+32M2R−4µ2

b(t)+4M2R−2αb(t)µ0(t)

≤ 34M2R−4µ2
b(t)+4M2R−2αb(t)µb(t).

Thus
δ(Vt ,ζ1)(h(Vt , ·)) ≤ 24MR−2αb(t)µb(t)+8MR−1αb(t)3/2µb(t)1/2. (6.12.11)



Next, we make for imminent use the estimate
∫
|h(Vt ,x)| |Dζ2(x)|d||Vt ||x ≤

∫
|h(Vt ,x)|2R−2[χ(R,x)|Dχ(x/R)| |T⊥(x)|2

+χ2(R,x)|T⊥(x)|]d||Vt ||x

≤ 2
{∫

|h(Vt ,x)|2|Dχ(R,x)|2|T⊥(x)|2R−2 d||Vt ||x

·
∫

χ2(R,x)|T⊥(x)|2 d||Vt ||x
}

(6.12.14)

+2R−2
[∫

|h(Vt ,x)|2χ2(R,x)d||Vt ||x

·
∫

χ2(R,x)|T⊥(x)|2 d||Vt ||x
]

≤ 4MR−2αb(t)µb(t).

Now suppose B is a collection of disjoint balls B(b,R) with b ∈ B3(t1). By 3.3, for t1 < t < t0

δ
(
Vt ,χ2−∑

B

ζb
)
(h(Vt , ·)) ≤ −

∫
|h(Vt ,x)|2

(
χ2(x)−∑

B

ζb(x)
)

d||Vt ||x

+
∫
|h(Vt ,x)|2χ(x)|Dχ(x)|d||Vt ||x

+∑
B

∫
|h(Vt ,x)| |S⊥(Dζ1(x))|dVt(x,S) (6.12.15)

+∑
B

∫
|h(Vt ,x)| |S(Dζ2(x))|dVt(x,S).

By Minkowski’s inequality,
∫
|h(Vt ,x)|2χ(x)|Dχ(x)|d||Vt ||x

≤
∫

sptDχ

|h(Vt ,x)|2χ2(x)d||Vt ||x+
∫
|Dχ(x)|2 d||Vt ||x.

Since sptζb∩ sptDχ = /0 for each b in the sum, the first two terms on the right hand side of (15) are
dominated by

∫ |Dχ(x)|2 d||Vt ||x. The third term is what was actually estimated in (9)-(12), and the
fourth term is taken care of by (14). Thus (15) becomes

δ(Vt ,χ2−∑
B

ζb)(h(Vt , ·)) ≤
∫
|Dχ(x)|2 d||Vt ||x

∑
B

[
28MR−2αb(t)µb(t)+8MR−1αb(t)3/2µ0(t)1/2].

(6.12.16)



From (12) and (16) we may calculate that

||Vt0 ||(χ2)−||Vt∗ ||(χ2) ≤ ||Vt0 ||(∑
B

δ1b)−||Vt∗ ||(∑
B

δ1b)

+
∫ t0

t∗
δ(Vt ,∑

B

ζ2b)(h(Vt , ·))dt (6.12.17)

+
∫ t0

t∗
δ(Vt ,χ2−∑

B

ζb)h(Vt , ·))dt

≤ R−2 ∑
B

[
µ2

b(t0)−µ2
b(t∗)

]
+

∫ t0

t∗
||VT ||(‖Dχ|2)dt

+∑
B

∫ t0

t∗

[
52MR−2αb(t)µb(t)+16MR−1αb(t)3/2µ0(t)1/2]dt.

Now we choose B and t∗ to use in the above. Let B∗3(t1) be the set of points b ∈ B3(t2) such that

||Vt0 ||B(b,R) < (4/3)αRk. (6.12.18)

If limsupt1↑t0 Hk(B3(t1)) > 0, then the unit density hypothesis implies that there are t1 arbitrarily
close to t0 such that

Hk(B∗3(t1)) > (3/4)Hk(B3(t1)). (6.12.19)

By the Besicovitch covering theorem 2.2, we can find a disjoint collection B of balls B(b,R) with
b ∈ B3(t1) and

||Vt0 ||(∪B) ≥ B(n)−1||Vt0 ||B∗3(t1). (6.12.20)

We infer from (18), (19), (20). and unit density that

∑
B

αRk > (3/4)∑
B

||Vt0 ||B(b,R)

> (3/4B(n))||Vt0 ||B∗3(t1) (6.12.21)

> (3/4B(n))Hk(B∗3(t1))

> (1/2B(n))Hk(B∗3(t1)).

