i

THE MOTION OF A SURFACE BY
ITS MEAN CURVATURE

BY

KENNETH A. BRAKKE

Preliminary Informal Notes
of University Courses and Seminars

in Mathematics

MATHEMATICAL NOTES

PRINCETON UNIVERSITY PRESS




THE MOTION OF A SURFACE BY ITS MEAN CURVATURE

by

Kenneth A. Brakke

Princeton University Press
and

University of Tokyo Press

Princeton, New Jersey

1978



Copyright C) 1978 by Princeton University Press

All Rights Reserved

Published in Japan exclusively
by University of Tokyo Press
in other parts of the world by
Princeton University Press

Printed in the United States of America
by Princeton University Press, Princeton, New Jersey

Library of Congress Cataloging in Publication Data Will
be found on the last printed page of this book



TABLE OF CONTENTS

1. Introduction . . . . . . .« + ¢ . v 4 0 e e e e e e e e w1
2. Preliminaries . . . ¢ ¢ v 4« ¢ v ¢ 4 4 4 e 4 e e e 4 e 4w . . 6
3. Motion by mean CUrvature . . « « « « « o « « & « « « « « . . 18
4. Existence of varifolds moving by their mean curvature . . . 33
5. Perpendicularity of mean curvature . . . . . . . . . . . . 121
6. Regularity . . - .+ « ¢« ¢ « ¢ « « 4« ¢« 4« « « 4+« « « . . 1lel
Appendices
A. Grain growth in metals . . . . . . . .+ « . . ... . . 224
B. Curves in 52 e e e e e e e e e e e e e e e e e e ..o 229
C. Curves of constant shape . . . . . . . . « « « . . . 235
D. Density bounds and rectifiability . . . . . . . . . . 238
Figure captions . . . . . . . . . v v i v v v e e 4 e e . . . 240
Figures . . v v v v v v v v v et e e e e e e e e e e e e .. 241

References . . . ¢ ¢ v v v ¢ v 4 ¢ 4« 4« 4 4 e e 4 e e 4 4 W« o . 251



1. Introduction

Surfaces that minimize area subject to various constraints
have long been studied. Much of the inspiration for these
studies has come from physical systems involving surface tension:
soap films, soap bubbles, capillarity, biological cell structure,
and others. So far, mathematical investigations have been mostly
confined to the equilibrium states of the systems mentioned,
with some study of the evolution of non-parametric hypersurfaces
[LT]. This work studies in general dimensions a dynamic system:
surfaces of no inertial mass drive by surface tension and opposed
by frictional force proportional to velocity. The viewpoint
is that of geometric measure theory.

The mean curvature vector h(V,x) of a surface V "at a

point X can be characterized as the vector which, when multiplied
by the surface tension, gives the net force due to surfact tension
at that point. For example, if V 1is a k-sphere with radius R
centered at the origin with unit magnitude surface tension, then
h(v,x) = —kx/!x|2. Note that the magnitude of the mean curvature
is larger by a factor of k than in many other definitions.

The mathematical object we wish to study may be loosely
described as a family of surfaces Vt parameterized by time
such that each point at each time is moved with a velocity equal
to the mean curvature vector of the surface at that point at
that time. A physical system exhibiting this behavior is the
motion of grain boundaries in an annealing pure metal. Grain
boundaries represent excess energy, and there is effectively a
surface tension. It is experimentally observed that these grain

boundaries move with a velocity proportional to their mean



curvature. For a fuller discussion, see Appendix A.

The question arises: what do we mean by a surface? We do
not wish to restrict ourselves to manifolds, firstly because a
manifold may evolve singularities, and secondly because systems
like grain boundaries are most interesting when they are not
manifolds. TFor surfaces we shall take a certain class of Radon
measures known as varifolds, which are defined in section 2.6.
The space of varifolds includes anything one would wish to call
a surface and has nice compactness properties.

Since it is impossible to follow a measure pointwise, how
are we to describe the motion of a surface? We do it by describing
how a measure behaves on test functions. Section 2.10 derives an
expression for the rate of change of the integral of a test
function when the velocity of a surface is a smooth vectorfield.
Section 3.3 generalizes this expression to define when a varifold
is moving by its mean curvature, even when the mean curvature is
far from a smooth vectorfield.

The surface with the simplest nontrivial motion are
k-dimensional spheres. Let R(t) denote the radius of a
k-sphere at time t. The magnitude of the mean curvature is

k/R(t), so dr(t)/dt = -k/R(t). Thus

R(H) = (R(D)Z - 2kt) Y2 .
The behavior of a k-sphere turns out to be characteristic of
the behavior of any k-dimensional surface in the following manner:

By 3.7, if a k-dimensional surface at time t = 0 is contained



in the exterior of a ball of radius (R(O)2 - 2kt)l/2 with
the same center. By 3.9, the analogous statement is true of a
surface contained in the interior of a ball. An immediate
consequence of 3.7 is that a surface starting in a convex set
always remains in that convex set.

Section 3.4 establishes bounds on the motion of a surface
moving by its mean curvature, and these bounds are used in 3.10
to show that the motion is continuous except for instantaneous
losses of area.

Chapter 4 addresses the problem of the existence of a
surface moving by its mean curvature with a given initial surface.
We consider the k-dimensional initial surfaces to be members of
a class of rectifiable varifolds with a positive lower bound on
the k-dimensional densities. This class includes all surfaces
of interest. For such an initial surface, Chapter 4 gives an
approximation procedure that yields a one parameter family of
varifolds that satisfies the definition of motion by mean curvature
given in 3.3 and are rectifiable at almost all times. If the
initial surface has integer densities, which all familiar surfaces
do, then the constructed varifolds are also integral at almost
all times. These properties are proven in 4.29,

If the initial surface were a smooth manifold, then one
might get a solution for a short time by the straightforward use
of the theory of partial differential equations, as briefly
discussed in 3.1. My procedure will yield the same result in

such a case, as noted in 4.15.



For a given initial surface, the subsequent motion may be
naturally not unique, as illustrated in C.4. Therefore my
procedure does not strive for uniqueness.

Certain modifications may easily be made at one stage to
model different types of behavior (see Remark 2 of 4.9). None
of these modifications affect the results of Chapter 4.

Chapter 5 proves that the mean curvature vector is almost
everywhere perpendicular to an integral varifold whenever the
notion of mean curvature vector is valid. This perpendicularity
is easily proved for class 2 manifolds in differential geometry,
but under our very broad hypotheses, we will have to delve deep
into the microstructure of varifolds. This result is not directly
concerned with moving varifolds, but it is essential for
chapter 6.

Chapter 6 shows that a unit density integral varifold
moving by its mean curvature is an infinitely differentiable
manifold almost everywhere, except perhaps when there is an
instantaneous loss of area. "Unit density" means that the
density of the varifold is the same everywhere. Without this
hypothesis, not even minimal varifolds (those with zero mean
curvature) are known to be regular. Section 6.2 describes an
example illustrating the problems that arise with multiple
densities. Unfortunately, the existence construction of chapter
4 has not yet been made to yield unit density varifolds.
However, the regularity proof is totally independent of the
source of a varifold moving by its mean curvature, and would

apply, for example, to the non-parametric hypersurfaces of [LT].



Appendix A discusses metal grain boundaries, as mentioned
above. Appendix B discusses smooth simple closed curves in the
plane moving by their mean curvature. Appendix C discusses
l-dimensional surfaces in a plane that retain the same shape
but change in size as they move by mean curvature. There are
computer plots of several such surfaces. Appendix D shows the
necessity of the hypothesis of positive lower bounds on densities
in Chapter 4 by describing a rectifiable varifold with densities
approaching zero that should turn unrectifiable as it moves by
its mean curvature.

As for generalizations of this work, everything would still
be valid on smooth Riemannian manifolds, when properly interpreted.
Extension ot integrands much different from the area integrand
would not be as easy, because Allard [AW2] has shown tha£
essentially only the area integrand satisfies monotonicity
theorems, such as 4.17, which are vital to the methods herein.

I thank my advisor, Professor Frederick J. Almgren, Jr., for
his guidance, for many inspiring discussions, and especially
for his never-ending optimism and encouragement. I am grateful

to the National Science Foundation for support.



2. Preliminaries

2.1 General definitions.

We follow the standard terminology of [FH]. Most of the
definitions regarding varifolds come from [AWl].

We denote by N the positive integers and by R the real
numbers. Throughout this paper k and n are fixed positive

integers with k < n. Define

R = {t e R: t 20},
gk(a,r) = {x € 5#: |x - al] <},
U(a,r) = {x € R": |x - a| <z},
g}(a,r) = {x € gk: |x - a] <}
B(a,r) = {x € R%: |x - a| < r}.

Frequently, we will treat 5# as a subspace of gn.

We will use J dx to denote integration with respect to

sl

Lebesgue measure £" on . set

[ =$k_§_k(o,1).

We denote by %k Hausdorff k-dimensional measure on En.

We will often use (f,g) to denote the value of a
distribution f on an appropriate test function g, especially

when dealing with convolutions.



(R",R') we define

by (x) [2/0(x)  if w(x) # 0
(Iow]2/9) (x) =
0 if Y(x) = 0.

It can be shown that |Dw|2/¢ is bounded.

If F:R - R then we define for each t ¢

o]

the upper
derivate of F at t by

F(s) - F(t)

DF(t) = lim sup e

s ~ t

We shall also use the upper left and upper right derivates,

denoted D and D" respectively.

2.2 The Besicovitch covering theorem.

There is a positive integer B(n) with the following

property: If A is a subset of R and C is a family of

closed balls in En such that each point of A is the center

of a member of C, then there are disjoint subfamilies Ci’

i=1,..., B(n), of C such that
A < ulu Ci: i=1,...,B(n)} .
For the proof, see [FH 2.8.14].

2.3. Homothety and translation.

For each r € R we define the homothety g(r):gn -

I

by



u(r) (x) = rx.

For each a ¢ 5“ we define the translation z(a):

I
¥
b}

by

z(a)(x) = x - a.

2.4. Densities and tangent cones.

If u is a measure on gn then we define the k-dimensional

upper density and density of u at a ¢ En by

O*k(u,a) = lim sup ug(a,r)/grk,

r »~ 0F
o (u,a) = lim + ug(a,r)/grk .
r >0
The approximate tangent cone of u at a ¢ gn is
Tank(p,a) = N{C: C 1is a cone in En with vertex at a and
o® (u] R" ~c, a) = 0} .

2.5. The grassman manifold, homomorphisms, and cylinders.

Let G(n,k) denote the space of k-dimensional subspaces

of BF, which can also be thought of as the set of unit simple

k-vectors. Suppose S ¢ G(n,k). We will also use S to denote
orthogonal projection of gn onto S.

Let G (R) =R x G(n,k) .

For A, B ¢ Hom(5 /[R) ., we define a scalar product A -« B

by

A - B = trace(A* o B).



n
The identity element of Hom(gn,g ) will be denoted by I.

1 n

If ¢ € gz(gn,g) or g €C (5?,R ), then we will sometimes
treat D¢(x) as an element of gn and D2¢(x) or Dg(x) as
elements of Hom(gn,gn). The tensor product Vv & w of two
vectors Vv,w, € gn is also in Hom(gn,gn). The norm | |

n .
on Hom(R ,gn) is
n

o] = sup{|a(x) | : x € R", |x| = 1}.

We will frequently use the following facts about S,T € G(n,k)

and A,g,¢,v,w as above:
Vvew:*S =S8(v)ew =v * S(w) = S(v) *« S(w),

D2o(x) (v,w) = v &w + D2o(x),

I-S=k 0s<k-8§-Tzs<k[g-T1[
|a = s < kfpll
T(s*(w)) | < |s - T| |w|, and

[T(s*(T(w)) | s [s - T]}le

.

For T € G(n,k), a € §n, and 0 < r < », we define the

cylinder

(T,a,r) = {x € R" : |T(x-a)| < r} .

le]



2.6 Varifolds.

We say V is a k-dimensional varifold in R® if and only

if V 1is a Radon measure on gk(gn). Let gk(gn) be the
weakly topologized space of k-dimensional varifolds in gn.
Whenever V € gk(gP), we define the weight of V to be the

Radon measure HVH on R" given by

Ivia = vi(x,s) €g ®M: x €A}

whenever A 1is a Borel subset of gn. We let V(.) be the
V]| measurable function with values in the Radon measures on

G(n,k) such that for any ¢ € go(gk(gn),g)

v(y) = j J vix,)av®s ajvix.

If B:gk(gn) + R is a locally V summable function, then

VI8 € ¥ (R") is defined by
(v B)a = J B(x,8)dv(x,S).
A

The same notation will be used with the obvious meaning even if

B 1is only defined on gn. Similarly, if A is a [V|

measurable subset of gn, we will use V| A to abbreviate the

restriction VL_[A X G(n,k)], and J B(x,S)dv(x,S) to abbreviate
A

B(x,8)av(x,s).
A x G(n,k)

By the well-known compactness properties of Radon measures,

the set of varifolds

10



(v €y (RM: [viB(O,R)) < By, i€N}

is compact if Bi < o for all i and lim Ri = oo,

2.7. Rectifiable and integral varifolds.

Whenever E 1is an %* measurable subset of 5“ which

meets every compact subset of R© in an (%k,k) rectifiable
subset [FH 3.2.14], there is a naturally associated varifold

v(E) € gk(gn) defined by
v(E)A = hfk{x: (x,Tank(JJk | E,x)) €A}

whenever A < gk(gn).

We say a varifold V € lk(gn) is a k-dimensional rectifiable

varifold if there are positive real numbers c c and

1’ 2 1t
E n

sk 17 Ey sees of R which meet every

measurable subsets E
compact subset of én in an (wk,k) rectifiable subset such

that

If the c; may be taken to be positive integers, then we say

V is a k-dimensional integral varifold. We let

(™M)

-

Yy

\

n
5¥k(§ ) and

be the spaces of k-dimensional rectifiable and integral varifolds
respectively.

11



2.8. Mapping of varifolds. [AF I.1(13)]

Suppose f:_g_n > 5? is a proper mapping of class 1 and
V €V, (R"). Then the varifold £,V € 7, (R") induced by f£

is characterized by the condition

(f#V)A = J IAk(Df(x)oT)ldv(x,T)
{(x,T): [£(x),Df (x) (T)]€A}

whenever A 1is a Borel subset of gk(gn).

Suppose f:g? > gn is a proper Lipschitz map and

vV € glk(gn). Then the induced varifold f#v S §Zk(§n) is

characterized by

(£,V)A = J | A (apDf (x)°T) |av(x,T)
{(x,T): [f(x),apDf (x) (T) ] €A}

whenever A 1is a Borel subset of gk(gn); here the approximate

differential is
apDf (x) = (|V|,k)apDf (x) : Tank(HVH,x) - rR%,
see [FH 3.2.16, 3.2.19, 3.2.20]. The function
f#: ggk(gn) > §¥k(§n) is not in general continuous. One

, n n
observes f#(glk(g )) < v, (R7) .

2.9. First variation.

Suppose € > 0, (-e,e) x gn > gn is smooth, h,_(x) = h(t,x)
= = t

h:
for (t,x) € (-e,e) x §n, ho(x) = x, and the set

12



{x: ht(x) # x for some t € (-g,¢€)}

has compact closure in an open subset G of

I

Let
g = (3h/0t) (0,+) € co(RY,EY).

Then for V € !k(gn) such that [[V||c < » we have by [&Wl 4.1]
(d/dt) “ht#v“Glt=O = J Dg(x) *SdV(x,S).

This motivates for any V € Zk(gn) the definition of a linear

function
8V

called the first variation of V, by

§v(g) = J Dg(x) *S dv(x,S).

If 6V =0, then V 1is called stationary. We define the total

variation |[8V| to be the largest Borel regular measure on gn
determined by

U8ViiG = sup{édv(g): g € nRM

el
o+

(]

[}

, spt g € G and |g| < 1}

whenever G 1is an open subset of gn.

If HSV“ is a Radon measure, then there is a “SVH

measurable function n(V;+) with values in gﬁ—l such that

svi(g) = J g(x) *n(V;x)d|jdvix

13



for g € gé(Rn,Rn). The theory of symmetrical derivation (see

[FH 2.8.18, 2.9]1) implies the following: The formula
fevi/iivi(x) = 1im [[ev]B(x, ) /iVIB(x, )
r v+ 0

defines a real-valued HVH measurable function on R® such that

if

16Vilgypg = N6Vl tx: lovi/iviio = =)

ing
then

' 1" _ [ | ! 1 " "
lovie = | lsvi/IviGoaivix + [6lg;nq8
B
whenever B is a Borel subset of 5?. The formula
h(v,x) = =[|sV{l/[[V]l(x) n(V;x)
defines a |[[V|| measurable function with values in ﬁn such that

§V(g) = - J g(x) +n(v,x)d[[v]x + J g(x)-n(V;x)dHGVHsingx

whenever g 1is a Borel measurable function with values in 5“
such that J lg(x) |d]jsvix < «. If névnsing = 0, then we call

n(v,+) the generalized mean curvature vector of V.

The preceding mathematics has a physical interpretation.
A surface naturally corresponds to a varifold. When a surface
has a surface tension, the area is proportional to the total

energy. If g 1is the velocity of the surface, then the rate

14



of change of energy (the power) is 6V(g). Since power is integral
of the force times the velocity over the surface, clearly

h(v,x) is proportional to the force due to the surface tension.
Singular first variation, HGV“sing’ occurs at edges, sharp

corners, and the like.

2.10 First variation with respect to other integrands.

Suppose ¢ € gg(gn,g) and V, G, ¢, h, and g are as

in 2.9. Then by [AWl1 4.9(1)]
(a/dt) iiht#v{|(¢) |t=0 = J Dg(x) *S ¢(x)av(x,S) + J g(x) +Do (%) d[[V]x.

We are led to define the first variation &(V,¢) of V with

respect to ¢ Dby setting

(1) &(v,9)(g) = J Dg (x) *S¢ (x)dv(x,S) + J g(x)-D¢ (x)d|V]x

(2)  &8(v,9) (g) = &V(eg) - J S(D¢ (x)) *g(x)av(x,S)

+ J D¢ (x) g (x)d|jV]x.

15



Proof: From (1)

]

6,9 () = [ Dyl -setaravix,s) + [ Dot g av]x

J D(¢g) (x) S - (Do(x) & g(x))-S dAv(x,S)

+ I D¢ (x) -g(x)d||V[x

SV (dg) - J S(D¢(x)) -g(x)dv(x,s)
+ J D¢ (x) -g(x)d|V]x. O
Note that we may also write (2) as

(3) 6,6 (9) = 8V(se) + [ SHDoGN) g (x)aV(x,S),

or if [[6V|| is a Radon measure and Hév“sing = 0, then

(4) 8(V,9)(g) = { h(V,x)-g(x)¢(x)d V x + J s* (D¢ (x)) ~g(x)av(x,s) .

2.11. Compactness theorem for rectifiable varifolds.

Theorem [AWl 5.6]: Suppose Gl’ G2,... are open subsets
(=]
of gn, §n = Gi' Ml’ M2,.-- are nonnegative real numbers,
i=1
n

and © is a positive real valued continuous function on R .

The set of those varifolds V in ggk(g?) for which

(‘;V“ + !;CSV“)G-_L _<_ Mil l = 1121"‘1

16



and
Gk(“V“,x) > 6(x) for [[V|]| almost all x € R

is compact. ]

2.12. Compactness theorem for integral varifolds.

Theorem [AW1l 6.4]: Suppose Gl' G2,~-- are open subsets
[e<]
of 5?, 5“ = U Gy and M;, M,,... are nonnegative real
i=1

numbers. Then the set of those varifolds V in £¥k(§n)

for which
(vl + fovipe, < my, &= 1,2,

1

is compact. o

17



3. Motion by mean curvature

3.1. Manifold difficulties.

on first considering the problem of a surface moving by
its mean curvature, one is likely to try to apply results from
the theory of partial differential equations. In what is called
the parametric approach, the moving surface is viewed as a family

k

of maps F R™ ~» g?. From differential geometry [sM, p. 1931,

£
the mean curvature vector ht(x) at Ft(x) is the invariant
Laplacian of the position vector:

(1) ht(x) = AFt(x).

In coordinates, this is

(2) E 1 3 ( i3 aFt(x)m
2 h, (x)_ = = [g(x)g -~ (x) 4, mo=1,---,k,
e m o S g(x) 3% EE

where (glj) is the inverse matrix of the metric (g..:).

BFt(x)p BFt(%Li

1 8xi axj

’

e~ 8

gl] (X) = o

and g2 = |det(gij) . Thus, the problem becomes to solve
(3) 8Ft(x)/3t = AFt(x).

This looks like a vector-valued heat equation, except that the

operator A depends on Ft.

18



Equation (3) is parabolic, just as the minimal surface
equation AF(x) = 0 is well known to be elliptic. The theory
of systems of quasilinear parabolic partial differential equations
applies. For example, if FO is nice enough, then [ES III.4]

guarantees the existence of Ft for some short time interval.

The non-parametric approach is to represent a moving

surface as the graph of maps £, : gk - 5?_k. Here, the equation
of motion becomes

Ko iy, .2
(4) of (x) /0t = Y g - (x)9 ft(x)/axiaxj,

i,j=1

where the metric arises from Ft =1¢ ft' This equation is also
nicely parabolic, and it is nearly the heat equation when ft
is nearly constant. The analogy to heat will be a guiding
principle in the regularity theory of chapter 6. There we will
also use the fact that solutions to (4) are infinitely differ-
entiable [ES II.1.5].

There are many objections to these two approaches. The

principal one is the topological restriction placed on surfaces.

Real grain boundaries are full of singularities, and the topological

type continually changes. Even if the initial surface is
representable parametrically, the existence of a solution is
guaranteed only for a short time, as the surface may develop
knots and other singularities. The non-parametric problem may
have "generalized solutions" [LT] existing forever, but puts even

more drastic restrictions on the type of surface.

19



The varifold approach places no restrictions on the nature
of a surface. Anything with area and tangent planes is a
varifold. Of course, that means (3) or (4) no longer apply.
Therefore, the first task of this chapter is to provide a
definition of motion by mean curvature for varifolds that can
always be applied. The starting point for this definition is
the first variation with respect to an integrand, discussed in
2.10. We see from 2.10 that if a varifold Ve represents a

smooth manifold, then (3) is equivalent to requiring
(5) (d/dt)HVtH(¢) = 6(Vt,¢)(g(Vt,-))

for smooth test functions ¢. We will generalize (5) to all V,

but first we must define &(V,¢) (h(V,.)) for all V ¢ gk(g?).