Now let t∗ be a value of t for which ∑B µ2
b(t) is nearly maximal for t1 ≤ t ≤ t0. From (1), (3), and

(21) we see that We may assume that

∑
B

[µ2
b(t∗)−µ2

0(t0)] ≥ (1/2R2)∑
B

µ2
b(t∗)

≥ ∑
B

η0Rk2−k−3 (6.12.22)

≥ 2−k−4B(n)−1η0H
k(B3(t1)).

Note that this last estimate does not depend explicitly on R. Suppose that

limsup
t1↑t0

Hk(B3(t1)) > 0.

By hypothesis, limt1↑t0 ||Vt ||(χ2) = ||Vt0 ||(χ2), and barrier functions may be used to show that



||Vt ||(|Dχ|2) is bounded. Thus (22) shows that we may assume that t1 is such that (17) implies

R−2 ∑
B

[
µ2

b(t∗)−µ2
b(t0)

] ≤ 100M∑
B

∫ t∗

t0

[
R−2αb(t)µb(t)+R−1αb(t)3/2µ0(t)1/2]dt

≤ 100MR−2 ∑
B

2µb(t∗)(t0− t∗)1/2
[∫ t0

t∗
α2

b(t)dt
]1/2

+100MR−2 ∑
B

2µb(t∗)1/2(t0− t∗)1/4
[∫ t0

t∗
α2

b(t)dt
]3/4

.

Using (22), t0− t∗ < c21R2 and Schwarz’ inequality on the sums, we get

(1/400M)∑
B

µ2
b(t∗) ≤ c1/2

21 R−1[∑
B

µ2
b(t∗)

]1/2
[
∑
B

∫ t0

t∗
α2

b(t)dt
]1/2

+ c1/4
21 R−1/2[∑

B

µ2
b(t∗)

]1/4
[
∑
B

∫ t0

t∗
α2

b(t)dt
]3/4

This implies that

∑
B

∫ t0

t∗
α2

b(t)dt ≥ ∑
B

µ2
b(t∗)/4002M2c21R2. (6.12.23)

Thus, using (22),

∑
B

∫ t0

t∗
α2

b(t)dt > 2−k−22B(n)−1M−2c−1
21 η0H

k(B3(t1)). (6.12.24)

But now we can easily calculate from 3.3 and Minkowski’s inequality that

||Vt0 ||(χ2)−||Vt∗ ||(χ2) ≤
∫ t0

t∗
δ(Tt ,ψ)(h(Vt , ·))dt

≤ −(1/2)
∫ t0

t∗

∫
|h(Vt ,x)|2χ2(x)d||Vt ||xdt (6.12.25)

+ t
∫ t0

t∗
||Vt ||(|Dχ(x)|2)dt.

We know ||Vt ||(|Dχ(x)|2) is bounded, so (24) implies

||Vt∗ ||(χ2) ≤ ||Vt0 ||(χ2)−2−k−23B(n)−1M−2c−1
21 η0H

k(B3(R)). (6.12.26)

By hypothesis, limt→t0 ||Vt ||(χ2) = ||V0||(χ2), so we finally have

limsup
t1↑t0

Hk(B3(t1)) = 0. (6.12.27)

If B4(t1) and B5(t1) are the subsets of B1 where (4) or (5) fail respectively, then similar (but
simpler) analyses show that

limsup
t1→t0

Hk(B4(t1)) = 0 and (6.12.28)

limsup
t1↑t0

Hk(B5(t1)) = 0. (6.12.29)

Since B1 = B3(t1)∪B4(t1)∪B5(t1) for any t1, clearly we must have Hk(B1) = 0.



For the second part of the proof, let B2 be the set of points x ∈ B(0, l/2) with θ(||Vt0 ||,x) = 0,
but for every R > 0 having ||Vt ||B(x,R) > 0 for some t ∈ [t0−R2, t0 + R2]. Let c(3) be as in the
clearing out lemma 6.3, and define

φ(x) =

{
1−|x|2 for |x| ≤ 1,

0 for |x| ≥ 1.
(6.12.30)

Choose n > 0 so that
4kc(3)η2/(k+6) < 1/2. (6.12.31)

Let B6(R) be the set of b ∈ B2 such that
∫

φ3((x−b)/R)d||Vt0 ||x < (η/2)Rk. (6.12.32)

Let t1 = t0−R2/6k. Then the clearing out lemma implies that for b ∈ B2

∫
φ3((x−b)/R)d||Vt1 ||x ≥ ηRk. (6.12.33)

It follows from the definition of Hausdorff measure and the Besicovitch covering theorem that
there is a collection B of disjoint balls B(b,R) with b ∈ Bb(R) and

∑
b

αRk > (1/2B(n))Hk(B6(R)). (6.12.34)

Equations (32) and (33) show that mass is being lost from ∪B, and we next show that it can’t be
going elsewhere. We estimate for t1 < t < t0:

δ(Vt ,χ2−∑
b

φ3((·−b)/R))(h(V, ·))

≤ −
∫
|h(Vt ,x)|2(χ2(x)−∑

b
φ3((x−b)/R))d||Vt ||x

+
∫
|h(Vt ,x)|2χ(x)|Dχ(x)|d||Vt ||x (6.12.35)

+∑
b

∫
|h(Vt ,x)|3φ2((x−b)/R)|Dφ((x−b)/R)|d||Vt ||x

≤
∫
|Dχ(x)|2 d||Vt ||x

+3∑
b

[∫
|h(Vt ,x)|2|Dφ((x−b)/R)|2φ((x−b)/R)d||Vt ||x

·
∫

φ3((x−b)/R)d||Vt ||x
]1/2

.

Define

α2
b(t) =

∫

B(b,R)

|h(Vt ,x)|2 d||Vt ||x, (6.12.36)

β2
b(t) =

∫
φ3((x−b)/R)d||Vt ||x. (6.12.37)

Thus
δ(Vt ,ψ−∑

k
φ3(·−b)/R))(h(Vt , ·)) ≤ ||Vt ||(|Dχ|2)+6R−1αb(t)βb(t). (6.12.38)



Let t∗ be a time for which ∑b β2
b(t) has nearly its maximum value between t1 and t0. Integrating this

from t1 to and using (32) and (33) we get

||Vt0 ||(ψ)−||Vt∗ ||(ψ) ≤ ∑
b

β2
b(t0)−β2

0(t∗)

+
∫ t0

t∗
||Vt ||(|Dχ|2)dt +6R−1 ∑

b

∫ t0

t∗
αb(t)βb(t)dt.

(6.12.39)

Again we may neglect the terms explicitly containing χ and Dχ. By Minkowski’s inequality, (32),
(33) and the definitions of t∗, (39) then becomes

[
∑
b

βb(t∗)2(t0− t∗)
]1/2[

∑
b

∫ t0

t∗
α2

b(t)dt
]1/2

> ∑
b

(β2
b(t∗)−β2

b(t0))R/6

> (R/12)∑
b

β2
b(t∗). (6.12.40)

Hence

∑
b

∫ t0

t∗
α2

b(t)dt > (1/12)∑
b

β2
b(t∗) (6.12.41)

> (η/24B(n)αHk(B6(R)).

As before, this implies
limsup

R→0
B6(R) = 0.

Since every b ∈ B2 is in B6(R) for small enough R, this implies Hk(B2) = 0.



Appendix A

Grain growth in metals

The purposes of this appendix are to describe a physical system involving motion by mean curvature
and to correct a calculation made in [RCD].