3.2. Definition of &(V,$)h(V,-)).

Suppose V ¢ lk(g?) and ¢ € Qé(RnrR+)- £ evile is

not a Radon measure, if “GV“singL—¢ 0, or if
w [ Iav0 et avjx = =,
then we will set

(2) §(V,¢) (B(V,+)) = -

Otherwise, in analogy with 2.10 (4), set

20



(3) §(V,9) (h(v,-)) = - J |h(V,x) |2¢(x)d];v“x
+ f s*(D¢(x)) -h(V,x)av(x,S).

Remarks: To enable us to write single formulas to cover

all cases, we will make the convention that
[0 Pseav)x = =

also in case |[dV||_¢ is not a Radon measure or “év“singL—¢ # 0.
This makes (2) formally consistent with (3).

Since h(V,.) may not be bounded, even on compact sets, it
is not clear a priori that the rate of change of [V _[(¢) should
be given by &(V,¢) (h(V,.)). However, we shall see in 3.4 that
unbounded mean curvature does not lead to unbounded rates of

growth on test functions.

3.3. Varifold moving by its mean curvature.

We shall say that a one parameter family of varifolds

Vt € lk(Rn), t € R+, is a varifold moving by its mean curvature

if and only if

(1) DIV [[(¢9) < 8V, ) (h(Vy,+))

1

for every ¢ € go(g?,gf) and for all t ¢ 5+.

Remarks: The notion of derivate is used because “VtH(¢)

may not always be differentiable, or even continuous (see

21



Appendix C.5), and the upper derivate gives a stronger condition
than any other derivate. We will see in 3.10(b) that (1)
implies [V [(¢) is differentiable for almost all t ¢ rRY, but
it is not clear whether we should require equality in (1) for
almost every +t. Appendix C.4 shows an example in which V0

has zero mean curvature, yet we want BHVt“(¢)|t=O = - if

$(0) > 0. It is conceivable that there is some example in which

frequent behavior of this sort leads to
DIV [ (¢) < 8(Vi,0) (B(V,-))

for all t ¢ §+. Condition (1) is also the condition that naturallj
arises out of the construction of Chapter 4, as remarked in 4.18.
This definition does not imply anything about the uniqueness
of a varifold moving by its mean curvature for a given initial
varifold. Appendix C.4 gives one example of non-uniqueness.
For general varifolds, 3.1(2) cannot completely characterize
the motion because it says nothing about the rate of change of

(+)

the Grassman manifold component Vt of V (see 2.6). It

t

would obviously be nice to use first variation with respect to

a test function defined on gk(gn), but such a first variation
could not be converted into a form like 2.10(1l) which could be
generalized from smooth vectorfields g to mean curvature h(V,x)
as in 3.2(3). However, for rectifiable varifolds [[V| does
determine V, and this covers almost all interesting cases.

This chapter henceforth will deal only with consequences of

(1). Existence of Ve for certain V0 will be shown in Chapter 4
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3.4. Upper bound on motion.

R") and ¢ € c2(R",R") then

<

Proposition: If V € ¥ (
SV, ¢) (h(v,-)) < - J |h(V,x) ]2¢(x)dHVHX
e o] 1m0 Peaagela Y2 os 20

< v (|pe|%/6).

Proof: If 6&(V,¢)(h(V,-)) = -~ then we are done. Other-

wise, by 3.2(3)
§(V,8) (h(V,:)) = - f In(v,x) |29 () a |v]fx
+ J s*(D¢(x)) -h(V,x)aAV(x,S)
<= [ a1 Zetoalvix + [ Dot | a0 la]v)x,

from which the conclusions follow by applying the Schwarz inequality

to the second term on the right hand side and finding the maximum

value of the resulting expression. O
Remark: This shows &(V,¢) (h(V,.)) » - as

J IQ(V,X)|2¢(x)dHV“x + o for a bounded value of {V“(|D¢|2/¢),

justifying definition 3.2(2).
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3.5. Time varying test functions.

Proposition: If V_  is a varifold moving by its mean
curvature, 0 < r < s < «, and Yy € gé([r,s] X 5?, 5?), then

D+[th(w(t,-)) < SV (e, ) (B(VL,-)) + [Vl (3w, -)/0t)

for t € [t,s).

Proof: Let Y € gg(g?,gf) be such that y(x) > 1 if

x € spt Y(t,.) for any t € [r,s].
Suppose t € [r,s). It follows from 3.3(1l) and 3.4 that
there are M < » and & > 0 such that {VuH(w) <M for

t <u<t+ 6. We may write
DV (wee, )

= lim supl[]|[V LW lt+At, <)) = [V || (y(t,-))1/At
AEYO ” t+Ath h t”

(p(t,+)) - Hvtn(w(t,.))l/At

< lim sup[||V Il
£40 t+At

(3y(t,-)/3t)

+ lim sup||V I
At40 t+At

At
+ lim sup(l/At)H | 3w (t+6,x) /0t - aw(t,x)/at]ded{jvt+At|;x.

AtY0 0

By the definition of motion by mean curvature,
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(tre)) = vl twie, -1 178t

lim supl|V i
40 Met+At

i 6(thw(tl.)) (h__(vtl'))'

9y (t,-)/3t with class 2 test functions, we

By approximating

see from 3.4 that
(3y(t,)/3t) < [V [ (dy(t,.)/at).

lim sup|V I
+0 t+At
Finally, by the continuity of 03y/3t, compactness, and the
boundedness of [V, ,.[[(¢) for At <&,
At
lim sup(l/At)JJ |ay(t+6,x) /ot-ay(t,x)/at|dedfv Il x
t+At
AtY0
< lim sup [Msup{|3y(t+6,x)/3t-3y(t,x)/dt|: x €R', 0 < 68 < At}
0

T AtYO

= 0.
The proposition is also true for D, but 3.6 is
for

Remark:
needed first to provide an upper bound for “Vt+At“(¢)
At < 0. However, D+ will be sufficient for all our needs.

3.6. Barrier functions.
y: rY x &%

+» R will be called a
and a " such

=

€R

]

A class 2 function
+
2(r,8")

barrier function if there exist ¢ € C

that
2
Y(t,x) = ¢(|x-al® + 2kt)
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for all (t,x) € 5? x gn

(a¢(x)/dr) 2 < 46(r)a%(x) /ar”

for all r € R.

Theorem: If V is a varifold moving by its mean curvature

t

and VY 1is a barrier function with compact support, then

pHfvf (¥(e, ) <0

for t €R .

proof: Let t €R'. If 8(V_,¥(t,+)) (A(V ) = -=
we are done. Otherwise, letting V = Vt, we may rewrite
3.2(3) as
(1) 5(V,¥(t, ) (h(V,x) = j v, |2 (e, )

then

- g(v,x)-s(DXW(t,x))dv(x,s) + J g(v,x)-DXw(t,x)de“x.

Completing the square in the first integral, noting that

DY(t,x) = 0 when Y¥(t,x) = 0, and using
J g(v,x)-DXW(t,x)d“v“x = =SV(D ¥(t,-))
2

= - J DY (t,x)-sdv(x,S)

gives
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1/2 —1/2!2

2 -|h(v,x) ¥(t,x)
{(x,8);¥(t,x)>01}

+ (1/4) [S(D ¥ (£,%)) |2/¥ (£, %) av (x,8)

- J DiW(t,x)-de(x,S).

Since Y 1is a barrier function, we have for appropriate

¢: R > §f (assuming a = 0 without loss of generality)

(3) Y(t,x) = o(|x|? + 2kt),

(4) 3V (t,x) /0t = 2k¢' (x| + 2kt),

(5) D ¥(t,x) = 26" (|x|% + 2xt)x, and

(6)  D2w(t,x) = ap"(|x|% + 2kthx e x + 20" (|x|% + 2kt) L.

Hence, dropping the negative square from (2) and using (3), (5),

and (6), we get
é(vl\y(tl.))(g(vl'))

< [s(x)|2|¢'(|x|2 + 2kt)|2/¢(|x|2 + 2kt)
{(x,8):¥(t,x)>0}

- 4ls(x) |2e" (]x|% + 2kt) - 2ke' (|x|% - 2kt)av(x,s).
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Since a barrier function is defined so that |¢'|2/¢ < 49",

we have by (4)

§(V,¥(t,+)) (B(V,+))

A

J - 2k¢' (|x]? + 2kt)av(x,s)

| A

- [v[ (3¥(t,-)/8t) .

The theorem now follows from 3.5.

3.7. Sphere barrier to external varifolds.

Theorem: If Vt is a varifold moving by its mean curvature,

R >0, and [vu(0,R)

0, then

v oo, @ - 2x0)t?) =0

for 0 < t < R%/2k.
Proof: Define ¢: R > gf by
(R? - 0? for r < R,
¢p(x) =
0 for r > R2.

Since ¢)'(r)2 < 4¢(r)¢"(r) for all r €R, we can define a

barrier function V¥(t,x) = ¢(|X]2 + 2kt). By 3.6,

DYV (¥(t,)) <0
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for each t € R'. since [Volit¥(0,-)) = 0 by hypothesis, we
have [V [ (¥(t,.)) = 0 and thus
v iuio, (&% - 2xke) %) = o
2
for 0 < t < R7/2k. 0

Remark: Obviously, by time and space translation in-
variance, the theorem remains true for initial times other than

t = 0 and centers other than the origin.

3.8. Convex set barriers.

Thengg: If Vt is a varifold moving by its mean curvature,

K is a closed convex subset of R, and spt“VOH C K then

spt|V. || € K for all t > 0.

el

Proof: Suppose “Vt“(§? ~K) >0 for some t > 0. Then
one could find a ball U(a,r) c 5? ~ K such that

HVt“g(a,r) > 0 and
Ula, (r? + 2xkt) Y/2) ¢ B® ~ k.

But by hypothesis

voluta, (2 + 2xe)/2) = o,

so by 3.7 we have “thg(a,r) = 0, which is a contradiction to

]Vt”U__(a,r) > 0. -
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3.9. Sphere barrier to internal varifolds.

Theorem: If V. is a varifold moving by its mean curvature,
R > 0, and spt“VOH < B(0,R), then

spt|v,| < B(0, (82 - 2kt) /)

el
2 2
for 0 <t <R7/2k and V_ =0 for t > R"/2k.

Proof: Let ¥ Dbe the barrier function generated by

¢p(r) =
(r - R2)4 r

|v
o]

By 3.8, spt|v,| < B(0,R) for all t > 0, so the support of ¥

[
i
can be made compact for t < R2/k without affecting its properties

with respect to V.. By hypothesis we have “VOH(W(O,-)) =0,
and by 3.6 we have

DYV [l (¥(e, ) <0
for t < R%/k. Hence [Vl (¥(t,)) =0 for t < r%/2k, and

the conclusion follows because VY(t,x) > 0 for all x for all

t > R®/2k. 0

|
B

3.10. Continuity properties of “Vt

Theorem: Suppose Vt is a varifold moving by its mean
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2

curvature and y € go(gP,gf). Then

(2) Lin [V [l () > [V () > Lim [V_| ()
stt syt

for all t €R,

(b) Vel (w is a continuous and differentiable function

of t at almost all t €R',

(c) “Vt“ is a continuous function of t at almost all

t e r'.

I

Proof: Suppose T > 0. By 2.1, llez/w is bounded with
compact support, and therefore we may construct a barrier function

Y: [0,T] x gn - gf such that Y has compact support and
2
[DY[“/y < ¥(t,-)

for each t € [0,T]. By 3.3(1), 3.4, and 3.6 we have

IA

B”vt[,’(w) SV, ) (h(Ve,))

A

vl (1w |2/79)

A

RANITISY

A

Vol (¥0,)) < =
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conclusions (a) and (b) follow from the uniform boundedness of

the upper derivate of “Vt“(w) in [0,T] and the arbitrari-

ness of T.
Conclusion (c) follows since the space of test functions

go(g?,5+) has a countable dense subset from gg(gn,gf). 0
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4. Existence of varifolds moving by their mean curvature.

In this chapter we construct for a certain type of initial
varifold VO a one parameter family of varifolds Vt defined
for all t ¢ §+ and satisfying the necessary condition for

motion by mean curvature given in 3.3:
DV [ (¥) < 8V, ) (B(V,,-))

for any ¢ € C (gﬁ,§+) and for all t € §+. As 4.15 shows, in

1
0
case VO is a smooth manifold, the construction given here

agrees with the more straightforward mapping approach described
in 3.1, as long as the latter works. The key properties of the

present construction are proven in the last section of this

chapter.
4.1. Definitions.

We wish to include noncompact surfaces in our treatment.
Therefore, to keep integrals finite, we arbitrarily choose a
weighting function Q ¢ 23(§n,§+) satisfying the conditions
|DQ(x) | < Q(x) and HDzﬂ(x)“ < Q(x) for all x € R". Note

(

that { 1is never zero. Define the {}-norm on (gn),

o

k)

K ) by

¢l = sup{|o(x,8) |/a(x): (x,8) € g (R}
and define the normed linear space

ac (g, (RM)) = {¢ € c(a

ac (g,



Then the set of positive continuous linear functionals on

ac(g, (RM))  is

We shall use

I
<

Q lim V
m

m->©

to denote convergence in the { topology. Note that

Q lim V_ = V implies 1lim V_ =V in the varifold topology

defined in 2.3. Since 8C(G, (R")) is separable, if M < = then
{v e gv: |v](a) <M}

is compact.

We define
9R = QV N RV, (RM),
9L = Qv n 1V, (RM),

and we define the set of initial varifolds & to consist of all

V € gR such that

(1) oK(|v|l,x) > 1 for [v] almost all x €K' and
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(2) spt|v| is %% locally finite.

Condition (2) is not an unreasonable restriction. Indeed, the
second half of the proof of 6.13 shows that if Vt is a

varifold moving by its mean curvature that satisfies (1), then

the instantaneous mass loss at t 1is proportional to the %k

measure of the set of points x € spt|V_|| with @k(“Vt“,x) = 0.

el

Thus Vt would satisfy (2) for all t > 0. We require (2)

to hold for Vo because this hypothesis makes 4.16 much simpler.

It follows from (1) and (2) that V € @ is of the form

v = w(s) [ 8

where S is a closed countably (ﬁk,k) rectifiable subset of

QP and B: gk(én) - 5? is a locally v(S) summable function

with values greater than or equal to 1 yv(S) almost everywhere.
If V is also integral, then B has integral values.

It follows from [AF I.1(13)] and the properties of Q that

n n

if £ > R" is a Lipschitz map with |f(x) - x| bounded,

0

then the induced mapping f# preserves @R, I, and Q.

If g € gl(gf,g?) and sup{|Dg(x)[/Q(x): x € R} < =,

then we may still define for V € QV

SV (g)

J Dy (x) -SAV (x,8S)

J h(Vv,x)-g(x)d[V][x (when = 0)

199 g1ng
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and have Q lim Vm =V imply lim va(g) = 8V(g). 1If
m->o

m—>c
¢ € gl(gﬁ,g) and sup{|¢(x)|/2(x): x € R"} < », then we
may define ¢(Vv,¢) (h(V,-)) as in 3.2.

The choice of the weighting function § enters into the

actual construction in 4.9, so for a given initial V the

0’
later Vt may depend on . However, there are many other
places arbitrary choices are made in this construction, and
the solution Vt may not be unique, as noted in 3.3. Since
we are concerned with existence here, nonuniqueness does not
bother us.

Some sets of test functions used in this chapter will be:

for each i €N,

/R D) 9(x) < Q(x), [Do(x)| < i¢(x),

and D% (x) || < i¢(x) for all x € B%}.

Some sets of test vectorfields will be: for each i € N,

()  », = {g € c’(®,®Y:

lg(x) | < ix), |[Dg(x)| < iQ(x),

and |[p%g(x) | < i2(x) for all x € R

4.2. Estimates on growth of test functions.

Proposition: If i €N, ¢ € Sy and g ¢ Li, then for

all x, y €
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(1) ¢(y) < ¢(x)exp ilx - y|,

(ii) [o(y) = ¢(x) - Dop(x)-(y - x)|

< i explily - xD = 1 - |y - x[1e(x),
(iii)  |pé(y) - Do(x)| < [(exp ily - x|) - 11¢(x),
(iv) lg(y) - g(x)| < il(exply - x|) - 11Q(x), and
(v) [Dg(y) - Dg(x)| < il(exply - x[) - 1la(x).

Proof: These properties are consequences of the definitions

of #i and pi. O

4.3. The smoothed mean curvature.

In approximating motion by mean curvature, we shall need
smooth approximations of the mean curvature defined for any initial

varifold.

n +
>

For each 0 < ¢ < 1/2 define @az

k2]
(]

by

(1) @E(x) = B(e)e—nexp[—xz/(e2 + €4|X|)]r
where B(g) is defined so that

(2) J @E(x)dx = 1.

Note that for x, y € Bn

we have
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(3) ?_(x - y) < B(e)e exp(-[x]),
(4) ]DQE(X)I < €_4®€(x), and
(5) oo ()] < e % _(x).

Hence for V € @ we may define convolutions o %V, 0 % V],

and @E * 6V. The last two of these can also be viewed as smooth

functions on gn defined by

(6) o |[V] (x) = f 5 (y - 0dv]y ana
(7) o %8V (x) = J S(D@E(x - y))avi(y,s).
Eg. (7) is true because for g € gé(gn,gn),

f @ *8V(x) -g(x)ax = 6V (2 _xg)

f D(@E*g)-s dv(x,S)

f (D@g)*g-s dav(x,S)

Jf Do (y - x) ®gly)-s dy av(x,s)

f gly) - J s(Do_(y - x))dv(x,s)dy.

Clearly ®€*“V“ = ”¢€*v”, and ¢ _x8V = 6(©€*V) because
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(QS*SV)(g) = 6V(®€*g)

J D(®_*g) S dV(x,S)

J (@a*Dg)'S dav(x,S)

1]

6(¢€*V)(g)-
From (5), (6) and (7) we get

(8) |o %6V (x) | /0 |[V]| (x)

A

J Ipe_(x - y) |afv]y/ J o_(x - y)a|v]y
-4

< € .

Thus we may define the smoothed mean curvature of V, denoted

hE(V), to be the vectorfield
(9) hE(V) = -@E*(ée*SV/QE*“V“).

When V .is unambiguous, we shall write he for hE(V) and
hg(x) for hE(V)(x). Proposition 4.8 shows that he is in
fact an approximation to the mean curvature.

It can be shown in the standard way that @ lim Vm =V
m->o

and lim €n = 0 imply

m-o

(10) 2 lim @E *Vm = V.



4.4. The smoothness of hg.

Proposition: If VvV €@ and 0 < e < 1/2, then for all

X € gn we have

4

(1) |h )] < e,

. , -8

(ii) hDhE(x)” < e, and
(1ii)  p?h_Gof < 7%

Proof: From 4.3(9), (8), (2), (4), and (5) we get

[h | < e x|o xsv/e_x[V]]

A

¢l

A
o
*
™
A
™
~

| ! -8
loh || < [po_|x|o_s6v/a x[v]| < ™%, ana

12

2. 2, | , -
h | < [p%e_fix[e xév/e *[V][| < e ~7. 0

|
| D I

Because of these estimates, we may use 2.10(1,2,3) to define

5(V,€)(h€(V)) for ¢ € di.

4.5, Some constants.

Define 0 < ¢y < 1/10 such that if i €N, € < cli-l,

1

and ¢ € %, or ¢ 1, then for all j < i we have

1

(1) o *¢ < 2¢,
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(2) eI 2l - 1ye_(20)%¢ < n3e,

(3) (2312l - 12 (2120 < 0320,

(4) (eI 12l - 1)2)pe_(2) xs < n?3%,

(5) (72372312 -1 - 512112 e _(2) |2/0_(2)) %0 < n?3%, and
(6) (2] + 3¢2]2]2 + 2e* + ™) [2]% + 4]z]"1%0_(2))%0 < 6.

Also define

(7) c,(i,e) = sup{G *x¢(x)/p(x): x € R", ¢ € #53
where
0 for 0 < |x| < 51/2,
(8) G (x) =
IDQE(x)l for |x| > el/?
We have
G *x¢(x)/9(x) = J ¢(X)—lID<b€(y - x) |¢(y)dy.
1/2
|x-y|>e

Since, from 4.3(1),

Ipe_(2) ] < 2¢7%[z]o_(2)
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and, by 4.2(i),
oly) < ¢(x)exp ily - x|,
we have, using 4.3(1),

c, (i,e) < 25_2IZIB(E)e—nexp[—[zlz/(az + 54|z|) + ilz|ldz.

(
2 1/2

|z]>e

Thus for any p € R, in particular for p < 0,

(9) lim spcz(i,e) = 0.
€0
Lemma: If V €8, i €N, ¢ €4 and 0 < e < cli_l
then
(10) [<ore «[VI[) = <&, [V[)] < enifv] (o).
Proof:

[<ore [V = <o, VID]

1]

l” o(y)e (y - x)dy - ¢(x)a|v]x|

|JJ (oly) = o(x))e_(y - x)dy 4[|V |x]

A

ff fexplily - x|1 - 1}o(x)e_(y - x)dy d[v]x

(by 4.3 (1))
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IA

jJ {explily - x]|] - l}@e(y - x)dy ¢(x)d]|v[x

A

eni [[V[[(¢) (by 4.5(2)). O

4.6. Some estimates on 'h

.

€

Proposition: If V €@, i €N, and 0 < g < cli_l then

for any g €4
(i) lf hE(x)-g(x)d“V“x + j 9 _*6V(x) - g (x) ax|
< nieq@, o xov|%/0_x|v[HY v (2 /2,
(ii) |f s*(g(x)).hg(x)dv(x,S)
+ f[ s*gxace sv) Ms.o_vov(x)ax|
< nie@, o xov|2/0 v 2 |v) (12, ana

(iii) if ¢ € ﬂi and g = D¢ then one may replace Q by

¢ in the right hand sides of (i) and (ii).

Proof: It follows from the definition of he in 4.3(9) that

J h_ (x) g (x) a[[v]x

Glivl, -o_x(o_xsv/e_x[V[))

]

=0 gV, e _xsv/e x|V]),

and we can write
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J ¢ %8V (x) -g(x)dx = (g _*[ V][, o _*sv/0_x[V|).
Therefore
(1) |J he(x)°g(x)d“V“x + j QE*SV(X)-g(x)dxl
< (o x gVl - ge xV], lo_xev|/e_<|v]).
Now for each x € gn, using 4.2 (iv) and Schwarz' inequality,

(2) lo % (g[v[) (x) = g _*|v]i(x) |

1[ (gly) - gx)o_(y - nalvly|?

A

]J illexply - x|) - Lla(x)e_(y - x)dv]y|?

A

iZQ(X)2 j [(explx - y|) - l]ZQE(y - x)d|V]y J ¢€(y- x)d

1200 % (lexplz| - 11%0_(2)) #[ V] (x) 2 _*[V] (x) .