The physical system is the motion of grain boundaries in an annealing piece of metal such as
aluminum. The lowest energy state of aluminum at a temperature just below its melting point is a
certain crystalline lattice. However, when a sample of molten aluminum solidifies, crystallization
may start in many different places with random orientations, and the solid metal will be composed
of many small regions, each with uniform crystal structure. Each connected such region is called a
grain.

An atom on a grain boundary is only partially surrounded by a nice lattice; therefore it is in a
higher energy state than an atom in the interior of a grain. This extra energy may be thought of as
endowing the grain boundary with a surface tension. The size of this surface tension should be about
the same order of magnitude as the surface tension of the liquid metal [CH]. The surface tension of
aluminum at its melting point is 860 ergs/cm2 [HCP p. F-19] (which may be compared to that of
water at 18◦C, which is 73 ergs/cm2 [HCP p. F-33]). It would be expected that the surface tension of
a grain boundary would depend on the orientations of the grains bounded. However, experimentaHy
the dependence seems small except for small differences in orientation [SC1].

It is observed that if pure aluminum with many small grains is annealed, then the grain bound-
aries move with velocities proportional to their mean curvatures [RCD]. On an atomic scale, the
motion may be viewed as due to the probability of an atom at a grain boundary finding itself, as a
result of random thermal motion, on one or another of the adjacent lattices. Clearly the probabil-
ity of landing in a concave lattice is greater than landing in a convex one, and the measure of the
difference of probabilities in general is the mean curvature [SC2].

Assuming the surface tension independent of orientation, then by [TJ] one should find through-
out the motion that three boundaries meet at 120◦ angles in a line and four boundaries meet at ap-
proximately 109◦ angles at a point. In one sample of aluminum, over 3000 junctions were examined
without finding any other configurations [RCD].

Since an arrangement of grains such that the boundaries have no mean curvature, for example,
a stacking of Kelvin’s tetrakaidecahedron [K). is extremely unlikely, boundary motion continues
until the sample consists of a few large grains. Relatively larger grains tend to have more faces than
smaller grains and thus the average face on a large grain tends to be more concave. Therefore large
grains grow at the expense of small ones. The dividing line between growing and shrinking seems
to be at about 14 faces [SC2]. The general distribution of shapes seems to be independent of average
grain size [RCD].

The assumption that the distribution of grain shapes is independent of time enables one to esti-
mate the rate of growth as a function of several physical constants. This calculation was unsuccess-
fully attempted in [RCD]. Suppose we start at time t = 0 with a sample whose average grain size is
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assumed ideally to be zero. Define
γ = surface tension of boundary,

S(t) = average boundary area par unit volume,
N(t) = average number of grains per unit volume,
H(t) = average magnitude of the mean curvature,

µ = mobility of the boundary; i.e., the velocity is mobility times pressure,
σ = H(t)S2(t)/N(t),
k = S(t)N(t)−1/3,
θ = ratio of the volume of the average grain to the volume swept out by the

boundary during the disappearance of an average grain.
Note that σ, k, and θ are dimensionless and thus constant in time because of the assumption of

the constancy of the distribution of grain shapes. The average pressure on the boundaries is

P(t) = γH(t).

The rate at which volume is being swept out per unit volume is

µP(t)S(t) = µγH(t)S(t).

The rate of grain loss per unit volume is

dN(t)/dt = −µγH(t)S(t)θN(t).

Using the constants σ and k to eliminate H(t) and S(t) we get

dN(t)/dt = −µγθσk−1N(t)−5/3 (A.1)

which has the solution
N(t) = ((2/3)µγθσk−2t)−3/2

which gives the expected power law dependence of volume on time [SC2]. We can derive the value
of θ from the principle of conservation of energy: the work done against “friction” by the moving
boundaries must be less than or equal to the energy released by the shrinking of the area of the
boundaries. By the work done against “friction” I mean force times speed, or pressure times area
times speed. Thus

µγ2H(t)2S(t) ≤ −γdS(t)/dt.

Using σ and k again, we have

µγ2σ2k−3N(t) ≤ −γk dN(t)1/3/dt,

and using (1) for dN(t)/dt yields
θ−1 ≤ k3/3σ.

From experimental data presented in [RCD fig. 4.11] we get σ ≈ 1.33 and k3 ≈ 10, so θ−1 ≤ 2.5.
It seems entirely reasonable for boundaries to sweep out 2.5 grain volumes during a disappearance.



Appendix B

Curves in R2

The simplest non-trivial class of varifolds moving by mean curvature is the class of smooth closed
curves in R2. Even here, exact solutions are hard to find, so we will be content with deriving some
general properties which give a feeling for the effects of motion by mean curvature.

Because we are dealing only with times when a curve is smooth, we will use the mapping
approach discussed in 3.1. Suppose t1 ∈ R+,

F : [0, t1]×S1 → R2

is snooth, and F(t, ·) is non-self-intersecting closed curve for each t ∈ [0, t1].
Define the metric g; [0, t1]×S1 → R+ by

g(t,θ) = |∂F(t,θ)/∂θ|,
the tangent angle β : [θ, t1]×S1 → R+ by

tanβ(t,θ) = (e2 ·∂F(t,θ)/∂θ)/(e1 ·∂F(t,θ)/∂θ)

and the oriented curvature K : [0, t1] → R by

K(t,θ) = g(t,θ)−1∂β(t,θ)/∂θ.

If F(t, ·) is moving by its mean curvature in the mapping sense, then it can be derived that for all
(t,θ) ∈ [0, t1]×S1

∂g(t,θ)/∂t = −g(t,θ)K(t,θ)2, (B.1)

∂K(t,θ)/∂t = g(t,θ)−2∂2K(t,θ)/∂θ2 +K(t,θ)3. (B.2)

Suppose K(t,θ) is positive when the mean curvature vector points toward the inside of the curve.
Proposition 1: The area enclosed by the curve F(t, ·) decreases at the rate of 2π for all t ∈ [0, t1].
Proof: The rate at which area A(t) decreases is given by

dA(t)/dt = −
∫

K(t,θ)g(t,θ)dθ

which is −2π by the Gauss Bonnet theorem.
Propostion 2: The total curvature of F(t, ·) is monotone decreasing for each t ∈ [0, t1].
Proof: The rate of change of total curvature is

(∂/∂t)
∫
|K()t,θ)|g(t,θ)dθ

=
∫

[sign K(t,θ)](∂K(t,θ)/dt)g(t,θ)

+ |K(t,θ)|(∂g(t,θ)/∂t)dθ,
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using (1) and (2)

=
∫

[sign K(t,θ)][g(t,θ)−2∂2K(t,θ)/∂θ2 +K(t,θ)3]

·g(t,θ)− [sign K(t,θ)]K(t,θ)3 dθ

=
∫

[sign K(t,θ)][∂2K(t,θ)/∂θ2]g(t,θ)−1 dθ

≤ 0.

The last inequality follows by integrating over intervals of θ where K(t,θ) has constant sign: Sup-
pose a(b K(t,a) = K(t,b) = 0, and K(t,θ) > 0 for a < θ < b. Let σ(θ) be arc-length, so dσ =
g(t,θ)dθ. Then

∫ b

a
[∂2K(t,θ)/∂θ2]g(t,θ)−1 dθ =

∫ σ(b)

σ(a)
(∂2K(t,θ(σ))/∂σ2)dσ

= ∂K(t,b)/∂σ−∂K(t,a)/∂σ.

By hypothesis, ∂K(t,b)/∂σ < 0 and ∂K(t,a)/∂σ ≥ 0, so we are done. A similar analysis can be
done for intervals on which K < 0.

Definition: If F1,F2 : [0, t1]×S1 → R2 are two smooth curves moving by their mean curvature,
then define for each t ∈ [0, t1] the area between F1(t, ·) and F2(t, ·), denoted B(t), by

B(t) = L2{x ∈ R2 : x inside exactly one of F1(t, ·) or F2(t, ·)}.
Definition: We say that the orders of mutual intersections of two curves are the same if the two

curves intersect at a finite number of points and the orders of these intersections are the same along
both curves.