Using Schwarz' inequality on (1) and then using (2) gives

(3) |J h_(x) -g () a|V]x + J 8 %8 (x) g (x) ax|?

A

@ o *sv |2/ sVl Jo_x(glv]) - ge_*|v||®/e_«|v])

A

@, o xsv|?/e sv| @, i%0% (lexp|z| - 11%e_(2))#[V])

I A

@ e xsv|%/a_*[v] 12 ((lexp|z| - 11%e_(2)) %2, v])
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< nizs_z(ﬂ,]¢€*5V|2/¢€*“V“>“V”(Q)'

where at the end we used 4.5(3), with Jj = 1. This proves (i).

For (ii) we have
(@ [ s*gt) b avix,s)
- - Jj Mg (x)) +0_(y - %) 0_*6V(y) /0 _*[V] (v) ayav (x,s)
and

(5) ” s4(gx)ale ) Fs.o_xsv(x)ax

]

J s*(g(x))-@6*5V(x)/¢g*“vﬁ(x)d@e*V(x,s)

” Sl(g(y))dbe(y - x) ®€*6V(y)/d>€*|jvﬁ(y)dde(x,S).
Adding (4) and (5) gives

IJ S*(g(x)).he(x)dV(x,S) + Jf s*(g(x))d(¢e*v)(X)s.¢€*§v(x>dx;

A

JJ S*g(y) - g(x))-o_(y - x)®€*6V(y)/®€*“V“(y)dydv(x,S)

A

JJ lg(y) = g(x)|e_(y - x)d[v]x o _*8V(y) /0 _*|V](y)dy

which can be treated exactly the same way as (1) was to give the
same estimate as in (i).

If ¢ € di and g = D¢, then in the above derivations we

can substitute ¢ for Q in the first inequality of (3), use
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4.2(iii) instead of 4.2(iv) in (2), and we use 4.5(3) with
j = i. The net result is just to replace Q with ¢ in the

right hand sides of (i) and (ii). O

4.7. More estimates on he'

Proposition: If V €Q, i €N, ¢ € ﬂi, and 0 < £ < ¢ i_l

then
(i) |svien) + (¢, |e *sv|Z/e V)]
< 3niel 2o, o _*ov|2/0 *|v]) + nil2e + e Cc, (1,00 1|V (s),
(i1) j In G0 [2eaalv]x < (1 + eni) (o, |0 *6v|2/a % V]).
Proof: We have from 2.6

6V(¢h ) = J D[¢h_1(x)-s av(x,s)

J ¢(x)Dh€(x)-S dv(x,S) + J D¢ (x) @Ahs(x)-SdV(x,S)

- JJ ¢(x)De_(y = %) € @E*dv(y)/Qg*“V“(y)-édde(x,S)
+ J{ o (y - x)@s*év(y)/ée*“V“(y) ® D¢ (x) -Sdydv (x,8),

and using 4.3(7),
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(@, [0 *6v|%/0_x V]|

1]

J ¢(y)®€*6V(y)'®€*6V(Y)/®€*“V”(y)dy

jf ¢(y)s(pe _(y - x))-@E*dv(y)/®€*“V”(y)dV(x,S)dy.
Thus
(1) lsvigh,) + <o, e *xov|%/a_x[v])]

<] —eersme ty - 2+ sosere (v - w0

+ oly)s(pe_(y - x))dv(x,8) -2 _*sV(y) /¢ _*[V](y)dy].

We shall work on the inner integral, first approximating
o(y) - ¢(x) Dby D¢(y)-(y - Xx). The maximum error we are making

is
Jj [6(y) = ¢(x) - Do(y)-(y - X)l]D@a(y - x) |av(x,S)
e *eviy) /e _* |V (y)dy,
which by 4.2(ii) is less than
Jf [i—l(exp(ily -x|) - 1) - |y - x|]¢(y)|D¢€(y - x) d|v]x
'f¢€*5V(Y)|/®€*“V“(Y)dY

which, using Schwarz' inequality, is less than
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{J | J (i Yexp ily - x| - 1) - |y - x|1[pe_(y - X)lduvﬂx]z
Lo /e x vl ay} 2
. {J |¢€*av(y)|2/®€*“v”(y)¢(y)dy}1/z
which, again using Schwarz' inequality, is less than
{JJ il (exp ily - x| - 1) - |y - x|]2|D@€(y - X)Iz/ég(y _walv
J o (y - x)ajv|x ¢(y)/q>€*1;v“(y)dy}l/2
1/2

(oo *xsv|%/0 % V)

which, cancelling @E*“V“(y), interchanging the order of

integration, and writing as a convolution, is less than
(i Yexp ilz] - 1) - |z|12|o¢£<z>12/¢€<z>}*¢,nvn>l/2
oo o xov 2 e x vyt 2,
which, using 4.5(5) with J = i, 1is less than
1/2‘

(2) nic|v](0) 2o, [0 *sv|?/e_|v])

Next, in (1) we approximate Dé(x) by D¢(y). The maximum

error we are making is
[[ 1ot - peta o ty = mafulx: [ox0vin) [/ x [V nay,

48



which, using 4.2(iii) is less than
JJ [lexp ily - x]) - 1le(y)e_(y - x)4|v]x
e xeviy) [/0 % V] (y)dy,

which, using Schwarz' inequality twice, is less than

{[ 1] temp 11y - =D - 1107 = 0 avjxI o) /0 *v] ey} ™2

A sw 1o rovin) 12702 v (1 ay) 2
< {JJ [(exp iy - x|) - 11%0 v = 0 afv)x

J ¢ty = AV [ oty) /e *|[v](v)ay}t/?
r 1/2

2
(9, [0 *sV[7/0 * v

which, cancelling QE*HV“(y), reversing the order of integration,

and writing as a convolution, is less than

1/2 12

((lexp i]z]) = 11%e_(2)) %o, V]2 (o, [0 _*6v]%/0_*|v|)

which by 4.5(3) with 3j =i 1is less than
T 1/2

(3) nei [v] (012 (o, |0 _*6v |2 0 _x|v| )1/ 2.

We now have the inner integral of (1) converted to

J Do(y) - (y - x)S(D@e(y - %)) + S(D¢(y))¢€(y - x)av(x,s),
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which is equal to, noting that D¢(y) is constant with respect

to Xx,

(4) - J S(D, [Do(y) - (y = x)e (y - x)]1)av(x,s) .

Next, we approximate (y - x)@g(y - x) 1in (4) by
—(62/2)D®€(y - x). It can be shown from the formula 4.3(1) for

9] that
€
xé_(x) + (e2/2)Do_(x)
€ €
= (62/2)x[x|(2€2[x| - 1)1 + €2|x])_2®€(x),
and one can calculate

|DX[D¢>(Y)' (y - x)o (y - x)] +[DX D¢(y)-% €2D<I>€(y - x)] |

A

(62/2)|D¢(Y)|[2|y-x| + 6€2|y—x|2 + (494 + 26_2)|y—-x|3 + 4|y—x|4]®€(3

A

i82¢(y)[|y-x] + 352]y-x|2 + (254 + 8_2)!y—x|3 + 4|y—x|4]®€(y—x).

The maximum error in making this approximation comes out, using

4.5(6), to be less than
(5) nielv]e) 22, Jo_*ov|?/e *|v| /2.

By reasoning as in 4.3(7), we may write (4) as

[D(y) -28_(2) 1*6V(y),
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which after the preceding approximation becomes
(£2/2) [D4(y) D _(2) 1%6V(y) ,

which it will be helpful to write in component form as

n
(e2/2) J D.o(y) (D, (2) 1%6V(y)

n
= —(?/2) ]

A Dj<i>(y)Dj (o *6V](y) .

Then (1) becomes, after these approximations, less than
n

(€2/2)]j§1 (D44 10, *6V], & _*6v/0 *|V]})]

2 o | 2
= (e /4)lj£l (Dj¢/®8*hvh,Dj[®€*6V] -

Now we integrate by parts to get

n

[_— | 2
(2/8) ) @;pse/e x|V - Dy Dot/ e x VD, (e xen B,

j=1 :
which is less than, using the properties of ¢ from 4.1,
(6) ne’ (o + 16[De_|*[V]/o_*[v], (2 _*sv)%/2_*|v]).

To estimate this we write |D®€(x)| = F_(x) + G_(x), where
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[pe_(x) | for 0 < |x| < e
F.(x) =
0 for |x| > g,
0 for 0 < |x| < el/2
G (x) =
lD@E(x)] for |x| > e.

Since lD@E(x)] < 23—2Ix[¢€(x), we have
-3/2
FE(X) < 2¢ @e(x).
Thus (6) is less than
)2

(7) nei(o, (o _*6v /o v}

V2o x|Vl VL (8 2501 270 )y

+ n€21(¢2e_
+ ne?ige *|v], (o _*sv/0_*|v[)?).
Since 4.3(8) says |®€*6V|/®€*“V“ < ¢™*, we have (7) less than
(8)  ni(e? + 2e1/2) s (0 x50 270 %]y + neie_*|v],0e78).
The last part of (8) can be written as
ne’i @ *[v],0c®) = neTCi(v],6 %e),

and by 4.5(7) this is less than
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(9) ne™®i ey (i o) V] (o).
Adding together (2), (3), (5), (8), and (9) gives

lovioh,) + (o, le xev]?/e V)]

l/2r

< [niec + nie + niel (o, o _*sv|2/0 x| v )Y 2 v | (0) /2

+ nite? + 2eY ) (o, o xov| 20 x|y + nie”%e, (i, e) V] (0)

Applying Minkowski's inequality and recognizing that 51/2
dominates € and €2 yields (i).

To prove (ii), note that for any convolutable function £,

we have by Schwarz' inequality

st lerem |2 = | [ ot ety - neway]?

A

j s oty - % £y 1%y [ ety - et/ eway

A

¢€*(¢f2) f o _(y - mexplily - x|lay (by 4.2(i))

A

o *(¢£) (1 + eni),

where we have used 4.5(2) with ¢ = 1. Hence
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@lo x (e xov/e *vih 12, V)

2
|

A

@ _* (o] _x6v/0 %[V |?),[v])(1 + eni)

I

@lo_*sv|2/ e _x[V] |2, o *[V[)(L + eni)

1]

(1 + eni) (o, o _*sv[%/8 %[V ]). o

4.8. Showing that he is an approximation of mean curvature.

Proposition: If B <=, i €N, 0 <e<cii’h, V €g,

@ e *sv|?/e_*[v|) < B, [v[(2) <B, and g €L, then

J ha(x)-g(x)d“V“x + 8V(g) | < 2nieB.
Proof: From 4.6(i) we have
(1) ;J h_(x) -g(x)d[V]x + J 9 _*6V(x)-g(x)dx| < nieB.
We also have
(2) |J o _*¥8V(x)-g(x)dx - §V(g) | = [§V(2_*g) - &V(g) |

= ]J S(D@E*g(x) - Dg(x))dv(x,s) |

I~

|e_*Dg(x) - Dg(x) |a|V[x

A

J ¢_(y - x)bg(y)dy - Dg(x) [a[V[x

|
|
J

A

J ®_(y - %) (dg(y) - Dg(x))dy|d|v|x
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< Jf @E(y - x)il(exp y - x) - llQ(x)dy 4|v|x

I~

nie[V](Q) < nieB,

where we used 2.6(3), 4.2(v), and 4.5(2). Combining (1) and

(2) gives the desired result. 0O

4.9. Approximate motion by mean curvature.

The basic idea is to let a varifold move in tiny steps along
the smoothed mean curvature, recalculating the smooth mean
curvature at each step. Then we let € go to zero and take a
linit of approximations. However, this straightforward approach
is inadequate to get the limit to be a solution of the original
problem. Therefore I introduce a second type of step that takes
care of all the loose ends. This section describes the two

types of steps.

For each m €N pick e(m) > 0 such that
(1) e(m) < clm-ZOn—Z, me(m)k! < 1, and
nie(m)—6c2(i,e) <m? for i < n.
Define o(m) = m-2 and At(m) = 2-p, where p €N 1is chosen

so that At(m) < e(m)60.

For v €@ and o,w > 0, define E(V,0,w) to be the set

n n

of all Lipschitz functions f,: R > R such that
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(a) [£,(x) - x| <0 for all x € R" and

(b) |§fl#v”(¢) < v (¢) for all ¢ ¢ d .

Note that fl(x) = x satisfies (a) and (b), so E(V,o0,w) is

nonempty. It follows from (a) and 2.8 that fl# preserves

© and 1. For ¢ ¢4 we shall denote
AO,WHV]}(@) = inf{[[£,V[(¢) - [V[(¢): £, € E(V,0,w)}.
For V €2 and m €N define f,: R' + R’ by

fz(x) = x + At(m)h )(v)(x)-

e (m

From 4.4 we conclude that f2 is a Lipschitz map with

i

[fz(x) - x| bounded, so £ also preserves £ and

2%

Remark 1l: The mapping f2 approximates motion by mean

curvature. The mappings fl are meant to do away with
irregularities that are too small to be detected by the smoothed
mean curvature. Condition (b) guarantees that fl" does not

do too much.

Remark 2: One can model different processes by fiddling
with the first type of mapping. For example, instead of the
varifold mapping defined in 2.8 one could define
£,V = v(f(spt|V[)) € Q. This definition produces varifolds with
density 1 everywhere and would be appropriate for modeling soap

films and other instances with uniform surfaces. This model can
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be called the reduced mass model.

One could also require that fl be a homotopy. This would
be of interest if there were dimensional obstructions to moving
surfaces avoiding each other by making slight detours.

All the results of this chapter hold for all such models

as long as conditions (a) and (b) are satisfied.

4.10. Sufficient condition for belonging to E(V,o0,w).

Lemma: If V ¢, o,w >0, B is a closed subset of R,

and f: 5? - gn is a Lipschitz map such that

(1) {x: £(x) # x} U {£(x): £(x) # x} < B,
(i) [£(x) - x| <o forall x €¢R', and
(iii) |;f#v];B < exp[-w diam B][V|B,

then f € E(V,o0,w).

Proof: Since (ii) is the same as condition (a) in 4.9, we
need only check condition (b). Let ¢ € dw. Then by (i),

4.2(1), and (iii),

57



hE,viice) - [v](e)

]

J o(x)al£,v]x - f ¢ (x)d] V]
B B

A

sup{o(x): x €B}[£,V[B - inf{o(x): x €BIV[B

A

explw diam Blinf{¢(x): x € B}};f#V];B
- inf{¢(x): x € B}, V|B

< 0. o

4.11. Approximation during small finite step.

Proposition: If V €@, m €N, ¢ €4 , and f, is as

defined in 4.9, then

(1) [UiEy,viite) - IVfi(e)1/at(m) = 6(V,¢) (h >(v))l

e(m
< em o,

(ii) |8V, 0) (h () (V) = S(E5,V,9) (B 1y (£5,V)) |
< e(m) )v[(4), ana

(1ii) |<n,[¢€(m)*av|2/¢

*[vliy - <a. e

g (m) e (m)

< em v .
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Proof: Let € = e€(m) and F = At(m)he(v).

4.9 imply
(1) |F| < €_4At(m) < 656, and
(2) [DF|| < e 8at(m) < &2,

Then 4.4 and

One may calculate, using (1), (2), 4.9(1), and 4.2(i,ii),

(3) | 182,08 = 1] < 2k|pF| < e2ae(m) < €31,
||4,DE,08] - 1 - pE-s| < 7x%k1?|F|
< e2at(m,
[6(£,(x)) = ¢(x) | < (exp m|F(0) | = Do(x) < e 6(x),
lo(£,(x)) = ¢(x) = F(x)-Do(x) |
< m H(exp m|F(x) ) - 1) - |F(x)[1¢(x)

650At(m)¢(x).

A

Therefore, recalling 2.8 and 2.10(1),
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[li£54vI o) = [[V](e)1/8t(m) ~ §(V,9) (h_(V)) |

][J 9 (£, (x)) |ADE, (x)oS|aV(x,S) - j ¢(x)av(x,s) 1/At (m)

- [ on w045 400 + B W) (00 -De R AV (x,9) |

st (m) f [To(£5(x)) = ¢(x)1|ADE, (x)os|
+ [|Aknf2(x)°s| - 1]1¢(x) = DF(x)+S ¢(x)

- F(x).D¢(x) |av(x,s)

A

At (m) 7L f [ [o(£,(x)) = ¢(x) 1 [|ADE, (x)e 8] - 1]
+ [e(£,(x)) = ¢(x) - F(x)-D¢(x)]
+ [|AkDf2(x)os| - 1 - DF(x)-S1¢(x) | av(x,s)

< J (16 + &30 4 342)¢(x)d”V”x

A

v (s),

which proves (i).

For (ii), one may calculate
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£, () (8) - s < [2]oF () 11/2

Do (£,(y) - x| < e _(£,(y) - %) < 0 (v - x),
|D®€(f2(y) - x) - Do _(y - x)| < 547¢€(y - x).

Therefore, recalling 4.3(7) and (3),

(4) |¢€*6(f2#v)(x) - o %8V (x) |

|J T(D® _(z - x))df,,v(z,T) - J s(De_(y - x))av(y,s) |

]

ij Df, (y) (8) (DO _(£,(y) - x)lAkDf2°S|

- s(pe_(y - x))av(y,s) |

A

J [D@E(fz(y) - x) | ]Aksz(y)°S| -1
+ IDE, () (8) - S|[De_(£,(£,(y) - %) |

+ Do _(£,(y) - x) - Do _(y - x) |a[v]y

26

A

J e_séa(y - x) et + 2¢ e—sée(y - x)

+ ety - wavy

200 v (x).

A
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Likewise,
(5) loe* £,V [(x) = o _*|v](x) |
= 1] ottt - w0 Iypeges] - oty - majuly|
51

< €T _*[vi(x).

Hence

@E*sz#v(x) ) QE*SV(X) l
5T, VI~ AT |

< € ’

and so
1
[he (£,7) (x) = h_(v) (x) | < 12,
[oh, (£5,v) (x) - Dh_(v) (x| < 15,

Recalling 2.10(1) again,
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[8(V,9) (h (V) = 8(£,,V) (h_(£,,7)) |

IJ Dh_(V) (x) +S¢(x) + h (V) (x) -D¢ (x)av(x,S)

- [ ph tey) (9 -To )+ B (Ey) (1 DO ALYy, |

(I

[ o8 ) (05000 = Db (£,7) (£, 600 - (B, () (1) 6 (£, ()
- | A DE, (x) S|
+ |h (V) (x) -Do(x) = h_(£5,V) (£,(x)) Do (£, (x)) | A, DE, (x)° S]]
av(x,S)

<

e v (s,

which proves (ii).

Conclusion (iii) follows from (4) and (5). D

4.12. Constraints on motion.

Here we deduce upper bounds on the rate of change of the

integral of a test function analogous to those of 3.4.

Proposition: If V €2 and m €N, then
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(i) UIE Vi) = V][ (2)1/at (m)
< et @ e, orevZe el
+ (1 + mf4)<n,]¢€(m)*6v|2/¢8(m)*”v”>l/2”v”(9)1/2
+n~d v,
(1i) if i €N, i <m, and ¢ € 4;, then
Lg24vIl(0) = [VI[(a)1/8tm) < 2i%|v](4).
Proof: The proof of (i) will be a by-product of the proof

of (ii).

Letting € = e€(m) and hE = hE(V), and using 4.11(i),
2.10(2), 4.7(i), and 4.6(i,1iii),

(1) Uggviito) = [vie) 1/atm < sv,0) () + *Lv) (o)

A

SV(¢h ) + j he (x) -8 (Do (x))av(x,s) + e2L|v] (¢)

A

= (s o xsv| 2/ x|y ]y - (2 _*6V,D9)
+ 3 niel/2(¢,[@E*SVIZ/QE*“V“)
+ [2 nie + nie™® cy(ise) + e4l]“V”(¢)

+2mies, o ov] Z/e x vy 2 v) ) 12,
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By 4.1(3), Schwarz' inequality, and 4.5(1),
(2) (loxev], oy < ile *sv],9)

< iclerov] /e vl o) 2 (o x| v], )2

< 2i¢lexov| %70 x| V], 6yt 2] (o) /2.
Hence
(3) {“fz#vu(¢) = Iv](¢) }/At (m)

< -1+ 3 nie™21 4, Jo_*6v|%/0 x| v])

+ [21 + 2 niE](¢:|®€*5V|Z/QE*HV”)l/ZHV”(¢)1/2

6

+ [2 nie + nie” c,(ise) + e4l]”VH(¢),

which, by the properties of €(m) in 4.9(1l), is less than
-4 2
(4) -1+ m™"1¢o, [ *sv|®/e _*[v])

1/2

+ 120+ w o, o xev | 2o VDY 2 v (0 M+ v (o)

Taking ¢ = Q@ and i =1 gives (i). The maximum value of

expression (4) is
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(5) (/4 12i + o412 - w7t s 07 v,
which proves (ii).

4.13. Towards a varifold moving by its mean curvature

In this section we do the construction that will give us
a varifold moving by its mean curvature. The rest of the chapter
is devoted to showing that we do indeed have a solution with

the claimed properties.

Let V0 € Q. For all positive integers m and p, choose

0 * . .
the varifolds Vm,pAt(m)' Vm,pAt(m) € f inductively as follows:

(1) \Y =V

* -—
(2) Vm,(p+l)At(m) - fl#vm,pAt(m)'

—- *
Vin, (p+1) at(m) ~ F24Vm, (p+1) At (m) *
where fl € E(Vm,pAt(m)’ o(m), m) is chosen so that

Iyl - i@ < @ - v

Ao(m),m

and
fz(x) = x + At(m)h

e(m)(V;,(p+l)At(m))'

Let Q2 denote the set of nonnegative dyadic rationals, and let

66



Q. = {pAt(m): p €N}.

It follows from 4.12(ii) that for fixed t € Q2 we have

for large enough m

Vg el < 5wl .

By 4.1, the set

voegu: [v@ < ey [}

is compact in the { topology, so we may use a Cantor diagonal

process to choose a subsequence m,, i €N, such that

£ lim VvV £ exists for each t € Q2. Without loss of generality,
ire T
we may assume { lim V =V for each t € Q2.
oo m,t t ==

. . *
The reason for including Vm,(p+l)At(m)

directly from vm,pAt(m)

explicitly instead

of defining V is that

m, (p+1) At (m)

later we will need to talk about smoothed mean curvature and

Lipschitz deformations of the same varifold, V That does

m,t°

not fit in with the alternating nature of the procedure just

defined, but by 4.11 the properties of the smoothed mean

curvature of Vm ¢ are well approximated by the properties of
’
the smoothed mean curvature of V; e It follows from 4.12(ii)
’
that for t € Q2 we have
. * —_
Q lim {Vm,t“ = ”Vt”'
m--cc
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4.14. continuity of [V .

Proposition: If V0 €2 and Vt is as defined in 4.13,

then

o+

(a) We may extend the domain of definition of ”vt” to all

t >0, t g£9Q2, by defining measures on Bn

v

el = o Lim_ ).

s€Q2
(b) If i €N and ¢ €4, then for all t > 0
DIVl < 2V, (o).

() [[v [[(¢) is a continuous function of t at almost every

t > 0.

(d) If ¢, >0 and [V [(¢) is discontinuous at t then

0'

”Vt“(¢) has a jump decrease at tg-

(e) For any t >0, Q iig- “Vt” exists and
0

@ lim_ [jv |l > @ lim [V
t->t t+t0

ell-

(£) |lv]l 1is a continuous function of t at almost all t > 0.

68



(@ If [Vv.| is continuous at t; and s;, S,y.../Mys Mysees

then

are seqguence with Sy € Qmi and lim Sm = tO’

m->oo

v, || = @ lin [V _ |-
v I =9 dim vy o

Remark: The full definition of Vt for all t will have

to wait until we can show rectifiability.

Proof: If i €N, ¢ €4;, m €N, m>1i, and r €Q

then from 4.12(ii) we have

D UV a9 = 10, @ 1/0em) < 252 v o),

|
m,xil

which implies
(2) v (o) < expr2i®ls - x[1[v,] ()
for all r, s €Q2 with r < s. Therefore for any t > 0

(3) Lim_ [[v_] (9)
s>t

s€Q2

exists. Since the set of Radon measures U on 5? with u(Q)

bounded is compact in the @ topology, (3) says that we may
define

v

| = lim_ |v_]|
el = 1im_ v, |

t
s€Q2
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for t ¢ Q2.
Now (b) follows from (2), and (c) and (d) follow from (b).
Since a test function Y € gg(gn) can be approximated by

¢ € di for large enough i, (2) implies

(5) lim_ |V [[(p) > lim [V [ (¥)
t>t t>t
0 0
which proves (e). Furthermore, HVt”(w) can have only a
countable number of discontinuities, and since the space of test

functions is separable, [V | is a continuous function of t

at almost all t > 0, which is (f). Whenever [V | is continuous
at t0 conclusion (g) follows from (1) and the definition of
[Vl in 4.13. O

4.15. Agreement on smooth manifolds.

If the initial varifold represents a smooth manifold, then
it is clearly desirable that the approximation procedure de-
scribed in this chapter should agree with the more straightforward
mapping approach described in 3.1, at least as long as the
latter works. Since the smoothed mean curvature would be very
near the mean curvature in such a case, we could say the two
approaches agree if we can show that the only eligible Lipschitz

maps fl would leave the varifold fixed.
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Theorem: Suppose 0 < y < 1. Then there is my €N such

that if m > m if M €9 represents a k-dimensional manifold

OI
of class g3 without boundary embedded in g? with a normal

neighborhood of radius v/5 and with all sectional curvatures

of magnitude less than 1/y, and if £ €E(M,o0(m),m) then

Proof: The theorem will follow if we can show that for
large enough m there is ¢ € ﬂm such that f#M # M implies
Ieguliter > o)

Let N Dbe a normal neighborhood of spt|M|| of radius
Y/5 and let m: N - spt|[M| be the nearest point retraction.
Since spt|M| is a manifold without boundary, we have
mef(spt|[M|]) = spt[M| and for any nonnegative continuous

function Y
”“#f#M“(w) 2 [Mff (v«

Therefore it is sufficient to find conditions on ¢ that will

guarantee
(1) ”f#M”(¢) Z ”“#f#M”(¢)'
if f#M # ﬂ#f#M. We cannot take ¢(x) = dist(x,M)2 because

¢(x) # 0 by 4.2(i). From 2.8 we have
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(2) ”n#f#MH(¢) = [ ]Aka(x)oS]¢(ﬂ(x))df#M(x,S).

To calculate |Aan(x)°S|, suppose that m(x) = 0, spt|M|

k 5n-k

the graph of F: R™ ~ in a neighborhood of 0, F(0) =

Tank(HV”,O) =g

We may represent S € G(n,k) by

AceoAN g, and X 1is on the x axis.

k+1

s = z 0,8 Aceo A
renln,) M Ak

Y

with ] of =1 (see [FH 1.3.2]). Thus

A, DT(x)es = ay, Dm(x) (e, ) Ac..ADT(X) (e, ).
k ; A —Xl —Ak

Clearly Dn(x)(gj) =0 for j >k, and for 1 < j <k

calculation shows that

k
2
Dﬂ(x)(gj) =gyt Xy izl (3 Fk+l(0)/8xj8xi)gi.

Therefore, one may compute

[ A DT (x)e S| < |Dn(x)(gl) Moo A Dw(x)(gk)l

k
2 2 -1.2
<1+ X1 _Zl 9 Fk+l(0)/3xj + (k + 1)1y Xy 1e

From differential geometry, we have

0]
o~ R

h(M,0) = asz(o)/xﬁ,

)
j=k+1 ~J i=1
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so in general we have
|a, DT (x)es| < 1+ (x = m(x)-h(M,m(x) + (k + Dy x - mx) |2,
It now follows from (2) that if ¢ €4 and
(3) [D26(y) - D2e(n() || < vy - m(v) |[6(nly)) for y €N,
then, using Taylor's formula on ¢(m(x)),
(@ regm(e) < J [1 + (x - m(x))-h(M,7(x))
+ (k + 1)1y-l|x - m(x) Iz] [¢(x) - Do(m(x)) (x - w(x))
- D2o(m(x)) (1(x) - x,7(x) - x)/2
£y THx - w0 Pono)] afg .
If we require that
(5) D¢(z) = ¢(z)h(M,z) and
1

(6) D24 (2) (w,w) > 4(k + 1)1y~

for z €M and w normal to M at 1z, then (4) becomes
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[myEymll(e) < [[£,1] () + J - D29 (m(x) (m(x) - x,7m(x) - x)/2

+ (k + l)!y_l¢(n(x))|n(x) - x]2 + Y_l|x - w(x)|3¢(n(x))d“f#MHx

< lggmfco) - [ o(m(x)) |m(x) - xlzy-ld[}f#M[,’x.

Clearly, for m depending on vy and k, there exists ¢ € dm
satisfying (3), (5), and (6). Thus (1) holds unless 7(xX) = x

“f#M” almost everywhere. )

4.16. Towards rectifiability.

The next few sections show that if a sequence of varifolds
in @ have bounded rates of mass loss, then their limit varifold
will be rectifiable. The main tasks are to prove a lowér density
bound and that the limit has bounded first variation, since these
conditions by [aAwl15.5(1)] imply rectifiability. This first
proposition states that for small balls of low density there are

Lipschitz maps reducing mass drastically.

Proposition: There is a constant c; > 0 such that if

then there exist

v eg, 0 €spt|v], and [V[B(0,1) <c

3

0 <R <1l and a Lipschitz map f£: gﬁ > gn such that
i) f£(x) = x for x ¢ B(O,R),

ii) £(x) €B(0,R) for x €B(0,R), and

iii) ||f#vng(o,R) < (1/2)]||v]|B(0,R) .
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By [AFl.9(2)1,

there exists a Lipschitz map fr: 5? - R"

Proof: For r > 0 let wu(r) = [V[B(0,x).

I

for almost all r > 0
satisfying conclusions (i) and (ii) such that

£ 4vIiB0,2) < 2120750 (x) R/ =)

If conclusion (iii) were false, then for almost all 0 < r

(1) 202025yt (0 1%/ %71 5 L) 2.

Since 0 € spt|Vv|, we have wu(r) >0 for r >0, so (1) may

be integrated to

2
w(1) > [an2k) 7R (eml) ok

2
Thus we need only choose cj5 = 47k 2Ky 7K/ (k1) O

4.17. Monotonicity.

This lemma [AW15.1(3)] says that the rate of decrease of

density ratios as a function of radius is limited by the amount

of curvature present.
) n
Lemma: Suppose V € lk(g ), 0 <M<w® 0<R <R, <o

a € Rn, and

lsvig(a, o) < M|v|B(a,0)

whenever Rl <r < RZ’ Then
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(exp Mr)r-kﬂvﬂg(a,r)

is nondecreasing in r for Ry <r < R,.

4.18. Curvature of limit.

Proposition: If Vir Voreeo €8, 2 lim Vo=V €W,

m->co

i €N, and ¢ €4; then
JIQVMHZMMMWW

< Lim inf (g, |0, %6V |20 x|V ).
m--©

Proof: Suppose C > 0 and

J lg(v,x)|2¢(x)d”v”x > c2,

Then there exists a smooth g: 5? > gn such that

sup{|D(¢g) (x) |/Q(x): ¥ € R"} < o,

SV(¢g) > C2, and

J h(V,x).g(x) ¢ (x)d[V|x

J lg(x) 2o (x)afv[x < c2.

By 4.1 and 4.3(10) we have

§V(pg) = lim @

m->o

e(m)*cSVm(d)g) ’
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hence, using Schwarz' inequality,

C” < lim ¢

m->c

e(m)*évm(¢g)

2>l/2

A

Lin ing (|9 ) 6V 1270 oy 21Vl 6312 o oy IV, 9

Ia

C lim inf({@e(m)*6Vm|2/¢€(m)*”Vm“r¢)l/2-

m->c

Thus
c? < lim inf(s, |0, *sv_|%/e_, V]
= e " 17¢ (m) m g (m)
and the conclusion follows. D

Remark: The possibility of inequality in this proposition
is good evidence that we do not want to require equality in

3.3(L).

4.19. Rectifiability.

Now we show that if a sequence of varifolds has a common
bound on the rate of mass loss, then a limit varifold is rectifiable.
This is not yet talking about Ve being rectifiable. That will
be discussed after we prove the corresponding result an

integrality.
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Theorem: If B > 0, Vir V €8, QlimV =V €,

m->

YRR

”Vm“(Q) < B and

(1) @, e 6V, 1270ty * IV l> - By (my mllVll (R /0E(m) < B

e(m)* m

for all m €N, then
*k Il n
(2) o " (|v],x) > cy/16g for [V|| almost all x €R", and

(3) Vv is rectifiable.

1

Proof: For 0 < R < (4B) ~ define

Foo= {x €B™ RF|V[B(x,R) < c,y/16].

If |x - y| < (1 - 27Y%)R, then
B(y,2"Y*r) < u(x,n),

and so

“L/%py K |viB(y, 27 *R) > 27lr7K

(2 Ivig(x,R) .

Since Q limV_ =V and  lim & *V =YV by 4.3(10), for
m e(m) "m
m->co m->-co
for each x €F there must be M(x) €N such that m > M(x)

R
—l/k)

implies that for |x - y| < (1 - 2 R we have
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(4) (27Y*%r) Ko *v [Bly,27*R) < cy/8.

€ (m)

Choose Ml € N such that

[vial{ix € Fp: M(x) <M D) > (1/2)[[V[(Q]Fp) .

R

Define

Gy = {y €R%: aistly,{x €Fp: M(x) <M} < (1 - 27/F)r},

Since G is open, there is an M, > M such that if m > M

R 2 1 2

then
(5) v litaleg) > (1/2) |[v(aley) > (1/4) V] (a|Fp).

Choose M, > M such that 0(M3) < R/2, and let m > M,.

3 2 3
Define
(6)  E (Rym) = {x €GN spt|v [l: (v [,x) >1
and o(m)—k“¢€(m)*vm”£(x,o(m)) > cy/4}
and
(1 Ey(®Rm) = {x €Gy N spt|v [: O (v [0 >1

and o(m)_kués(m)*vmﬂg(x,o(m)) < c3/4}.

By the definition of @, we have ek(”Vm”,x) > 1 for ”Vm”
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almost all x € 5?, so
(8) [v_l[(2|E  (R,m) U E,(R,m)) = [V [i(2]Gp).

Suppose x € El(R,m). It follows from (4), (6), and 4.17

-1/k

that there is o(m) < r(x) < 2 R such that

“6¢e(m)*vm”§(xrr(x))

1/k

> (27Y%R - o) THan 2) ey *V_[[B(x,x(x))

e (m)

> (l/ZR)“@E(m)*vmng(x,r(x)).

since 8@ *V = () ¥V bY 4.3 and Q(y) < Q(z)exply - z|
by 4.2(i), we have
(9) “@e(m)*évm”(ﬂlg(x,r(x))

> (exp—ZR)(l/2R)“éa(m)*vm“(9|§(x,r(x))).

By the Besicovitch covering theorem 2.2, we may choose a family
of disjoint balls B(x,r(x)) such that, if we denote their

union by W, then
(10) “@E(m)*vm“(n]w)

> g(n)_lHQ *Vm”(Q] U{B(x,xr(x)): x €E;(Rm)}).

€ (m)
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Since r(x) > o(m), it follows from the definition of e(m)

that

(11) 1K *v_ (2] U{B(x,x(x)): x € E;(R,m)})

€ (m)
> (1/2) [V [[E; (Rym) .
Putting (9), (10), and (1ll) together gives

12 gy * 8Vl (9) > B(n) ™F (exp=2R) (1/4R) |V, [[E, (R,m)
or, by Schwarz' inequality,

@10 () * SV 1270 0y * 1V Dl 0 ) Vi (2

> [B(n) " (exp-2R) (1/4R) |V, [E, (R,m) 17,

Hypothesis (1) now implies that

(12) lim sup ||V [E;(R,m) < B(n) (exp 2R)4R(BHV“(Q))1/2.

m

Now suppose that x € EZ(R,m). It follows from the definition

of e(m) that
B2 Ko m)) < 2]jo, 0 *V B (x, 0 ()

so (7) implies that
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-1/k

(2’l/ko(m))‘k“vm“g(x,2 o(m)) < c5-

It follows from 4.16 that there exists 0 < r(x) < 2_l/ko(m)

and a Lipschitz map fx: g? - 5? such that

£.ly) =y for vy ¢ B(x,r(x)),
£.(y) € B(x,r(x)) for y € B(x,r(x)), and
fo#VmHQ(x,r(x)) < (1/2)“Vm“g(x,r(x)).

By the properties of & and o(m),

(13) v llelBGx, ) < 272y _|(a]B(x,x(x)) .

By the Besicovitch covering theorem, we may choose a subset
{xk: A €A} EZ(R,m) such that all the g(xx,r(xx)) are

disjoint and
(14) ljvm“(al U {B(x,,x(x)): & € A})

g(n)_lnvmn(ﬂlLJ{Q(x,r(x)): x €E,(R,m)})

lv

B(m) "tV [[(2]E, (R,m))

v

be]
¥
=,

Define the Lipschitz map £: R by
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£ (y) if f(y) #y for some A €A
A *A

y otherwise.

By (13) and 4.10, we have £ E:E(Vm,o(m),m). Therefore, by (13)
and (14),

-1/2
“Byimy mlVall(® 2 (@ -2 /

YB() YV (2]E, (R,m)).
Hypothesis (1) and At(m) -+ 0 imply that

(15) lim sup ||V [(2|E,(R,m)) = oO.

m->co

Combining (12), (15), (8), and (5) yields
“V”(Q[FR) < 4B(n) (exp 2R)4RB.
This implies
lim [[V[[(Q]|Fp) = o.
R0
Hence
O*k(HV”,x) > c3/16g

for ||V| almost all x € R", which proves (2).
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By 4.18 and hypothesis (1), we have
J |h(v,x) |%2(x)d|v]x < B.

Hence ||8V] is a Radon measure, and we may apply [AW1l 5.5(1)]

to conclude that V Eyggk(g?), which proves (3). O

4.20. Towards integrality.

A sequence of integral varifolds will converge to an integral
varifold under the same hypotheses as we had for rectifiable
varifolds in 4.19. To prove this is the purpose of the next
several sections. The proof follows the same ideas as the
proof of the compactness theorem for integral varifolds in
[AW1 6.4], but is necessarily more complex. We want to show
that the densities of the limit are integers. Knowing already
that the limit varifold is rectifiable, we show that non-integral
density ratios in the approximation varifolds come from "holes"
and therefore lead to large rates of mass loss. This first
lemma is analagous to 4.16 and handles holes too small for the

smoothed mean curvature to detect.

Lemma: If Vv €N, 0 < u < 1, and 0 < ¢ < 1 then there

is y > 0 such that if
(1) vV € ;Zk(gn), >0, w>0, 0<R<g, 0<2p<ao0,

(L - 2)/2v > 1 - exp[-4wcl, p/R > u
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(2) T = e A"'A=Sk € G(n,k);
(3) YcrT!, diam Y <o, and v =) (&5(V|,y): y €¥};
(4) for r >0 and £ > 0 we define

E(r,g) = {x €R": |T(x)| < r, dist(T*(x),¥) < £};
(5) if 0 < r <R then

s = T]av(x,s) < Ygrk; and
E(x,2p)

(6) if 0 < r <R then

by WlVIE, 0) > ~var®;

then
(7) [VIE(R, 0 > (v - z)arK.

Proof: Define
(8) r = inf{s > 0: ||[V|E(s,(1 + s/R)p) < (v - ) as"}.

Hypothesis (3) guarantees that r > 0. If «r > R, then we are
done. Otherwise, we look for a contradiction to (6). Letting

pp = (L + r/R)p, the properties of Radon measures imply

”V”E(r,pl) = (v - g)gyk.
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For the rest of this proof, we shall suppose that
vV = V[_E(r,pl). Noting that T,V is an integral varifold, we
define the set of "holes" A, C QF to consist of all

a € gk(o,r) such that
e (fryviia) < v - 1.
Since
(v - c)grk > v(grk - %k(AO)),

we have

.?lfk(Ao) > cv—l K.

Let 0 < £ < pr/R and n > 0 be arbitrary. By the definitions

of induced mapping and density, there are § > 0 and A C A0

such that

(9) CER @) > (1 - ) v tar®

and for each a € A we have |a| + & < r,

(10) J ]AkDT°D|dV(x,S) < (v-1+ n)gdk, and
g(Tlal 8)

(11) HVHQ(T,a,G) < T’Ig(sk_l.
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For each a € A we will now construct a Lipschitz map

f(a): 5?

- QF that essentially expands a hole to fill up
E(r,pl), replacing V by a varifold whose mass we can estimate

by (10) and (1l1). Define a* = (1 - §/r)a,

Ey(a) = {x €r™: |T(x) - a*| < 2687 H(p; - dist(T*(x),1),
|T(x) - a] <8, and dist(T7(x),¥) < p;J,

Ey(a) = {x €& |T(x) - a*| < 2rg7 (o) - dist(TH(x),¥)),
IT(#)| < r, dist(T'(x),Y) < p1} " Ej (@),

Ej(a) = {x €E,(a): dist(T™(x),¥) < py - £}, and

E4(a) = Ez(a) ~ E3(a).

Let f(a): gn > g? be the Lipschitz map which leaves

gn ~ (El(a) U Ez(a)) fixed, projects Ez(a) radially from

{a*} x gn'k to B(El(a) U Ez(a)), and expands El(a) radially

Rn—k

from {a*} x by a factor of «r/d(a).
Next we calculate the mass of f(a)#V. At each x € gn

define the orthonormal vectors
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31 radial to {a*} x gn'k '

> > k

Ay reeer Ay parallel to R x {0},
3 dial X x {0}, ana

a4, radia to R y an

;k+2 yeeer zn parallel to {0} x gn—k .

Then one may calculate

IpE(a) () (ap) | < 671 if1<is<k and k € Ej(a),
0 if i =1 and x € Ez(a),
2r/|T(x) - a*| if 2 5 i < k and x € E,(a),

(ar? + £HY2/8  if i =k + 1 and x € E (a),

1 otherwise.

Thus, recalling 2.8,

I (a) #v|| (gn) J |AkDf(a) (x) oS |dV(x,S)

1-k

< Rs7K |, pres| + 617 av(x,s)

El(a)

Is - T||[2/|T(x) - a* |15 av (x, )
3 (@)

+
b —

(ar? + £H Y2 s o rj 2/ T (%) - a* |18 rav(x,s
4 (@)

+
—

+

[V [R" ~Ey(a) U E, ()] .
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Using (10) and (11) and various simplifications gives

IN

€@,V @™ < (v - 1 + 2m)ar®

+

(2r + £)g7L j I8 - Tj2e/|T(x) - a* [ 1% Lav (x,5)

+

IV[E(x,pq) ~E(r,0; - 8)].
Integrating this over all a in A yields

(12) f I£a) v (RM a % *a
A

<X @ -1+ 2nark
+ (2r+£)£_lj s —T[[J[Zr/lT(x) - a*| 1% 1ag¥aav (x,s)

+ 5@ |V [E(x,0)) ~E(z,0; - £)].

Now, since a* = (1 + §/r)a and A C gk(o,r - §8), we have for
fixed x
(13) f [2r/|T(x) - a*|1%"lag¥a
A
< J (2r/]T(x) - a*| 1571 (1 + 6/r) "Kaga*
| T (x)=-a*|<2r
< k2Kark |

It follows from (8) that
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(14) IVIE(e,0p) ~Blx,op = ©)1 < k(v - Dar 'er/o .
Plugging (5), (13), and (14) into (12) yields

[ 1£@ v ™ ata
A

< g%@) (v - 1+ 2mar® + (2r + £) £~ LyarXk2Xar®

+ g @ ko - Darler/p .

Therefore, using (9), we conclude that there is an a € A such

that

|£(@),V[[(B) < v - 1+ 20+ (1 + me v + g)g tyk2k

+ k(v - C)ER/pr]grk .