Proposition 3: If F1 and F2 are two smooth curves moving by their mean curvatures, and if the
orders of mutual intersections are the same along both curves for each t, then the total area between
F1(t, ·) and F2(t, ·) is monotonically decreasing for each t.

Proof: If F1(t, ·) and F2(t, ·) do not intersect at all for a particular t, then it follows from Propo-
sition 1 that B(t) is constant until the curves intersect or one curve vanishes.

Otherwise, suppose without loss of generality that a,b ∈ S1 are parameters of successive inter-
sections as indicated in figure 1. Then the rate of change of the area B(t) of the region between a
and b is

dB(t)/dt =
∫ b

a
K1(t,θ)g1(t,θ)dθ−

∫ b

a
K2(t,θ)g2(t,θ)dθ

= β1(t,b)−β1(t,a)−β2(t,b)+β2(t,a)
= [β1(t,b)−β2(t,b)]+ [β2(t,a)−β1(t,a)]
≤ 0.

These three propositions suggest that in general dimensions the “area bounded” ought to de-
crease, the total curvature ought to decrease, and two surfaces starting out nearly alike should get
evon more alike.

Proposition 1 depends on the mean curvature being the same as the Gaussian curvature, which
is not true in higher dimensions. For example, if the original surface is a 2-sphere in R3 with a lot
of sharp inward spikes, then the volume enclosed will increase at first.

It seems intuitively clear that a surface will locally smooth itself out and thus reduce its total
mean curvature. However, global effects may reverse this. Figure 2 illustrates how this might
happen. The 2-surface in R3 is two infinite parallel flat sheets with a large diameter doughnut hole.



Since the curvature due to the closeness of the sheets is greater than that due to the diameter of the
hole, the hole will expand. Therefore the area of the region with high curvature expands, so the total
curvature increases.

Proposition 3 implies a continuous dependence on initial conditions if nearness is measured in
terms of area between curves. While continuous dependence on initial conditions would hold for
higher dimensional smooth manifolds, it does not hold for general surfaces. For example, let the
initial surface be two unit circles in R2 distance d apart, d ≥ 0. If d > 0, the only possible course
is for the circles to shrink down to their respective centers. If d = 0, then the circles may remain
connected and turn into a dumbbell shape.



Appendix C

Curves of constant shape

C.1 Introduction
In this appendix we investigate one-dimensional integral varifolds Vt in R2 moving by their mean
curvature such that if s, t > 0 then Vt is a homothety of Vs. Suppose we have such a varifold Vt and
R : R+ → R+ is such that for t > 0

Vt = µµµ(R(t))#V1.

Then R(t) is a characteristic scale of V , and since mean curvature is inversely proportional to scale,
we must have

dR(t)/dt = β/R(t)

for some β ∈ R. Then
R(t) = (2βt +R(0)2)1/2.

Note that this scaling factor is valid for all dimensions.
We now seek a differential equation describing curves in R2 which remain homotheties of them-

selves. Let the curve be given by F : R+×R2 with scaling factor R(t). For a particular time t ∈ R+,
let γ = dR(t)/dt, n : R→ R2 be the normal vector, h : R→ R2 the mean curvature vector, and
K : R→ R be the oriented scalar curvature of F(t, ·) so that K(s)n(s) = h(s) for all t ∈ R. The
condition we are looking for is, for all s ∈ R

γF(t,s) ·n = K(s). (C.1)

Given γ,F(t,0), and the initial direction of F(t, ·), one can integrate (1) to get a curve. This I have
done on an HP 9820A desktop calculator with plotter, and some of the results are described in the
following sections.

C.2 Corners
If one takes γ = 2, F(t,0) = (0,3/8) and initial direction horizontal, one gets a curve as in Figure
3, which has asymptotes at approximately a right angle. If the time origin is chosen so that R(0) =
0, then we see that the initial surface was approximately a right angle. Thus we know what the
evolution of a corner looks like.
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C.3 Triple junctions
We take γ = 1 and three curves starting at (0.43,0) at angles of 0◦, 120◦, and 240◦. Since the triple
junction contributes no curvature, and everywhere else obeys (1), this represents a curve of constant
shape. See Figure 4. The parameters were chosen so that the initial surface was a vertical line with
a horizontal line meeting it at the origin.