Recalling that n and & were arbitrary and R/p < u_l , We may

choose n, &/r , and Y depending only on Vv, U, k, and ¢ soO

that (1 - ¢)/2 >y and
(15) 1£Ga) VIE® < V" - 27t - et

By 4.10 we shall have f(a) € E(V,0,w) if

|£(a) yV||R" < exp[-w diam E(r,0,)1[V[R"
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This is implied by

1

2l - w -0t > 1 - expl-4wol,

which is implied by hypothesis (1). Since (1 - z)/2 > y , (15)

contradicts hypothesis (6). O

4.21. Larger radii.

The next two lemmas handle the case where the holes are
large enough to be detected by the smoothed mean curvature. This
first lemma is a slight modification of [AWl 6.11, having ry as

the lower bound of radii instead of 0.
Lemma: Suppose

(1) VEN, 0<E<1,1<M<o, 0c< r, < R< =,

T € G(n,k), and V €Y (RM);

(2) Y is a subset of T* with no more than v + 1 elements;

(3) (M + 1)diam Y = R ;

(4 r, < (3v) ldiam ¥ ;

(5) R||8V||B(y,r) < E||V|B(y,r) whenever y € Y and ro < T <R;

and
f
® ] [Is - T|av(x,s) < £||V|B(y,r) whenever y € Y and
B(y,r)
ry <r <R.
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Then there are V,, V, € zk(gn) and a partition of Y into

subsets Yo, Yl, Y2 such that

(7) Vza2v+V,;

(8) Neither Yl nor Y2 has more than V elements;

(9) (M diam Y) ]]6vj|]g(y,r) < M@y + 1) 3vm ¥ (exp £)E|V|B(y,r)

whenever j = 1,2, y € Yj and r, < r < M diam Y;

0
an [ s - Tjaves) < MGw e ©E]v,|B(y,0)
B(y,r)

whenever j = 1,2, y € Yj and rg <r < M diam Y;

(11) vy 2 Vi{x € R":dist(T*(x),Y;) < ry} whenever j =1,2; and

(12) [+ 1% + (v + 1) /) (exp ) [Vl{x:distle,y) < R)
oR

z ] {”VHE(YrrO)/d(k)rE: y € Y4}

. ”Vln(x:dist(x,Yl) < M diam Y}

o (M diam Y)k

. “Vzu{x:dist(z,Yz) < M diam Y}

o (M diam Y)k
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4.22 Density ratios.

This lemma corresponds to [AWl 6.2]. It shows that a nearly
flat varifold passing through several vertically separated points

must have either several layers or a high rate of mass loss.

Lemma: Corresponding to each 1 < A < 2 and Vv € N, there

is y > 0 with the following property: Suppose

(1) veg, Tecslnk), ¥c T* , Y has no more than v elements,

Ok([[V”,y) €N for each y €Y, 0 <0 <R< o,

diam ¥ < YR, € < Yzc, w >0 and 1/4v > 1 - expl[-4wo];

(2)  R||®_#8V|B(y,r) < v[e_*V|B(y,r) and

(3) J [s - Tde _*V(x,8) < v|¢_«V|B(y,r)
B(y,r)
whenever y € Y and Yo < r < R;
k
(4) J s - T”dV(x,S) < yar

{(x,8):|T(x) |sr,dist (T*(x),¥Y) <0}

and

(5) A V|{x:]|T(x)| < r, dist(T*(x),Y) < o} > —Ygrk
o,

for 0 < r < o,

Then

(6) Ao V| {x:dist(x,¥) < R} 2 aR® | {X(|v|,y):y € ¥} .
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Proof: It follows from repeated application of 4.21 and
4.17 to QS*V that there is a Y1 > 0 such that if 0 < y < Yyr
ry, = yo, and (1), (2) and (3) are satisfied, then there is a

partition YO’ Yl, Y2""'Yj of Y such that

(7) diam Yi <g for i=1,2,... and

(8  AYARTE[o_av|{x:dist(x,¥) < R}

-k
2 ] {ry ||o #V|B(Y,xg): ¥ € ¥yl

+ % o'knéa*vn{x:dist(T*(x),Yi) <xrg. T | < ol
i=1

From the definition of @s*V and geometry, it foilows that
there exists Yy > 0 depending only on A and Vv such that if

Yy < Yo and € < yzo then
(9) 40 _«V||B(y,Y0)

-1/4k

2 |Vi[{x:|T(x)| < yor -1/4k

, TH(x) - y| < yo(l-=A
for y ¢ Yo , and
1/4 . L
(10) Ao V| {x:dist (T (x),¥;) < YO, |T(x)| < o}

> [V dist (Tt (0,7, < yoa 4K, reo | s o7V
for i =1,2,...,3.
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It follows from (7) and 4.20 that there is a Y3 > 0
depending on A and Vv such that if vy < Y3 and (4) and (5)

are satisfied, then

) M e | < yor 4K b - ] < yo(a- a7/

v

ar®s*ATL ek (v, v)

for y € Y0 and
(12)  AMYvixeaist (1t 0 ,¥) < yor V2K r i | < oa71/4Ky
2 ] (e AR (v, iy € vy

for i=1,2,...,3.

Letting vy = min{yl, Yo Y3} and combining (8), (9), (10),

(11), and (12) gives the desired result. O

4.23. Integral density ratios.

This lemma is analogous to [AWl 6.3]. It shows that a nearly
flat integral varifold must have a nearly integral number of
layers all over.

Lemma: Suppose V; , V,,... € I8, 0 < d < =, T € G(n,k),

Osr €50 wy >0 for i=1,2,3...,

(1) lim Vv, = 1lim @S *V, = av (T) ,

i > o« i > o i
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(2) lim €./0, = 1lim w,0, =0,
i+coll i >

and for some neighborhood W of 0

(3) lim ||8¢_ VW =0 , and
i > i

(4) lim A v.llw=10 .
im 8o Vil

Then d is a nonnegative integer.

Proof: Suppose V 1is the smallest positive integer greater
than d. Choose 1 < A < = such that Xk+2d < v. Let Yy be

as in 4.22. Choose 0 < R < « such that 2(0,(%2 + 4Y2)R) c W.

For each i =1,2,... let Ai be the set of those
x € B(0,(\ - DR) such that 2|T* (0| < YR and OS(|v;[,x) is
a positive integer. Let Bi be the set of those x € Ai such
that

R”G@ei*ving(x,r) < YHQEi*ViHQ(x,r)

and

J s - Tl|ae, *V(y,S) < Y[|o, *V B (x,x)
X,r) 1 1

flto

(

whenever o < r < R. From the properties of convolution,

[Vl (A -By) < (1+e;/05) uéei*vill{x:dist(x,Ai-Bi) SCFEE

By the Besicovitch covering theorem 2.2,
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“@ei*vi“{x:dist(x,Ai - Bi) < oi}

< y'lg(n){R”d@e‘*vi”g(o,xn) + j s - Tflae, *v, (x,8)].
N B(0,AR) *

By hypotheses (1) and (3)

lim j Is - T|do_ #v, (x,5) = o,
i+ i
B(0,2R)

lim ||V [ [B(0, (A = 1)R) ~ A,] = 0 , and
i—)oo

lim ”6¢£i*viug(0, R) = 0.

i—)oo

Hence
lim ||V, [[[B(0, (A - 1)R) ~ B;1 =0,
1l > o

and so

(5) lim ViLBi = dv[T n B(0,(x - 1)R)].

i > o

For each i =1,2,... let Ci be the set of

a€TnB(O,(A - 1)R) such that
L k
Aoi,wiHVi“{x:]T(x -a)| <r, |T(x - a)| < 2yR} > -yar

and
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f
IIs = T|av(x,8) < yar

{(x,8) :|T(x-a) | <r, |T* (x-a) | <2YR}

whenever 0 < r < R.

By the Besicovitch covering theorem,

#51T 0 BO, (0 - DR) - )]

-1 1/2
Sy g(k)[—Aci'wiHViHB(O,(k + 4v%)

J |s = T|av, (x,8)1.
B(d, (\2+ay%) Y/ 2R) *

By hypothesis,

. 2
Lim A (v, B0, 0% + ayHYZR) =0 ana
1 > @ 1 1
. lim J IIs - T“dVi(x,S) =0,
T * B(0, (A 2+4y?) 1/ 2R)

so, recalling (5),

lim V.| B; N T [ci] = dv[T n B(0,(x - L)R)],

i > o

which in turn implies that
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. -1
(6) lim T#(ViL Bi neT

i—roo

[c,1

1

av[T n B(0, (A - 1)RI.

For each z € T, let Y, (z) A, N 1z} n c;1. Inasmuch

as

Lin o, +Vi[B(0AR) = daa (AR ¥,

i > «
we see that for large i

1 k

. +
”@ei*vin{x:dlst(x,Yi(z)) < R} < Ak doR
for all z € T. By choice of A and 4.22, we see that for
large 1

} < pk*2

I teR(|vylliy) ey € ¥ d < v

whenever z € T and Y is a subset of Yi(z) consisting of no

more than Vv elements. Therefore, if i is sufficiently large,
I eyl wey € ¥ (20 s v -1

for all 2z € T. The definition of mapping varifolds and the

properties of C; imply

[Ty (Vi1B; N T"l[ci]ngn J ) {ek(nvin,y):y € Yi(z)}d%kz

T

IA

v - DEEICl £ v - Dal( - RS
This combined with (6) implies d = v - 1. o

99



4.24. Integrality

We conclude the first part

adaptation of [AWl 6.4].

Theorem: Suppose 0 < B <
(1) Q lim V_ =V €
m > o« m

(2) IVl (2 < B,
(3)

for all m € N. Then V

2
(R 10y %SV 1570 o * (v

proof of integrality with this

PV €

I

7 e

2

and

”> - AG(m),m“Vm”(Q)/At(m) < B

is integral.

Proof: From 4.19 we know

positive integers m and g, let Am q
’

of all x € gn such that

(4) 189 (my *V 1B (x,x

€ (m)

whenever o < r < 1, and

(5) |B(x,x)

Ac(m),m“vm

whenever 0 < r < 1, By using
yield
(6) 162 () *Vill () = [(Q,|¢€(

< B

vV € ggk(gn). For each pair of

be the set consisting

) < q||®, ) *V|B(x,1)

€ (m)

> —qAt(m) ||V [B(x,r)

Schwarz' inequality, (2) and (3)

2 1/2
m)* Vm[ /Qe(m)*vm>”¢e(m)*vm“(g)]
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The Besicovitch covering theorem, (6), and the properties of

Q imply

™ [Vl (2L 8% ~ &y ) < eq 'B(m)E.

Let A consist of all x € 5n such that for some gq € N there

are x € A q for infinitely many m with x = 1lim x_. Then

’ m
m > ©

(7) implies

(8) [v| (2L R® ~ &) = o.
Let A* consist of all x € A such that
0 < e (V)% <=,

Tank(llVll,x) € G(n,k), and

lin p(x)et(-x) v = 6 (V] ,x)xTan’ (v} ,0)] .
r >
Since V ¢ ggk(gn) it follows from (8) and [AWl 3.5(1)] that

(9) [V (2L R" ~ &%) = o.

Let a € A*, and let g € N and al,az,... be such that

mlimm a, =a and an € Am,q‘ For each positive integer j
choose m(j) such that |a - am(j)l <3571 ana
(10) lim (g(j)o;(-x))#vm(j) = lim (g(j)o;(—x))#tbe(m(j))*vm(j)

j+oo j-)-oo

o* (v]|, )y [Tan® (V] ,a)]
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With a view to applying 4.23 to g(j)og(-a)#vm(j), we calculate

lim sup ”6¢j€(m(j))*g(j)o;(—a)#vm(j)”g(o,l)

j—)oo

lim sup “G(Q(j)o;(-a))#(Qe(m(j))*Vm(j))Hg(o,l)

J >
_ k=1 .~1
= 1;m*s:p 3 ”6@e(m(j))*vm(j)”g(a’3 )
. k=1, =1
s 1§m*s:P J “6¢e(m(j))*vm(j)”£(am(j)’23 )
1

IAn

. k-1 .-
lim sup j q”¢e(m(j))*vm(j)”£(am(j)’23 )

j—)oo

257  (vj,a) =0,

A

lim sup jk—1

j >

q

where we used (5) and (10) at the end. Also, by (6) and (10),

PP Ao m3)) m(5) /31 W 22200 4V 5 L0, 1)

j-»oo

. .k .~1
1im S0P =38 m(3)) m(3) V(s 180,370

j—)oo

In

- x =1
lim sup -j Ao(m(j)),m(j)“vm(j)ué(am(j)’23 )

j > ®

[ 73

Lin sup 55aVy 5 B (o 5y 2371 BE(m(3))

n

kj-kek

1m1ij%2 0.

Jj > »

(J|v],a) At (m(3))

102



Applying 4.23 to  (u(3)ex(-2a)) 4V (5 with oy = jo(m(3)),

€
J

must be a positive integer. Since this is true for

all a € R® by (9), we have V € ;lk(gn).

4,25 Times of good behavior.

rate of mass loss.

= je(m(j)), and wj =m(j)/j, we conclude that @k(HV”,a)

V| almost

0

As noted earlier, most of our estimates are in terms of

where the rate of mass loss is small.

Suppose V, € £, and let V and ||V
0 = m,

t el

4.13 and 4.14. For every pair of positive integers

Therefore we are very interested in times

be as defined in

and g

define
W Blam) = {te Q—m:<ﬂrIcpe(m)*5vm,t]2/q’a(m)*llvm,t”)
= b imy ,mliVm, ¢l (@) 78Em) < al .,
(2) PP(q,m) = U{[t,t + At(m)):t € B(g,m)} , and
(3) P(q) = {t € B+: for all n >0 and M € N there exist

(a)

(4)

meN and s € P(gm) such that m > M and

Proposition: Suppose V0 € 2. Then:

If m, g €N, s, t€ gm, s < t, and

”Vm's“(ﬂ) < (g/l6)exp(s - t),
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then

£ s, 1 ~ PR(m,q))

(5)
-4,
< @/@a-ahThgE e - e e
+2(1 + m'4>[[v;r\'sg|(m (t - s)exp 2(t - s)1.
(b) £HEY - U ER@) = 0.
q
Proof: If r € [s,t] n Qn then by 4.13 and 4.12(1i)
(6) V2 ch e om @ = 8 @1/8em)
-4 * 2 *
S (—1 +m )<Ql|®€(m)*6vm’r| /‘bg(m)*”Vm,r”>
-4 2, 1/2 ,
+ @+, e, ooseva 1270, coslva Y v @

nofuE @)+ =2 v @) /et

By 4.12(ii) and hypothesis (4) we have ”V; r”(Q) < g/16. Thus
4

whenever
(@) /at(m) 2 g

2
(7 <Q'lq)s(m)*vm,r| /q?:-:(m)*”Vm,r“> - Ao(m),m”Vm

we can infer from (6) and 4.11(iii) that
B VA cpnem @ = VA @) /8t@ < -1 - n"Hg/2,

104



Since by 4.12(ii) we have for all r € (s,t) n @

(9) [”Vﬁ,r+At(m)“(Q) -HVa,rH(Q)]/At(m) < ZHV;,rH(Q)
< "V&ISH(Q)exp 2(t - s) ,

we must have, using (8) for r ¢ PP(g,m) and (9) for r € PP(q,m),
Ve Gl = @ - n7h (/2 (st - pR(gm)
+ (=8 @+ w2V, [[(@exp 2(t - s)
2 [vx @,
This implies
1
Z ([s,t] ~ g(q,m))
<2q7h - wHTHvE @ - ux @

+ 200 - ) (L + mhvE [(Dexp 2(t - o)},

which proves (a).

It follows from 4.12(ii) that for any m € N with t € @,
v .
(10) [[Vm't“(ﬂ) < exp(2t) ||V, (@)
Thus for g € N such that g > 16 exp(2t)”V0“(Q) we get from (5)

that
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210,41 ~ BR(q,m) < 4q t(L + 21|V (@) .

Recalling the definition (3) of PP(qg), we see that

110,81 ~ PR(@)) < lim inf g1 ([0,t] ~ BR(q,m))

N m o>

< ag7hn 4 2ty @) .

Hence $l([0,t] ~ UJPP(g)) =0 for all t > 0, which proves (b). Qg
q

4.26. Definition of V and basic properties.

t

We now make ||V determine Ve whenever possible, which we

el

shall show is almost always.

Definition: Suppose VO € 2§ and Vel is as defined in
4.14(a). Let T € G(n,k) be arbitrary. For any t > 0 define

Ve € &V by

(1) v () = [[Vt“{x:(x,Tank([IV“t,x)) € A}

+ |V {x:man® (v] %) ¢ 6(n,k) and  (x,T) € A},

whenever A c gk(gn).

By [AWl 3.5(1) (a)], the second quantity on the right hand side

of (1) is zero whenever Vt is rectifiable.
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Theorem: (a) If V, € @, then Vt is rectifiable for

almost all t > 0.

is integral for almost all

(b) If V0 € I, then V

t > 0.

Proof: Suppose q € N, t € PP(q), and “Vt” is continuous
at t. Then by the definition 4.25(3) of PP(gq) there exist
sequences m, and t, , i =1,2,... such that m;, €N,

lim m =, t € P(g,m), and t = 1lim t;. By 4.14(g) we

i+ i > o
have

(2) Vel = 21im v, Ll -
i > o« 1 1

Since
{veav:fvij@ < [v @ + 1}

is compact by 4.1, any sequence <Vm € ):_1 will have a convergent
irti

subsequence, and the limit W of this subsequence will be

rectifiable by 4.25(1) and 4.19. Being rectifiable, by [AWl 3.5(1)]

W is determined by ||W||, which is [Vel by (2). Hence all

subsequences have the same limit W, so lim V = W. Since
. m,,t.
i> i’~i

W = ”Vt” and W is rectifiable, W is the same as the Ve

defined by (1). By 4.25(b), almost every t > 0 is in some PP(q),

and by 4.14(£f) ||V is continuous at almost all t, so Ve is

el
rectifiable for almost all t > 0.
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If V0 € IQ, then the same argument as for (a) with 4.24

replacing 4.19 shows that Ve

4.27 Motion on non-compact test functions

In this section we establish the inequality used to define
motion by mean curvature on our sets ﬂi of test functions.

Compact support test functions are the subject of 4.30.

Proposition: If V, € @, V. is as defined in 4.26, i € N,

and ¢ € di’ then for almost all t > 0

(1) DIV [[(9) < 8(Vys6) (B(V,*)).
Proof: Suppose q € N, t € PP(q), d“Vt”(w)/dt > —q, and
[V ll (@) < a/16.

Let n > 0. Choose Jj € N so that

(1 - 50a/3) (§(V,6) (A(V,,*)) + 2n/3) + (50a/3)31%|[V ] (¢

2 6(Ve,9) (A(Ve,*)) +n

Suppose t € P(m,j) and lim ty, = t. As was shown in
m > o«

the proof of 4.26,

(2) 2 lim Vm,t =V
m > m

and Vt is rectifiable.
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From 4.18 and 4.7(i) we have

(3) J Ih(v.x) |26 (0 a]v,|x

< lim inf (¢,]0

m > o

lim |6

e(m)*vm,tm

lz/q’e(m)*[lvm,tmll) < J ’

))

o> Vm,tm(¢he(m)(vm,tm
2
+ <¢’l¢e(m)* Vi, t | /% (m) *1Vm, £ Il =0,
m m
and hence
(4) - j Ig(vt,x)l2¢(x)dnvt“x 2 lim sup 8V o (¢h () (Vo D).
m > o m m

( .
Since J S*(D¢('))dvé )S

there are T € N and g € %T

(5) J | J

s* (D¢ (x) )dvéx) s

- g(x) % (x) Lav

is a “Vt“ measurable vectorfield,

such that

clx < n?/163 .

Since V., 1is rectifiable, at “Vt” almost all x there is a
unique tangent plane, so

( -
(6) | Is*0e) - gt 1P tav, (x,8) < n/165 .

It follows from (2) that
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(7) lim f Is* (0 (x)) - g(x) 2600ty | (x,8) < n’/163.
'"m

m > t

It follows from (2), (3) and 4.8 that

(8) Lim [ by Vg, ¢ ) (0 g 0A[V, ¢ x

m > o

= J h(Ve,x) <g(x)q|V[x.

We may infer from (3), (5), (6), (7), and (8) that

f
(9) J s* (D¢ (x)) *h(V,,x)dV (x,8) + n/2
2 lim sup f s* (D (%)) *h oy (Vo ) (x)av, . (x,8).
m > ""m S m
Together, (3) and (9) say that
(10) G(Vt,¢)(h(Vt1'))'+n/2 2 lim sup 5(Vm t ,¢)(h€(m)(Vm £t )) .

m > ©

It follows from the preceding argument, 4.9, 4.11(i), and
4,11(ii) that there are Ml € N and Rl > 0 such that if

m>M, |[t-r| <R and r €R(m,j) then

l,
(11) (VA rene (9 = VA, £ (9176 @)
< G(Vtrd’) (Q(Vt,’)) + 2n/3 ,

and if r ¢ P(m,j) then by 4.12(ii)
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(12) VA pem O = IVE L0 1/8em) < 383V 4).

Since d"Vt”(Q)/dt > -g, there are M, € N and R, > 0

such that if m > M,, |lr - ¢] <R and r € Q , then

1 ’
(13) v, el (@) < as16 , and
(14) IV, el (@ = v @] < aqlt - x| .

- - mi 1
Suppose M = max{Ml,MZ} and R = mln{Rl, Ry, lO} , and
suppose m > M, t - R<r <s < t+ R, and r, s € gm. By

(4.25(a), (13), and (14),

(15) £, ~ PR(M,9))

4

< @2/ -nH g - 1)

+ 2(1+m ) (q/16) (s - r)exp 2(s-1)]

< 50(s - r)g/j.
Combining (11), (12), and (15) yields
Vs, gl 0) = [vg o[1/(s = =)

(1-50 a/3) (6(Vy,8) (A(V,,*)) +2n/3) + (500/3) 313V, ] ()

IA

IA

§(Ver9) (B(V,, ) + n.
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Hence

[V, (&) = [V [ (0)1/(s = £) < 8(Vy,9) BVers)) + 1y

and so, since n was arbitrary,

DIV, [ (4) < 8(Vysd) (AVe,®)) - ul

4.28. Upper semicontinuity of §(v,¥) (h(v,*)) in V.

The final step in this chapter is to pass from test functions
without compact support to those with compact support. But first
we prove a semicontinuity result that will be needed for that

final step.
Lemma: If v € c? ®R%RD, v, v € v, (RM
ACIUNG » - =0 = r= ’ ol ll"- =k= ’
n .
Vol Y € ggk(g ), lim*s:p nvi“{xzw(x) > 0} < o« and

lim Vi Ly = VOL Y , then

i »

lim sup G(Vi,w)(g(vi.-)) < G(Vo,w)(g(vo,-))-

i > o«

Proof: Suppose the conclusion were false. Then we could
choose n > 0 and a subsequence of Vi (labeled the same) such

that

(1) lim s(vi,w)(g(vi,-)) > a(vo,w)(g(vo,-)) +n.

i > ®

It follows from (1), 3.4, and the weak continuity of &V in V

that there is B < » such that
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(@ B2 lim sup J by, |2 eoa|v, |x

1 > o

2
2 J lg(vo,x)} v (x)afvg|x.
Assume also that B satisfies
(3) lim sup ”Vi”{x:w(x) > 0} < B.
i > o«

We cannot prove semicontinuity for ¢ directly. Therefore

we use the finiteness of J ]g]zwdnvo” to choose ¢ € C°

¢y ®MED

such that ¢ < ¢ , spt ¢ « {x:9(x) > 0},

(4) §(Vgr ¥ = ¢) (B(Vy,*)) > -n/4,

and

(5) sup{ [DV (x) - Do (x) | 2/|v (x) - ¢ (x)|:x € R"} < n/4B.

Note that (3), (5) and 3.4 imply

(6) lim sup 8§(V;, ¢ = ¢) (A(V,,*)) < n/4 .

i > o

Now we study 6(vi,¢)(g(vi,-)).

It again follows from the weak continuity of 6V in V that

(7) J Ih(vg,x) |26 (0)@|vyllx < lim ing f I vy, | % )afv, |x.
i > o

113



Since [ s*(n¢(-))dvé')s is a ”V measurable vectorfield and

spt ¢ c spt ¢, there is g € C;(R",R) such that spt g < spt ¢

and

J l f st oy x)avi¥s - g0 |20 " tavglx < n/168

where we take the integrand to be 0 when ¥(x) = 0. Since
Vol ¥ is rectifiable, at ”VOHL ¥ almost all x there is a

unique tangent plane, and so

J | J st 0o (x))avi¥'s - g | 2w Tha|vyx
= J |s* (D¢ (x)) - g(X)Izw(x)'ldvo(x,S).

Now |S*(D¢(x)) - g(x)]z/w(x) is a continuous function on gk(gn)
with support in {x € gn:w(x) > 0} x G(n,k), so

(8) lim J |s* (Do (x)) - g(x) %07t

1 >

dVi(x,S)

1

|s* (D6 (x)) - g(x) |2y (x)"tav, (x,8)
0

A

n2/16B.

Since spt g c {x € gn:w(x) > 0} we have

(9 [ st nwvgmagvglx = 6vg(e) = 1im vy (g)

i > o

]

lim J g(x) *h(Vy,x)a[v,]x.

i > o
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We may calculate, using Schwarz' inequality, (2) and (8),

(10) J s* (D¢ (x)) *h(V(,x) AV (x,S)

J g(x) *h(Vy,x)dv,(x,8) + J s* (D ¢(x))

- g(x))-g(vo,x)dvo(x,s)

In

lim J g(x)'g(vi,x)dvi(x,s)

i->00

1

+ 1 Is* 000 - g0 |20 havg e, )12

. [J (v, | 2y a v =l /2

IA

lim sup [ S*(D¢(x))-g(vi,x)dvi(x,s)

1 > o

+ 1lim sup j (g(x) - S*(D¢(x)))'Q(Vi,x)dvi(x,s)

i >

+ (n2/16B)l/2Bl/2

A

lim sup I S*(D¢(x))-Q(Vi,x)dvi(x,s)

i—)oo

1

+ lim sup f 5% (D6 (1)) - g (x) | 2y (30 ~tav, (x,8) 12

1 > ®

1t Inwgo Pvemav, )12+ /s

[
< 1lim sup J s*(o¢(x))-h(vi,x)dvi(x,s) + n/4 + n/4.

i > o

Combining (7) and (10) gives
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(11) §(Vye9) (B(Vy,*)) > lim sup 8(V,,9) (B(V;,*)) = n/2 .

1 > o

Finally, combining (4), (6), and (ll1) gives

8 (Vgu¥) (B(Vg,*)) = 8V, ¥ = ¢) (h(Vy,*)) + 8(Vy,0) (B(Vy, "))

> =n/4 + lim sup §(V;,¢) (h(V;,*)) - n/2

1 >

> -n/4 + lim sup [6(Vi,¢)(g(Vi.'))

1 > ®

- 6(Vi'¢— ¢) (g(vil.))] - n/2

> =n + lim sup 8(V.,9) (A(Vy,*)),

i > o
which contradicts (1). 0

4.29. Motion on compact test functions.

Proposition 4.27 applies to almost all times and to test
functions in the sets di. We now establish the key inequality

for all times and for test functions with compact support.

Theorem: If V, € 2, V. is as defined in 4.26, ¥ € gg(gn,§+)

and t > 0 then

(a) if B|v () > - then V.| {(x,8): ¥(x) > 0}

is rectifiable,

(b) if Vy € I8 and B|v,|(¥) > -= then

Vel {(x,8): v(x) > 0} is integral, and
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(c) BV [[(w) < 8V, ) (B(Viys-))

Proof: Suppose 0 < r < s. For any T > 0, 4.14(b) implies
that BHVA”(W + TQ) has a finite upper bound for 0 < A < s.

Since 4.27 applies for almost all A > 0, we may calculate

m [l = vl

Lim, (V[0 + <) = [, + 50

A

S
lim ipf J Dfv,[[ (v + ) ax
0 r

A

s
lim igf J §(V,, ¥ + 1@ (B(V,,+))dA
>0 r

A

S
Lin inf [ 6(V,,0) (B(V,,7)) + T8(V,,0) (B(V,,)) )
0% r

In

S S
J G(VA,w)(g(vX,-))dA + lim igf T [ ”VA“(Q)dA
r >0 r

IA

S
r

where we have used 3.4 to estimate

§(v,,0) (B(Vy,*)) < HVAH(Q).

For each 0 < B < «» let Eg C g+ consist of those u ¢

b

such that Vu is rectifiable and

(2) 6(Vulw) (g(vur')) > -B.
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For n > 0, let

(3) W= {x € R": y(x) > nl.

Then for 0 < u < t by definition

(4 lsvylin, = | R lalvylx,
n

so by Schwarz' inequality,

(3) J lntv, %) [Pva)vylix

v

[ mwg 0 lalvlx?/] o Ty |
w’ﬂ wn

|v

ntlov, w1271V, ]w, -

Since ¢ has compact support, it follows by judiciously choosing
¢ in 4.14(b) that ”vu“Wn has a finite bound for 0 < u < t.
Referring back to 3.4, we can conclude that for each 0 < B <

there is a 0 < C(B) < = such that if “csvu”wn > C(B) then
(6) 8 (Vo ¥) (B(Vy,+)) < -B.

suppose D [V [(y) > -=. By 3.4,
(7) 8V, (a(v, ) < [[vyll(Iov]?/9)

and since |Dw|2/w is bounded with compact support, 4.14(b)
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implies that there is a finite upper bound K for ”Vu“(|Dw|2/w)
for 0 < u < t. Hence for any 0 < B < » we see from (1) for

0 <s <t
t
(8) [vellwy = vty < f -B d) + j KdA
[s,t]-Eg s

< -BLH(Is,t] ~ By + K(t - 8).

Hence

°Zl([s,t] N EB)
t - s

(9) lim sup =< B'l[D'”vt”(w) - K].

s>t

Suppose u; ., Ugrees € (0,t) n EB and lim u, = t. By 4.14(e),

100

Lim v | | v = vl 1 . since ”‘Wu.”Wn < c(B), [awWl 5.6]

i+
would imply that [lim Vu 1 L_ Wn is rectifiable, so

i i

(10) [lim V_ ] W

i>o uj_ L n
and Vv, L W, would be rectifiable. Now (9) implies that there
is some 0 < B < » sguch that [s,t] N EB is nonempty for all
s<t, so V. L Wn is rectifiable.

Similarly, if V is integral, [AWl 6.5] in place of

0
[AWl 5.6] implies Vt L_ wn is integral. The same basic arguments
hold if D+”Vt“(w) > -w, Since n was arbitrary, conclusions

(a) and (b) follow.
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In regard to conclusion (c), if D[V [[(¥) = -=, we are
done. Suppose D—”Vt”(w) > -w, and let 1 > 0. It follows from
the first part of this proof and 4.28 that there is 0 < B < o

and 0 < s < t such that whenever s < u < t then
(11) £lu,t] - By < (£ - wn/2K,

and if X € [s,t] N EB then

(12) 8(V,,9) (B(V,,+)) < 8(V,,¥) (B(V,,+)) + n/2.
Using (1), (7), (11), (12) and the definition of K,

[Vl = vl

IA

é(vt,w) (g(vt,-)) + n/2 dx + j K dx
[u,t]nE]3 [u,t]—EB

< (t - w) [8(Ve,¥) (B(Ve,+)) + n/2] + (t - u)(e/2K)K

IA

(t = w6V, ¥) (B(V,,+)) + nl.
Hence
D[Vl (¥) < 8V, W) (W(Vy,)) + n.

Since n was arbitrary, conclusion (c) follows. The same

argument works if D+“Vt“(w) > -, O
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5. Perpendicularity of mean curvature.

We shall show in this chapter that if V is an integral
varifold and |[8V] is a Radon measure, then the mean curvature
vector h(V,x) is perpendicular to the varifold at [V| almost
all x. This says nothing about singular first variation, but
there will be no singular first variation present in our applications
in chapter 6.

One may think of the mean curvature vector as pointing in the
direction of increasing mass. On a smooth manifold, mass does not
increase in any tangential direction because of the local flatness;
hence the mean curvature vector is perpendicular to the manifold.

We shall show that the varifolds under study have a certain amount
of local flatness, and then the integral density hypothesis will
imply that there is very little tangential variation in mass.

By definition, integral varifolds are locally flat in the
sense that they have approximate tangent planes almost everywhere.
But this is not quite flat enough. Therefore we have adapted the
method of [AW1l chap. 8]: first we show that a nearly flat piece
of varifold can be approximated with a Lipschitz afunction, and then
we show that this function is nearly harmonic if the first variation
is not too badly behaved. Well-known properties of harmonic functions
give the desired additional flatness.

The Lipschitz approximation theorem 5.4 will be used frequently
in chapter 6 and promises wide application in future studies.

Therefore it is proved in fairly broad generality.
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5.1. Definitions.

Let A(n,k) be the family of affine subsets S + a
corresponding to S € G(n,k) and a € gn.

Let x: 5n > gf be an infinitely differentiable function
such that x(x) is a decreasing function of |x], sét x < B(0,1),
and x(x) =1 when |x| <1 - 1/100k. If 0 <R < =, define

x(R,x) = x(x/R). If T € G(n,k), define XT(R,x) = x(T(x)/R).
Set

o = sup {|DX(x) |, “sz(x)H, |Dx(x)]2/x(x)}.
n
X€R

8 = J xz(x)d%kx.
T

Note that B > (99/100)a. We will often use X2 as an approxi-
mation to the characteristic function of the unit ball. The

square is technically convenient.

In several of the following theorems, there will occur the

expression
(1) [1nv.0 1Po w0 ajvx

where 1 < p < » and ¢ is nonnegative. We extend the meaning

of (1) when ”SV”sing(¢) >0 by

Isv][(¢) when p =1
I|£(V:X)|p¢(X)dHV”x =

L when p > 1.
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5.2, Multiple valued Lipschitz functions.

A nearly flat piece of an integral varifold may be essentially

multi-layered. To approximate varifolds with this behavior, we

shall consider Lipschitz functions f£: =k - M, where Vv €N
and M, is the quotient space of (gg—k)v under the equivalence
relation (wl,...,wv) = (zl,...,zv) if and only if (wl,...,wv)

is a permutation of (zl,...,zv). For y € gk, we let
(f(y)l,...,f(y)v) be any representative of f(y), and if £ is
differentiable at y, then we must understand Df(y)j in the
sense of [Df(y)]j rather than D[f(y)j].

If we define F: 5} > gk x M, by F(y) = (y,f(y)), then we

also define

DF(y)j Dy &»Df(y)j for j=1,...,V.

We further define

*-image F = {x € in: X = F(y)j for some y € gk

and some j = 1l,...,Vv}.

The quotient metric on M, is

v
|w-z| = inf ('z -z 2y1/2

mell i= ﬂ(i)[

v,
1 1

where 1 is the set of permutations of Vv elements. There is a

bi-Lipschitz imbedding of gv in a higher dimension Euclidean
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space, and the image of ﬁv is a Lipschitz retract of the whole
space. Therefore Kirszbraun's theorem [FH 2.10.43] on the
extension of Lipschitz functions applies to gv, but the Lipschitz
constant of the extension may be greater than that of the original

map by some factor c(v).

5.3. Multilayer monotonicity.

This lemma shows that if a nearly horizontal varifold passes
through Vv vertically separated points and has small first
variation, then the varifold has at least Vv layers in a neigh-

borhood of those points.

Lemma: Corresponding to each A, & and Vv such that

0 <A<1l, 1<g<=x and v €N, there is v > 0 with the

following property:

If VeI, (RN, YCR' card Y <v, T €G(nk), 0 <R <

b €T, |b| <R,

(1) ly - z| < g]T*(y - z)| whenever y,z €Y,
(2) &(v|l,y) €N for y €Y,
(3) TRV, y €Y} > v,
@) | ds-rlavixs) < vz,
B(ysr)
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whenever 0 <r <R+ |b|], y €Y, and b# 0 or v >2, and
(5) r|loviBly,r) < v[|[V[B(y,x)

whenever 0 < r <R +|b|] and y €Y, then

(6) V][ {x: dist(x-b,¥) < R} > )\ngk.

Proof: Because of the behavior of the various quantities

under homothety and translation, we may assume T =

o

1 Ne o o A\ Sk

and R = 1.

Suppose the lemma were not true. Then for each m €N there

would be Vi € gk(l;n), Yo € gn, and km €T satisfying

b | <1,

ol 2

(7 ly = z] < EIT'L(y - z)| whenever vy,z €Y

(8) (v _|,y) €N for y €Y,

(9) card ¥ < v, JON(v vy €y} 2 v,

(10) J “S—T”dvm(x,s) < (1/m)“vm“§_(y,r)
B(yrx)

whenever 0 < r < 1 + |bm|, y €Y, and b #0 or v > 2,
(11) rjlsvm[[g(y,r) < (1/m)“vm”g(y,r)

whenever 0 < r < 1 + Ibml and y € Yo and
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i k
(12) [V ll{x: dist(x-b_,¥ ) < 1} < AvaR .
Define Rm to be the supremum of those r < 1 for which
| . k
[Vl tx: dist(x-sb ,¥ ) < s} > Avgs

for 0 < s < r. Condition (9) guarantees R > 0. Now let

- * _ =1

W= g(l/Rm)#Vm, Yo =R Y, and
= . ; - *

Am = {x: dist(x bm,Ym) < 1}.

We will be concerned only with Vo L_ A+ so by cutting out and
moving around chunks of varifold, we may assume that there is

some bounded set containing every Am.

It follows from the definition of Rm that
(13) W A = Ava,
and (11) implies that

iml A =
(14) Lim[iow [A = 0.
-

* . _
To each ¥, @ssociate a v-tuple Z, = (yml""'ymv) such that

{yml""’ymv} = Y; and

card{j: Yoi = ij} h ek(”Wm”'Yi)
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for i =1,...,v. Then, by the compactness theorem for integral
varifolds [AWl 6.4] and the compactness properties of Euclidean

spaces, there are convergent subsequences (labelled the same)

n
wolag»vw eIy (RD,

b +b, Z_ =12, A =+A2, Y;->Y.

It follows from the definition of R that
(15) [|W[[{x: dist(x-sb,¥) < s} > ngsk

for 0 <s < 1. By (14), W 1is stationary in A.
Incase v=1, b=20, and Y = {y}, we see that
y € spt|W||. Hence @k(“W“,y) > 1 by the upper semicontinuity
of density for stationary varifolds [AWl 8.6]. The monotonicity
lemma 4.17 yields |W||u(y,1) > &, which contradicts (13).
Otherwise, it follows from (10) that S =T for W almost
all (x,S) € gk(g?). Being stationary in A, W must be of the

form
(16) W= Jlq;v(T+a;) [ AL,
]
where q € {0} UN and dj € gn. We may suppose Y = {dl""’dv}'

By (1), if i,j < v and 4, # dj' then |T*(di—dj)| > 0. Hence

v
(15) implies z qj > Av. But since W is integral, it must be
j=1

v

true that § g. > v. Then (16) says that [[W[[A > va, which
=1~

contradicts (13) again. O
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Remark: The essential difference between this lemma and
[AWl 6.2] is that hypothesis (5) involves r|/éV|B(y,r) instead
of R||8V||B(y,r). This seemingly slight difference is actually
the key to chapter 6, for it gives rise to apk/(k-p) in
5.4(10) instead of of, and this in turn permits things to
happen in finhite time in 6.7. The proof shows why we are assuming
a discrete range of values for Ok(”VH,x) rather than a continuous

range bounded below away from zero.

5.4. Lipschitz approximation.

Theorem: For each p, v, and € with 1 <p <®, Vv €N,

and 0 < g <1, there exists P with 0 < P < « such that if

(1) V€IV, (RM), T =g A..Ag €G(n,k),
(2) (v-1+e)a < ||v]B(0,1),
[V[B(0,3) < (v+l-e)a3¥,
@ = | |awx [Pafvls,
B(077)
(9 8% = J Is-1|%av(x,s),
B(047)
(5) l1<g<w and 9= J ITLhdlqd“V”x,
B(0377)

then there are Lipschitz maps £: T - M, and F: T > T x M~ such

that

128



(6) F(z) = (z,£(z)) for =z €T,

(7) |£(z) - £(z,) | < c(v)|z) - z,| for z,,z, €T,
(8) sup{]f(z)i :z €T, i=1,...,v} < 4(uq/g)1/(k+q),
(9) Y = {z €B°(0,1): F(z;) €B(0,1) and
O (|V[,F(2),) = card{j: F(z), = F(z);} for i=1,...,v},
X = B(0,1) n *-image F N ()
then
(10) Ivl®o,1 ~x + FE5 0,1 ~ 1)

P[apk/(k'P) + 62 + Uq] }i p <k
<

prg? + u9] if p > k.

Proof: The basic idea of the proof is that the points to
which we can apply the multilayer monotonicity lemma 5.3 cannot
stack up more than Vv deep and are related in a Lipschitzian
manner in horizontal directions.

Let 2/3 < A <1 and 0 < y < 1 be such that
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(11) Avil) (3-9) K > (vel-g) 3K,

w2-n X > vk - g7kl

and Yy works in 5.3 for A and v + 1 with & = 21/2. Let

A be the set of those y € B(0,2) such that Ok(”V”,y) €N,

IT*y)| < v/4, and
(12) | 8V|Bly,xr) < ¥|V|B(y,xr) and

(13) )“S—T“de(X,S) < Yv|B(y, o)

Q(yjr

whenever 0 < r < 5. Define

(14) B = {x €B(0,2) ~a: &(|v],x) €N},
C = T(B).
Suppose 2z € QF(O,Z) ~ C. Then for y €A, T(y) =z, and
0 <r <5 we have from (13) and Schwarz' inequality,
(14) J Is-Tljlav (x,8) < y[v[B(y,x).
E(YIr)
Applying the multilayer monotonicity lemma 5.3 with b = z and

R = 3 - y shows that if
(15) X{ek(”v”,y): y €3, T(y) = z} < v

does not hold, then
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(16) [V]B(0,3) > A(v+1)a(3-y)¥.

By the choice of X and vy in (11), (16) would contradict
hypothesis (2). Therefore (15) does hold.

Next, we put a bound on |T*(y)| for y €A. Let
0= 4[uq/g]l/(k+q) and suppose that |T*(y)| > ¢ for some

y € A. Then by the monotonicity lemma 5.3 we get
IVIB(y,0/2) > (2/2) (a/2)%,
which certainly means that

(a/2) (o/2) K+

v

[ 1zt 1agvx
B(076)

N 2k+q—luq’
which contradicts the definition of u. Hence

(17) sup{|T*(y): y €A} < 4[uq/g]l/(k+q)‘

Now define the set E to consist of those 1z € gk(O,Z) ~ C

such that
[ vy y €, T(x) = 2} = v

and define f: E - M, and F: E > T X M, so that

F(z)i = (z,f(z)i) €A and
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card{j: f(z)j = £(2),} = Ok(“V”,f(z)i)

for i=1,...,v and z €E. To see that F is Lipschitz,
suppose zl,22 €E. If |zl - 22] < y/2, then the components
of F(zl) and F(zz) can be paired off so that

- 1/2 _ .
IF(zq) F(zy) ;| <279z, z,|, or else we could pick v + 1
points from F(zl) U F(zz) and apply 5.3 to get a contradiction

to (3). Thus

|2]l/2

A

(18) |£(z)) - £(z)) | [iZIf(zl)i - £(z,),

< 292z - g ).

Since lf(z)i] < Y/4 holds by the definition of A, we see that
(18) also holds if |z, - z,| > v/2, and so £ has Lipschitz

1/2 on E. We then use Kirszbraun's Theorem as noted

constant 2v
in 5.2 to obtain Lipschitz extensions f: T - M, and F: T + T x M
satisfying (6), (7), and (8).

The rest of the proof verifies (10). First, we estimate

[VIB. Suppose b €B. If it is (12) that fails for b, then we

can choose r(b) such that 0 < r(b) < 5,
(19) [V[B(b,r(b)) > (1/2)ar(b)® and
(20) r(b) [[§V|B(b,r(b)) > y[V|B(b,xr(b)),

either by choosing the smallest r(b) for which (20) holds and

using monotonicity lemma 5.5 to get (19), or otherwise using
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Ok(“V”,b) > 1 to get (19) and (20) to hold for the same r.

Holder's inequality applied to (20) yields

r(0)P Ja(v,%) |Pajv]x

v

J YP|V[B(b,z (b)),
B(bsr (b))

so, using (19),

(21) (YP/2) ax () X 7P,

v

[Pl
Q(b,r (b))

If p >k, then P can be chosen large enough so that either
(10) holds trivially or else o must be so small that (21) cannot

hold and B is empty. Otherwise, if p < k,
r(b) < [ZQP/ng] 1/ (k-p)
and (20) may be replaced by

(22) ) In(v,x) |Pa)v]x > vP1yPa/2aP1% %7P) |y |B (b, (b)) .

g(bjr(b)

If (12) does hold for b, then either [T¢(b)| > v/4 or

there is some r(b) with 0 < r(b) < 5 and

(23) [s-T]%av(x,s) > v2[V[B(b,x(b)).

Q(bjr (b))

Hence the Besicovitch covering theorem 2.2 implies
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(24) e < am® [ jrteo |9agv]x
(072)

llos

+ B(n)y P[2aP/yPq) P/ (K-P) ( f )}g(v,x) |Pajv|x
037

i

+ B(n)y™2 f [s-T|2av(x,s) .
(077)

itw

< (a/p Q9 4 g(n)Y—kp/(k—p)(2/2)9/(k-p)akp/(k-p)

+ B(n)y 282,

but recall that the o term is absent if p > k.