C.4 Multiple rays
Figure 5 shows a possible evolution of two lines meeting at right angles. The parameters are γ = 1,
starting points (0,0.28) and (0,-.28), and starting angles 120◦ apart.

Note the essential non-uniquness of the evolution. By symmetry, the same solution rotated 90◦
is also a solution.

This solution will arise from the reduced mass model (see 4.9 Remark 2) but not in the normal
varifold model. Since the initial varifold has zero mean curvature, one must ask what Lipschitz
maps of small displacement can do. If one is not allowed to reduce mass, then any non-identity
Lipschitz map will increase mass. Thus in the normal model nothing will happen. In the reduced
mass model, the first small Lipschitz map can produce a miniature version of Figure 5, and the rest
of the evolution is driven by mean curvature. Figures 6, 7, and 8 show possible evolutions of 5, 7,
and 8 rayed initial surfaces with no special angles.

C.5 Shrinking loop
If one considers β < 0, then one gets surfaces that shrink as time increases. A circle is the most
obvious example. Another interesting example is the loop shown in Figure 9. Its parameters are
γ = −1, starting point (0,0.83), and angles 90◦, 210◦, and 330◦. The starting point was chosen so
the two lower curves joined smoothly below the origin. This surface will shrink homothetically until
the loop vanishes, leaving a vertical ray from the origin. The ray will then vanish instantaneously.
This is an example of non-continuity, and thus non-differentiability.



Appendix D

Density bounds and rectifiability

The example presented in this appendix illustrates the necessity of assuming a lower bound on the
density of a rectifiable initial varifold in 4.1 in order to conclude rectifiability later in 4.17. We
construct an initial rectifiable varifold with lower density bound zero and give an argument that this
varifold should turn unractifiable as it moves by its mean curvature.

First, let W be the varifold depicted in Figure 10. The densities are to be such that W is stationary.
We intend that W = 2µµµ(2)#W .

Define β : R2×G(2,1) → R+ by

β(x1,x2,S) = exp |X2|.

Let V0 = W β ∈ RV1(R2). Note that β was chosen to give V0 unit magnitude mean curvature
vectors on the vertical segments pointing away from the horizontal centerline.

To see that this initial varifold will evolve as claimed under the construction of Chapter 4, con-
sider the mth approximation. Away from the centerline, motion is outward with a more or less uni-
form velocity, which preserves the density gradients, which preserves the uniform outward velocity.
The stuff near the centerline will be vertically stretched by the small Lipschitz maps f2 (see 4.9).
When we take the limit of the approximations as m → ∞, the stretched central stuff converges to
a region of one-dimensional varifold expanding with unit speed with zero one-dimensional density
but with positive two-dimensional density. It is thus unrectifiable.
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FIGURE CAPTIONS

FIGURE 1. Portions of two moving smooth closed curves and the shrinking area be-
tween them.

FIGURE 2. A doughnut hole which has increasing total mean curvature as it evolves.
FIGURE 3. A stage in the evolution of an initial right angle. All stages have a math-

ematically similar shape.
FIGURE 4. Evolution of three lines meeting at right angles.
FIGURE 5. Evolution of four lines meeting at right angles.
FIGUHE 6. Evolution of five lines meeting at random angles.
FIGURE 7. Evolution of seven lines.
FIGURE 8. Evolution of eight lines.
FIGURE 9. A one dimensional surface which evolves by the loop shrinking down to

a point, leaving a line tnat vanishes instantaneously.
FIGURE 10. A rectifiable one dimensional initial varifold which intuitively should

evolve into an unrectifiable varifold. The pattern continues indefinitely
towards the center with decreasing line weights. Along the center line,
one dimensional densities are zero, but two dimensional densities are not.
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