Our next aim is to find out how much of g}(o,z)

is

covered

by less than v 1layers of A. Recall that E is where A has

v layers, and let Q = QF(O,Z) ~ E. When G 1is any

measurable subset of QF(O,Z),
[viteco,2) n ™l 1 < |vjiantiE n o]
+ [vita n e n 61 + [v|B.
Since A has no more than v layers,

v (E n 6 > f | A Tes |av(x,s)
an? " (EnG)

> j 1- k“S—T”de(X,S).
ant™t (Ene)

#

Likewise, since A has no more than v - 1 layers over
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(25)  (v-1E@ n 6 > 1- k“s—T”zdv(x,S).

ant "t (gne)
Hence
(260  [v[[(B(0,2) n TH@ ] < vFEN 6 + (v- LI e
+ X J Is-T|2av(x,8) + |[V|B.
B(042)
Now consider G = gk(o,l). We see from (24) that |[V|[B is

small if o, B, and u are small. Thus we can pick P large
enough so that either (10) holds trivially, or else «a, B, and
u are small enough so that (2) and (26) imply that E n B(0,1)

is nonempty. Then by the multilayer monotonicity theorem and (11)

[V[B(0,2) > Ava(2-y)¥

Hence, using (26) with G = gk(O,Z),

va2k - a7% Ly < v (e - Fi + xe® + [[V]B.

Thus, for large enough P, we may assume

Q) < 47K,

Next, let Q* =Qn gk(o,l). Since .;’Zk almost every point

of Q* is a Lebesgue point of Q, and since %‘k(Q) < 4_kg, we
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can for %k almost every w € Q* choose r(w) with

0 <r(w) <1 and

4-k

(27) #1 n 8B%w,rw))] ar () X,

By the Besicovitch covering theorem 2.2, there is a collection

% of disjoint balls B(w,r(w)) with w € Q* and
(28) @ nud > Fo /.
Using G = U4 in (26) produces

[V[(B(o,2) n D) < viE nu

+ (-1 D + ke + |v]E.

But the condition (27) guarantees that in each B(w,r(w)) there
is x(w) €E with |[x(w) - w| < r(w)/2. Hence the multilayer

monotonicity theorem 5.3 implies that

[VIHy €B(0,2): |T(y) - w| < r(w)} > Avar (w)E
and so

[vi[B(0,2) n T tUB) > wEWH.

o

Thus, using (26) with G = U,
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(29) WD < vEFuBH - Fonub
+ k8% + |v|s.
It follows from (26) that
#wh = *F0 0w,
and so (28) becomes
#nud < (1-0ve"F@ 0w + xe? + |vB.
Using the properties of 2,
#Q nup < 2(x8% + [v]B).
Thence, by (28),
(30) #e*) < 28(k) (k82 + [v[B).
Now to verify (10). We have
B(0,1) ~X cB U [A nT T(a"]1,
so, using (25) with G = Q¥,
(31)  [v[[B(0,1) ~ X] < [[V[B + (v-1)%(0*) + kg2.

Since gk(o,l) ~ Y = Q*, we see from (24), (30), (31) and the
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earlier constraints placed on P that there is P < » such that
[v]iB(0,1) ~ X1 + #(0*)

P[apk/(-k—p) + 82 + uq] if p <k

[

p[8% + 9] if p >k,
which verifies conclusion (10). D

5.5. Tilt of tangent planes.

Here we estimate the total tilt of the tangent planes of a

varifold near a k-plane in terms of more convenient quantities.

Lemma: If V €IV, (R"), T €G(n,k), ¢ €C

p=1 or p=2,

(1) of h(v,x) |Po? (x)a|v]x,

J

(2) W2 = JIT (x) 1262 (x) a|[v]jx,
J
J

(3) e = |l7*) | [po o) |2a)v)x, ana
(4) 82 = |[s-7[%¢% () av(x,s),

then

(5) 8% < axa?/3,%/3 4 1682 if p =1,
(6) 82 < 2au + 1662 if p = 2.
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Proof: Let g(x) = ¢(x)2T*(x) for x € R". Then for

S €G(n,k) we have
Dg(x)-S = 2¢(x)S(T*(x)) +Dé(x) + ¢(x)2Ts
and hence

(b(x)[js-TN? < o(x)%rts

< Dg(x)+S + 2¢(x) |S(T*(x)) D¢ (x) |

A

Dg(x) S + 2¢(x)|[[s-T||T*(x)]||Dd(x) |.
Therefore
f ¢(x) 2||s-1)%av(x,s)
< evig) | + 2 j 6 () [s=T||| T4(x)| |Do (%) |av(x,s)
< |evig) ] + z[fns-Tu2¢2(x)dv(x,s)J]T*(x)|2|D¢(x)|2a”v“x]1/2.
1f 8% < 48, then

(7) 82 < 162,

Otherwise, we must have 62 < 2|8vi(g) |« If p =2, then we use

Schwarz' inequality:

(8) 2|6v(g) | < zJ;g(v,x)|¢2(x>|T*(x)|dnv“x

< 2[f|g(v,x)|2¢2(x>dnv”xJ]T*<x>12¢2(x)anv”x]1/2,
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nd we get conclusion (6) by adding (7) and (8). If p =1,
hen we must be more devious. For a temporarily unfixed constant

> 0, decompose g into g; + 9o where

% (x) T (%) if T | < 1/m,
g,(x) =

0% (x)T(x) M| T (%) | if |T4x) | > 1/M,

0 if  |Thx) | < 1M,
g,(x) =

S ()T Hx) (-1/m|T4(0) ) if |Tx)| > 1/m.

1e may calculate that for S € G(n,k),

|Dg2(x)-S] 2¢(x) [Do(x) | |TH(x) | + k¢2(x)

IA

Do (x) |2]T4(x) |? + (k+1) ()2

A

IA

Do (x) | 2|1 (x) |2 + (k+1)M? | 4(x) | 202 (%)
len |TY(x)| > 1/M. Then

|6vig) | < |8vigy) | + |vig,) |

A

(1/M)”6v”(¢2) + Jngz(x)-SIdV(x,S)

o/M + 52 + (k+l)M2u2.

1A

e value of M that minimizes this expression is

= (a/2(k+1) 1513, Hence
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lsvig) | < (2k+2)l/3a2/3u2/3 + g2 + 2-2/3(k+l)l/3a2/3u2/3,
which, together with (7), implies conclusion (5). O

5.6. Blowing up and shrinking down.

This is the basic theorem for getting improved flatness.
It shows that if there is little mean curvature in a region
compared to the bumpiness of the varifold, then a smaller region
must be flatter. The basic idea is to blow up the varifold,
more vertically than horizontally, to get a harmonic function,
rather than just a tangent plane.

Theorem: If v €N then there exists a constant Cy < o«

such that:

If 0 <6 < 1/18 and M < = then there exists 0 < n < 1

with the following property:

i
(1) V €IV, (R"), a €R%, 0<R<w, A €Aa(nk)),
(2) (v-1/2) a(R/N* < |V|B(a,Rr/a),

[V[B(a,R/3) < (v+1/2)a(r/3)K,
(3) [V[{x € B(a,R): &(|v][,x) # v} < ngr,
(4) dist(a,A) < nR,
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2

R-k_2 dist(x,A)Zd“V“x = pu° <n, and

5 j
(asR)

lo

R—k+l

(6) llsv||B(a,R) = a < M2,

then there is A* € A(n,k) such that

k-2 2,2 2

(7) (6R)~ aist (x,a%) %a|v]x < cjo’u’.

g(aJSR)
Proof: Fix v, 0, and M and define

2 k. 2,kt+2

(8) cy = 81[2 + 2(c(v)+1) Vc39 ko/ (k+4) 1,

where c, is the constant appearing in (48) and (49) below.
Oowing to the behavior of the various quantities -appearing in
(1)-(7) with respect to transformation by homothetities and
Euclidean motions, we see that were the theorem false there would
exist T € G(n,k) and to each i €N there would correspond

n., V., and a, such that
i i i

(9) :!-im ni =0,

1>
(10) v, €1y (R, ay e Ho,
(11) (v-1/2)g < [v,[B(a;,1),

v lBlay,3) < (w1/2)g3%,

(12) [Vili{x €Bla;,9): 6°(|Vy]

,X) # v} < 9kni
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(13) lay| < ony,

(14) 9 k=2 f aist(x,1) 2a|v, [|x = W<,
(a:,9)

w

2

T svatag,0) = op < m2,

(15) 9

and for every A* € G(n,k)

(16) (96) ™7 dist(x,A*)zd“Vi“x > cfezuf.

k-2 f
B(aj,96)

It is not too hard to see that these conditions imply that

(17) lim a, = 0 and
i->o0
(18) iiﬂ v, L Ula;,9) = vy(T nu(o,9)).

For each i ¢ N we let

1 %= ( j )“s-T”dei(x,S),
077

o

and we note that (15) implies uy > 0.
We apply the Lipschitz approximation theorem 5.3 with
e =1/2 to obtain a real number P and mappings fi: T - gv

such that

(20) Fi(y) = (y,fi(y)) for y €T,
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(21) |fi(y) - fi(z)l < c(v) |y-z| for y,z €T,

it c=3(0,1), D=U"(0,1), and

_ . -1
(22) X, =¢Cn *-image F, NT (Yi)'

v, = {y €p: (v [, £ (v)) = card(i: £,(¥) 4 = £ )

and £, (y) €B(0,1) for m = l,...,V}

then
(23) [vilitc ~ x) + # ~ Y.)
P[(9 Mu )k/(k 1 + Bi + ui] if k > 1,
2
p[si + ui] if k=1, and
(24) sup{lfi(y)m[: y €T, m=1,...,v}

< 4(9k+2 2/ )l/(k+2).

From (14), (15), and the tilt lemma 5.5 with ¢ = x(8,°)

we calculate

(25) Bi (9k—lMUi)2/3(9k+2 1/3 + l6(p/8)29k+2 2

A

2/3 k+2 2

[9 M + 9 o /2]u .

A

Therefore, there is a positive real number N so that for all

i € N we have
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(26) sup{Bi,”Vi“(C ~ X)) o+ # o ~ vl < Nui.

Since Fi and fi are Lipschitz, we use Rademacher's
theorem [FH 3.1.6] to see that Fi and fi are differentiable

at .%‘k alsmot all points y € T, and by (21)
(27) [DE, (y) | < e, |DF (y) | <clv) +1

for m=1,...,v. Moreover, we see from (22) and the integrality

of Vv, that
i

(28) J z(x,8)dv, (x,S)
X, 1
1

v
= |, T ey, inase ory () I4DF, (1), [a%)
i
whenever ¢ is a bounded Baire function on g__k(gn) .
We make the following estimates for sufficiently large 1i:

By (28) and the definition of u

i’

(29) [ D o 1%ady
Y. m

1

IA

2
JY. Ig:llfi(Y)mI |AkDFi(y)m|d%ky
1

IA

J aist (x,m) %a|v, [
X,
1

< o2,
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(30) J log, (v) | 2ay
Yi m

|2”image DF, (¥) = T“zdﬂ*y

IAn

JY. %]DFi(y)m
1

A

Y. m
i

A

‘°<V>+l>2J Is-r)2av, (x,9)
X

i

< (e(w+1 M.
By (24) and (26),
2.5
(31) [ I£. (v)_|2afy
DYir% 1om

k+2 2 2/(k+2)Nu2
it

< l6v[9 Ul/g]

By (27) and (26)
(32) [ ZIDfi(y)mlzd%ky < c(v)zNui.
D Yi m

We see from these estimates, (9), and (14) that

(33) lim sup ufzf (If.l2 + IDf.lz)d%k < =, and
: i il i
i->e D

(34) lim sup pIZJ If.]zd%k < ok*2,
i p *
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Using the same reasoning that is well known in the case of
single valued functions, passing to a subsequence if necessary,
we may find an M, valued %’k L_D summable function h* such
that

(35) lim f |n*-uTle, |2a% = o
D 1 1

i-eo

It follows from (12) that h* is single-valued, i.e. there is a

4

% valued X | D summable function h such that

h*(y) = (h(y),...,h(y)). Clearly, by (34),
(36) J |n|2aZ¢ < oX*2,
D

We will now show that h is %k ]__ D almost equal a

harmonic function on D. In order to do this, it will suffice

to show in view of (35) that for each smooth function ¢: D - P

(37) lim “Ilf I p£, (v)_-Dé(y)afy = o.
i Dm

Fixing ¢, 1let

(38) B

sup{|¢(y) ]| + |Do(y)|: y €D},

(39) a) ;= J :% DE, (y)  *Dé (y) aX'y,
D~Y.
1
U0} a5 = | ] 0% (), Dty)-limage DF, () (00 (y)oT) 1 [ ,DF; (1) |0
X
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(41) a, . = J ] image DFi(y)m-(D¢(y)oT)IAkDFi(y)mIdf v

Y. m
i

- GVi(¢oT), and

(42) a4'i = GVi(¢oT).

Note that

4
Wt T oe ypemady =t [ag
Dm u= !

We now estimate the four quantities aj i for large 1i:
’

Using (27) and (26) and (38)
(44) la; .| < c(v) BNy?
1,i! = i°
Using g, as in [AWl 8.14] and (30),
(45) la, .| < c.B| J|pE; (v)_|%a#"
2,il = 22 1PE Wy Y
Y. m
i
2. 2
< _c__zB(c(v)+l) Nuj.
Using (28) and (26),

(46) la

IA

| J D(¢oT) (x) *S AV, (x,S) |

C~X.
i

3,11

IA

B”Vi”(CNXi)

IA

2
BNui.
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Using (15) and (17),

k+2 2

(47) < 9 MBS

|a4'i]

Because n, > 0 and By 0, (37) holds and h is harmonic.
As is well known [FH 5.2.5], there is a positive real

number c,, independent of h, such that when |y| < 1/2

(48)  sup{|h(0)|,|/Dh(0) ]}

1A

c3(f ]hlzd%%)l/z and
D

(49)  |h(y)-h(0)-y-Dh(0) |

A

ey ([ In7ad) 21y |%.

Whenever i is sufficiently large, we let

(50) Li(y) =y + uiy-Dh(O) for y €T,
(51) Ky (x) = L, [T(x)] + u;h(0) for x €RY,
(52) Al = image K, €A(n,k).

If x € C then

(53) x-K; (%) = T(x)=p;h(0)-u;T(x) -Dh(0),

so that, using (48) and (36),

(54) dist(x,A;)

IA

Ix-Ki(x)|

(k+2)/2u

A

dist(x,T) + 2c39 it
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If y EYi and m=1,...,v then
(55) F,(y) =K, (F; (y)) = £ (y) ~u;h(y)+y, [h(y) -h(0)-y-Dh(0)]

so that, using (49) and (36), for |y] < 1/2

(56) I aist(F, (y)_,A;)°
m
2 2,k+2 2, 4
< 2|fi(y)—uih*(y)j +2ve397 “uily |,

Heading into the home stretch, we have

. 2
(57) dist(x,A¥) “a[v,[x

g(olgm

< dist(x,A}) 2d“Vi“x

g(o,f%mxi

. L aist (x,a}) 24| v |/ x.
(C~X,;)NB(0,98) *

Using (28), (56), and (27),

(58) f aist (x,a%) %a|v | x
B(0796)NX, 1
= 1
k
< dist(F, (y) _,a%) " |[ADF, (y) |y
B(0 fge)ny g\ ]k i¥'m

A

2(c(v)+1)kU [£; (¥)=u;h* (y) |2afcy
D

2,k+2 2
+ ve39 2, uy I ly] d%‘ky].

8% (0,90)
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By simple calculus,

(59) f ly|fafy = (ka/ (k+4)) (90) K+,
8% (0,90)
Define
(60) 2, = {z €B(0,90): |r%(z)| > y1/(k+2)y

Then, using (54) and (60)

(61) aist(x,a%) %afv [x
(c~x;)NB(0,96)

2 2 k+2 2
2|TH(x) |© + 8e57 “uia||v,|lx

(c~X;)NB(0,90)

A

A

2 [ Imte0 1 2a)vy)x
Z.
1

2/(k+2)+8c2 k+2 2

+ (2uf 39w vyl erx) .

We shall now show that for sufficiently large i

k+4 2

Iy [l

(62) iviliz; < (98) u-

Suppose not. Then it follows from the Besicovitch covering theorem

2.2 and (15) that there is z € Z; with @k(“ViH,z) > 1 such

that for 0 < r < |T™(z)]|/2,

(63) [6v;[Blz,x) < B(n)|l6v,[Bla;, 9|V, ]B(z,2)/|V,] 2,

2,k-1

< Q(H)Mui9 —k-4

;2 00) v B (2,0
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Letting vy correspond to A =1/2 and v =1 in the mono-

tonicity lemma 5.3, we have, for sufficiently large i,

(64)  rfov[B(z,r) < (u/ ®*2 /2 Jov |B(z,1) < v|V|B(z,5).
So by the monotonicity theorem 5.3,

(65) vyl Bz, T4(2) |/2) > (@/2) |2 *(2) |

Recalling the definition of ui from (14) and the definition

of Z; from (60), we have

(66) 9k+2u§ > (o/2) |1 (z)|k+2 -k-2
> (/2027572
which contradicts lim By = 0. Therefore (62) holds.

i->c0
Combining (57), (58), (35), (59), (61), (26), (62), (9),
and (14) yields

(67)  Lim sup uj*(90) %72

i

dist(x,A;)zd“viux
B(0,76)

k 2 k+2

< [2+2(c(v)+1) "ve k=2

c39 k_/(k+4)](96) +4(90)7%"2,

which, together with (36) and (48), contradicts (8) and (16).

D

Remark: The theorem remains true if hypothesis (6) is replace

by
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(6") rR7K+2 j Ih(v,x) |%a]v)x < nu.
B(a,R)

5.7. Flatness.

Theorem: If V € le(ﬁn) and [8V| is a Radon measure,

then for Vv almost all (y,T) € gk(gn)

(1) lim %73 J |7 *(x-y) |2a)v]x = o.

r-+0 B(y,r)

Proof: For V almost all (y,T) we know that

(2) o* (v .y e,
(3) Tan® (|v],y) = T,
(4) h(v,y) €R",

and hence for V almost all (y,T),

(5) lim r‘knvu{a € Bly,r): ek(uvu,y) # ek(uvu,x)} =0,
r>0

(6) 1lim r k72 f ]Ti(x—y)lzd”V“x = 0, and
r>0
B(y,r)

(7 sup {r_kudvﬂg(y,r)} =B for some B < =
O0<r<1

Suppose y and T satisfy (2)-(7). Assume y = 0, let
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v = o%(|v]|,0), define

(8) u(r)? = ing K72 J dist(x,A)zd”V”x,
A€A(n,k) B(y,r)

and let the infimum be obtained for A(r). By the existence

of a tangent plane at vy,

(9) lim v_ldist(O,A(r)) = 0 and
r>0

(10) lim r 2u(n)? = o.
r~+0

We wish to show that 1lim r_lu(r)2 = 0.
r->0

If 1lim sup r_lu(r)2 > 0, then there is e > 0 such that
r>0

for arbitrarily small v

(11) r-lu(r)2 > €.

-4 -k=-3 -1 .
Choose 6 < Cy and let M = 6 € "B. Let n Dbe as found in
5.6, and choose Ro > 0 so that 5.6 (2), (3), (4), and (5) hold
for a=0, 0<r <R and A = A(r). Choose m €N so that

OI

el—m/2

(12) aRO > n.

Suppose 0 < r < emRo and r—lp(r)2 > €. By the minimality of

A(r)
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(13) %2002 < (r/0) K 2u(z/0) 2.
Hence
(14) (x/8) tu(z/0)2 > oK*Ee,

We carefully chose M so that

-k+1

(15) (x/6) ¥+ |6v|B(0,r/0) < Mu(r/6)2,

which is hypothesis (6) of 5.6. Hence 5.6 says that
(1e) u(r)2 < Ciezu(r/e)z,

or, by choice of 6 and u(r)2,

(17) (x/0) " Lu(r/0)? > o712,

Thus we may repeat this process until we get p € N with

p2m 6Ry < r/oP <R and

0'

1

(18) (x/6®) "tu(r/eP)2 > 67F/ 2,

But by the choice of m, we then have
2

w(x/eP)? > eRoe—m/ e >,

which contradicts u(R)2 <n for R Ro. Hence 1lim r—lu(r)2 = 0.
r->0
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It remains to replace A(r) by T. We do this by comparing
A(r) and A(r/2). For each r > 0, 1let A(r) = T(r) + b(r),
where T(r) € G(n,k) and b(r) € T(r) *. For small r, where
V is nearly a k-plane, a little geometry shows that for some

constant ¢ we must have

]b(r)-b(r/2)| < cvu(r) and

T (x)-T(x/2)]] < culr).
Because there is a tangent plane at 0, clearly

lim b(r) = 0, 1lim T(r) = T.
r~+0 r->0

Thus, when u(s)2 < s for all s < r

) cr2 ™™y (z/2™)

[b(r) | <
m=0
< ] cr3/2;73m/2 < 20r3/2  ana
m=0
r)-t| < ] cutz/2™
m=0
< crl/22"m/2 < 4crl/2.

m=0
Hence A(r) is close enough to T that r—lu(r)2 + 0 implies

lim %73 ]T*(x)lzd“V”x = 0. O
0 B(0,x)
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Remark: When ”6V”sing =0 and h(v,-) is locally square
-k-3

integrable with respect to |[[V|]|, then «r may be replaced by

RS o any 6 > 0.

5.8. Perpendicularity.

Theorem: If V € ;gk(gF) and [év| is a Radon measure,

then
(1) T(h(V,y)) =0
for v almost all (y,T) € gk(gﬁ).

Proof: To prove (1), it is sufficient to show that

(2) lim r Xev (32 (r,--y)w) = 0
r-0
for every w €T with |w| = 1.

From chapter 2 and 5.7 we know that V almost all

(y,T) € gk(gP) satisfy

(3) h(v,y) €R7,
(4) F(v]y) €n,
k
(5) Tan  (||V],y) = T;
(6) sup {r_kHGV“g(y,r)} = B for some B < =, and
0<r<l
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(7) lim K73 |T*(x)|2d”V”x = 0.

0 B(4,1)
Suppose (y,T) satisfies (3)-(6), w €T, |w| =1, and
€ > 0. We may assume that y = 0 and T = &y Nee A &+ Let

Gk(“V“,O). For sufficiently small r > 0 we have:

v =

(8) (v-1/8) ar® < |v[B(0,1),
[V]B(0,3r) < (v1/4)a(3n)¥, ana

(9) IT(x) |%a)v]x < er®*3,

B(0,9r)
Let f£f: T ~» gv and F: T > T x Mv be the Lipschitz

approximations constructed in 5.4, scaled down to B(0,r), and

let X and Y also be as in 5.4.

Let z(x) = X(r,x)z. From 2.9 we have

(10) Sv(gw) = J Dg(x)ew -+ s av(x,s),
and by symmetry we have
23
(11) vf Dz(y)-w d%y = 0.
T

To connect (10) and (11) we define quantities ayree.s8g as follows
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(12) a

J Dz (x)ew + (s-T)av(x,s),

Dz (x)-w d[|V]x,
B(0,xr)~X

o
N
1]

a, = J D;(x)-w(1-|AkT-s]'l)dv(x,S),
X

ay = J Z[DQ(F(Y)m)-DC(y)]'w d%ky. and
Ym

a. = f wDz(y) *w d?g(y.
gk(o,r)w

By (10), (1l1), and Dg(x)®w *+ T = Dz (x)-w,

(13) §v(zgw) = a

+
+
V]

1

Using the tilt lemma 5.4 with ¢(x) = x(8r,x),

k+3

0= B(8r)k from (6), uz = er from (9), 52

from (9) and the properties of ¥, we get

(14) f [s-T[%av(x,s)
B(0,7r)

(BSkrk)2/3(ark+3)l/3 . (p22/4)rk+l

A

(B2/34kel/3 + p25/4)rk+l.

IA

We estimate: using |S(w)-w]| < “S—T”2 and (14),

(15) la, | (20/7) ||s-T||%av (x,s)

IA

B(0,x)

2/34k€l/3 + 028/4)rk;

A

2p(B
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using 5.4 (10) with appropriate scaling, (6), (9), and (14),

(16) lay| + lag| < v(2p/m)p[(B7Fn) X/ (K-1)

2/34ke1/3 925/4)r + (0/8)28r]rk;

+ (B
. ot -1 2
using [1-|A,T°s|™7| < k[s-T||° and (14),

2/34k€l/3 " p2€/4)rk+l;

(17)  Jag| < (20/2) (B

and using the properties of ¥, (9), and F(y)m-w = y'w,

(18)  |a,| = IJY %[IDC(Y)IY/IYI"IDC(F(Y)m)IF(y)m/IF(y)mll’w afy|

A

f Zl(ch(y)I—IDC(F(y)m)I)y/lyI
Ym

+ Ipe(Ey ) Iy Uyl ™) |7 [a#y

A

[ 1 s w20y lyl-lew 1|
Y m

ng?

+ sup (Dz(x)/ x|} |y|-|F(yv)_||afy

ng?

A

(4p/x2) |T4(x) |2 + (20/6%) |7 (x) | 2a)v]x
B(0,r)

6psrk+l.

A

The estimates (15)-(18) are all of order no more than el/3rk,

so as € - 0,

lim r_kGV(Xz(r,')w) = 0. C
r-+0
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6. Regularity

In this chapter we investigate the regularity of integral
varifolds moving by their mean curvature. Because of the close
relationship to parabolic partial differential equations, in
particular the heat equation, one would expect that such a vari-
fold would be an infinitely differentiable manifold, except
perhaps on a set of %% measure zero where several sheets join.

We shall prove in 6.13 that an integral varifold moving by
its mean curvature has the desired regularity, but only under the
hypothesis that the varifold has unit density almost everywhere
at almost all times. Indeed, it is not even known if a stationary
integral varifold, i.e. one with zero first variation, is regular
when multiple densities are permitted. The next section describes
an example showing the problems stemming from multiple densities.
The existence theory of chapter 4 is not yet known to produce
varifolds with unit density, as remarked in 4.9. However, the
physical surfaces that varifolds model always seem to have unit
density.

The idea of the proof is to show that a flat enough piece of
a varifold moving by its mean curvature can be represented as the
graph of a Lipschitz function; the theory of parabolic partial
differential equations then quickly gives the infinite differen-
tiability. To get the Lipschitz representation we show that
surplus mass quickly disappears, that a mass deficit means holes

which cause the varifold to pop like a soap film, and that
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otherwise things tend to average out, analagous to the diffusion

of heat.

6.1. A multiple density example.

We will construct an integral varifold V € ;¥2(§3) with

bounded mean curvature such that there is a set A C R" with

[W]A > 0 for which no element x of A has a neighborhood in
which V can be represented by the graph of a function, even a
multiple valued function.

It is well known that a catenoid has zero mean curvature.
Having in mind a radius R > 0 and an upper bound B for the
mean curvature, one can take a catenoid with a very small central
hole and gradually bend the two sheets together away from the
hole to get a varifold that has mean curvature bounded by B,
that is a double density plane outside radius R, and has a
hole in the middle.

To construct V, start with a double density plane in 53.
Remove a disjoint collection of disks whose union is dense in the
plane yet leaves behind a set A of positive area. Replace
each disk with a section of bent catenoid with a hole so that
the edges match smoothly. The resulting integral varifold V
has integral densities and bounded mean curvature, yet if x €A,
then V has holes in every neighborhood of A and hence cannot
be represented as the graph of a function.

This example is not a varifold moving by its mean curvature

(the construction does not work for zero mean curvature), and it
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would mostly instantaneously vanish under the construction

given in chapter 4, but it cannot yet be ruled out that some
slowly changing version of V would be moving by its mean
curvature. In any case, V does show the need for the unit
density hypothesis for the method used in this chapter. Note
that in V the holes are surrounded by single density, and the
bad points of A are double density. By eliminating the double
density, we eliminate the possibility of holes with small mean

curvature.

6.2. Regularity and sguare integrable mean curvature.

It was shown in [AWl chap. 8] under the unit density hypothesis
that a k-dimensional varifold is almost everywhere a Holder
continuously differentiable manifold if the mean curvature is
locally integrable to a power greater than k. We know from
3.4 that a varifold moving by its mean curvature has locally
square integrable mean curvature. Hence the above result gives
some degree of regularity only for k = 1.

To see what happens in higher dimensions, note that a k-sphere
of radius R has mean curvature k/R and hence total squared
mean curvature of k(k+l)ng_2- Thus for k > 2 one can
scatter infinitely many tiny spheres densely throughout space
while keeping the mean curvature square integrable. The support

of the varifold would be the whole space, so there would be no

chance of regularity.
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We can prove a regularity theorem for a varifold moving
by its mean curvature because tiny spheres and like things

quickly wipe themselves out.

6.3. Clearing out.

This lemma shows that a region with little mass in it

quickly becomes empty.

Lemma: If 2 < m < o then there exists c(m) > 0 such

that if Vt is an integral varifold moving by its mean curvature,

(1) 0<n<w t; ER', 0<R, <o a €R"

or 0 < |o-a] <R

-
!
b
!
Q
N
N
o
onN
Hh

0
(2) $(x) =
0 for Ix_al 2 Ro'
m k
(3) uvtouw ) < nRg,
(4) £ >ty ¥ c(m)nZ/(k+2m)Rg and
2 2
R} = Ry - 4k(t -tg),
then
(5) [vi lB(a,R)) = 0.
1

l64

U



Proof: We will use a fast shrinking test function, similar
to the barrier function of 3.7. Mass near the edge will be left
behind, and mass in the interior must have high mean curvature,
which will wipe it out.

Because of the behavior of the various quantities under
translation and homothety, it suffices to prove the lemma with
ty =0, Ry = 1, and a = 0. We shall let € = 1/(k+2m).

n +

For 0 < t < 1/4k, define R(t) and ¢(t,*): R* = R

as follows:

(2) R(£)? = 1-4kt
R(£)? - lx|2 if 0 < |x| < R(¥)
d)(tlx) =
0 if  |x| > R(t).
Also let &(t) = ”VtH(¢(t,-)m). In what follows, ¢ always

refers to the time varying function just defined, and & means
g(t).

By 3.5,
(3)  DE(t) < 6(V, o™ (v, ) +[[Vy[(3¢7/0¢t),
so by 3.2(3) and the perpendicularity of mean curvature,
(4) DE(t) < -J]b__(vt,x) !2¢“(t,x)d“vt“x

+ J g(vt,x)-nq;m(t,x)d“v [x + ||v,_|(3¢™/3t).

¢l el
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By the definition of mean curvature in 2.9,

m _ m
(5) f BV, ) -De" (£, 0 AV, ]lx = -6V, (0¢™)

—J D%4™(t,x) -5 av, (x,s).

-J[4m(m—l)¢m_2(t,x)(x®x)-2m¢m-l(t,x);]-s th(x,S)

J-4m(m—l)¢m-2(t,x)ls(x)]2-2km¢m_l(t,x)dv(x,s).

Since 3¢™/3t = -4km¢™ 1, we have

(6) Be(t) < -jig(vt,x)]2¢m<t,x)d“vt”x
2 m-2
-4m(m—l)flS(x)] ¢ (t,x)th(x,S)
~2kn j ™ Lie, 0 alv, ) x.

We wish to show Dg(t) < —cE(t)l_ze for a yet to be

determined constant c. If not, then we will have, for some t,
(7) f{g(vt,x>iz¢m<t,x>duvtux < ce()172e,

j|s(x>12¢m‘2(t,x>avt(x,s> < ce(e)172%, ana

1-2¢

J ¢m-l(t,x)dHV x < cg(t)

&

It follows from the Besicovitch covering theorem 2.2 that there

is a point b € R®™ such that Ok(”Vt”,b) > 1 and
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(8) f ln(v % |26™ (6,04 v |x < 3cB(n) £ 2° f orafv.ll,
B(b,r) B(b,x)
2 m-2 -2¢ m
(9) J |s(x) |“¢ (t,x)av, (x,S) < 3cB(n)g J ¢ d”Vt”’
B(b,r) Q(b,r)
(10) ¢m-l(t,x)dHVt”x < 3cB(n) g~ 2¢ f o"allv|l-
B(b,r) B(b,r)

for every 0 < r < », From (10), as r - 0, we see that
¢(t,b) > £2%/3cB(n).

Now consider Vt L_ ¢m. If g 1is a test vectorfield, then

(11) s(vy L ¢™t(g) = J Dg(x)'5¢m(t,x)th(x,S)

j D(¢™(t,x)g(x)) S - g(x)&D¢™ (t,x)*S aV_(x,S)
= J—g(vt,x>-g(x> o™ (£, %) =g (x) +5(D¢" (£,x)) AV _(x,8) .

o™ L (t,x) (-2x),

Therefore, since D¢m(t,x)

(12)  flecv | o™ [B(b,x)

Ia

Bvex) |67 (2,00 v [l
B(b,r)

+ 2m f |s(x)|¢m"l(t,x)dv(x,s).
B(b,r)

for all r > 0. Then by Schwartz' inequality, (8), and (9),
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(13) e, L ¢™[B(b,x)

<

[ v, %) 26" (¢, x) aflv, [l j o™ (t,x) d”vt”x:’l/z
B(b,r) B(b,r)

+2m[ f s (x) | 26™ 2 (¢, %) av (x,s) ¢m(t,x)d”Vt“x]l/2
B(b,r) '

B(b,r)
< BRIV v, | M,

+ 2m[3cg(n)]l/2€-s“Vt L +"[B(b,x)

for all r > 0. Let r(b) = [3cB(n)]1 Y2:%/(2m+1). Then the

monotonicity lemma 4.17 and (13) imply

@D v, L a"mmro) > e larmEE gy, | )b

By the density hypothesis in b, we clearly have

(15) (v, L ¢ > ¢™(e,b) > [£25/3cR(n) 1M

Hence (14) yields

16) vy [ o"lBm,xr0)) > e lal3cB(n) 1™ K/2 ppy1) "k, (mk/2)e

> e7a [3eB(n) 17K/2 (o) ke

Thus, if ¢ is small enough, we have a contradiction to
m;_n
g= v, L ¢o"[R".

Now that we have established
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(17) DE() < -cE(t)172€

we need only integrate to find that £&(t) = 0 for t > €(0)2€/2ce.
Since £(0) < n, we have established the lemma with

c(m) = 1/2ce. ]

6.4. Cylindrical growth rates.

We will later be dealing with nearly flat varifolds and
cylinders nearly perpendicular to them, and we will need estimates
of the rate of growth of the mass in a cylinder as a function
of radius. Note that we get both upper and lower bounds, as
contrasted with the lower bounds of the spherical monotonicity

theorem 4.17.

Theorem: Suppose

(1) T €G(n,k), 0 <Ry <Ry, < 0<ac<w® 0<B<w®,
(2) VvV € l____k(in) and spt[lV| n g(T,O,Rz) is compact,
3 ¢ € RN, spt ¢ < clr,0,1),

¢(x) depends only on |T(x)],

(4) J|Q(V,x)|2¢(x/r)d”V“x < o®r*  for R, <T <R,, and
) J“S—T”2¢(x/r)dv(x,s) < 8%* for R <r <m,.
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Then

(6) RS V[ (6 (x/Rp) ) -7V ][ (8 (x/R ) |

< kB%10og(R,/R)) +aB (Ry~R, ) +82.

Proof: We assume that a = 0. Recall that under our

assumptions, (4) implies [|6V|| c(T,0,R,) = 0.

sing=
For Ry <r; <R,, 2.9 and the boundedness of
spt[Vv|| ng(T,0,R,) guarantee the validity of
(M e/ = 5t [ Tesetmavixs)
+ J T(x) ® D¢(x/r)-S dv(x,S).
Because ¢(x) depends only on |T(x)]|, we have

(8) D¢(x/R) = r(d3¢(x/x)/3r)T(x).

Using the perpendicularity of mean curvature, Schwarz' inequality,

(4), and (5),

(9) | V(¢ (x/x) T (%) /x) |
= ]fg(v,x) s (T (x) /x) ¢ (x/x)dAV (x,8) |
< [Jlg(v,x) l2¢(x,r)dHV”x-J”S-T“zqﬂx/r)dv(x,s)]l/z

< aBrk.
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It is not too hard to see that

2 -2 2
(10) |Tes=k[S(T(x)) |“|T(x)|™%| < k|s-T|*.
We use (8), (9), and (10) in (7) and rearrange:

(11) |(d/dr)f|s<T(x)>|21T<x>l'2¢(x/r)dv(x,S)
- (k/r)j|S(T(x)) ]2|T(x) l'2¢(X/r)dV(x,S) |
< r_lkﬁzrk + aBrk.

Integrating this from Rl to R2 yields

(12) |7k JIS(T(x)) 12 (x) | 26 (x/x) av(x,8) liil
< k821°‘3(R2/Rl) + aB(Rz—Rl).

Because
1-]s(T(x)) | ?|T(x) |72 < ||s-1|?

we can combine (5) with (12) to get

[R5 V[ (6 (x/R) ) ~RTF V][ (0 (/R ) |

< k8%Iog(R,y/R ) +aB (Ry=R ) +82.
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6.5. Expanding holes.

Here we show that, for a nearly flat varifold, thin spots
will expand and thick spots will contract. For later convenience,

the spots expand or contract non-isotropically.

Lemma: If V is an integral varifold moving by its mean

curvature, 0 < p < «,

H

€gln,k), a €R", 0 <t, <t, <o

1 2 !
0 <R R, <1 o= (RZ—RZ)/(t -t.) R(t)2 = R2 + o(t-t,)
1’ 2 ' 2 71 2 17! 1 1’

¢t(x) = XT([X/R(t)]-a),

(1) j T [2afv, x = v¥ () < wPR(6)*? ana
c(T,0,R(t))

(2) a0 = [lntv, x| 26l afv,|x
for t € [tl’tZ]' then

4

(3 s(v, 6D (v, < —ale) 2 + 320%R () hue) ?

for all t € [tz,t2] and there is M < = depending on o such
that

- - 2
(&) RV 6} ) < BV, (167 + ma® |20y Ry/Ry |-

Proof: By 3.3 and because D¢t lies in T, we have, using

Minkowski's inequality,
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2 2.2 )
(5) $e 4D (v, ) = -[Inw 0 1262 v,

¢ | s tme, 0) s v, x,8)

A

~a(t) 242 Jlg(vt,x)IHS‘T“’D¢t(X)I¢t(x)dV(x,S)

Ina

~a(6) %+ (1/8) [ In(v,, 00 1262 () v, [x

+ 4 jfs—THleq‘:t(x) |2av(x,s) .
A slight modification of the derivation of 5.5 yields
2y 2
(6) Jlmpt(x)] [Is-T| av, (x,s)
.1 2 2
<36 12260 12[pIpo, (0 | 124y, [x

+ 2[J[g(vt,x) |2¢12__(x)d”Vt]]xJ|Tl(x) |2 |D¢t(x) |4¢;2(X)d“VHX]l/2

1602R(t) "4u(e)2 + 2a(t) pR(t) "2

A

u(t)

4

alt)?/4 + 320%R(t) "4u(t) 2.

IA

Combining (5) and (6) yields (3).
For (4), we need to find ”VtH(aqbi/Bt). From the definition

of ¢t, we get
(7 Bcbi(x)/at = =29, (x)Do, (x) *x(R' (t) /R(t))

We also have
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2 2
(8) 8V, (¢ (X)T(x)) = -J h(V,,x) -T(x) oy (x)d[[v [Ix

= f 20, (X)D, (x) & T(X)+S + ¢2(X)T-S AV, (x,S).
One finds from (8) that
9 [-26, 6006, x alvlx < kv led)

+2 J ¢ (x)Do, (x) - (S(T(x))-x)aV, (x,8)

+ J (v, ,%) T (x) o2 () a v, [x

+ J 62 (x) (T-5-K)av, (x,S) .

By the properties of G(n,k) in 2.5, the perpendicularity of

mean curvature, spt ¢, < C(T,0,R(t)), Minkowski's inequality, 5.
(10) J-2¢t(x)D¢t(x)-deVt“x < k|v,[(s?)
+ 2 J ¢t(x)[D¢t(x)]”S-T”2[T(x)|th(x,S)
+ [Intvy sz 6o o2 0 afv,
v [ 2ooxls-r|Pav, (x,5)
< kv le2rrarlol i [ 6260 s-1|2av, (x,s)

+ |R(t)2/4o|jlg(vt,x)|2¢i(x)d”vtﬁx
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+ R(t)? J]D¢t(x)|2“S—T”2th(x,S)

IA

kv 62+ Ger o |+1) [2a(8) u(t) + 1602R () "2 (e 2]

+ IR0 %a(6)2/40 [+ [2a(8) u(t) + 16p2R(E) "2y (t) 2]

A

kv e+ 1R 2ate) 220 [+ e+ ] +2) 2o | R () "Ly (1) 2
+ (k+]o]+2) 16p2R (£) 2 () 2.

By 3.5, (3), (7), (10), and (1)

U DIV l(69) < 61V, 62) (a(v, 300+ [V ]| (362/08)

< -a(t)?/2 + 32p2u2R(1)k2

+ k(R'(t)/R(t))“Vt”(¢i) + R'(t)R(t)a(t)2/2|0[

RO /R(E)) [+ |0]42) 20| + 16 (k+ [o|+2) p2] 2.
Since o = 2R' (t)R(t) ; we have
(12) R(t)'kﬁuvtu(¢ﬁ)—kR-(t)R(t)'k‘luvtu(¢§>
< ]R'(t)R(t)_ll[64p2/]0'+(k+]c|+2)2[0' + 16(k+lc]+2)92]u2-

If we let M be the quantity in brackets, then integration of

(12) gives
R(tz)‘k“vt2”(¢§2)—R(tl)'k“vtl”(¢il) < my?|1og R,/R,|.

@]
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6.6. Popping soap films.

The Lipschitz approximation theorem 5.4 shows that a nearly
flat varifold either has nearly integral density ratios or else
has considerable first variation. Here we show that in a moving
varifold, this first variation quickly drives density ratios
towards integers.

Lemma: There are constants clo,cll < « such that if Vt

is an integral varifold moving by its mean curvature,

spt|v._ || nc(T,0,1) 4is bounded,

el

(1) T €G(n,k), 0 <ty <ty <® 0<pe V= 0,1, or 2,
(2) ]T*(x)lzd[W llx < 2 for t, <t <t and
ll Lo 1= %2 %
c(T,0,1)

(3) v, 163 < (W18 - o2

CTLALC M E 0¥ -
then for tl + c11 < t < t2
(4) IV [[(x3) < V& + cqqu2

gliXp) = VE 0™ -

Proof: Suppress the t variable temporarily. Define

(5) o

J|2(V,X)|2X;(x)dﬂvﬂx,

(6) B

[Is-2122 G afvls.
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Then the tilt lemma 5.5 and (2) say that
(7) 62 < 2ap + 16p2u2.
Suppose that v = 0,1, or 2 and

(8) (v-1/2)8

A

VIl(x3) < (w1/2)g.

We want to apply the Lipschitz approximation theorem 5.4 to

B(0,1/9), so we must check 5.4(2). Define r, = 1+ 1/100k.

Then, using a little geometry,
©) Ivlzto,1/9) > [v]c(T,0,x,/9)
- Ve € gt 0,0/9): T4 | > (x;-1) 20}

kd HVH(Xi(r1/9,~)) - 8100k u?

and
(10) IVIB(0,1/3) < [V[[GE(x,/3,4)).

By the cylindrical growth lemma 6.4 and (8),

W) (/9 V[ 6A /9, > V] 63 - 4xe® - ap

> (v=1/2)8 - 4kg% - aB and
-k 2 2
(12)  (ry/3) IVICxp(xy/3,4)) < (v+1/2)8 + 4kB“ + aB.

We may choose 19 large enough so that either (3) is satisfied
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trivially, or else

2 k

(13) 8100ku“ < (o/8)9 .
Combining (9)-(13) with the properties of r; and Y yields

(14)  9K[v||B(0,1/9) > (v-5/8)a - 4kg2 - aB - u/8,

Iv

(15)  3%[V|B(0,1/3) < (v+5/8)a + 8k8% + 2a8.

IA

Therefore either
(16) axg? + a8 > o/8

or else we may apply 5.4 with e = 1/8. 1In the latter case, we

deduce from 5.4 that there is P < o such that

an |95 W6A s, ) -vgl < pa® TR 4 g% 4

a2k/(k_2)

Recall from 5.4 that is not present when k = 1,2.

Using the cylindrical growth lemma 6.4 again,
(18)  |9* v GAE (9, -V ](x3)] < 4x8® + ap.

Combining (7), (17), and (18), we see that there is M < « such

that

2k/ (k-2)

19) |V x3 - vgl < M supla sau, n).
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If ¢y >M and we let E = HVH(xi) - V8, then either (3)

holds or

(20) o > inf{(|E|m) K72/% 0 E12/,%42 )

If, instead, (16) holds, we infer using (7) that

l/2a3/2ul/2 2

(21)  (8k+4p)ay + 2 + 64akp2u? > o/s.

If 10 is large enough, then either (3) holds or there is a

constant &8 > 0 such that (21) implies

(22) a“ > 6.

Then 6.6, (20), and (22) imply

(23 §(v,x) (W, ) < -(/a)inet([e|m F2D/K 82| %250,

Restoring the variable t, we have

(24) BE(t) < -(1/4)inf{(|E(t) |/0) K72 /%, m(e) |2/, 53

Thus the maximum length of time (8) can hold and (3) not hold is
at = sup{akg/ 2mk=2)/K 5,5 5/28}.

If E(tl) starts out greater than clouz, then we see that

2
E(t) < CypH for t > t, + At. If E(tl) < -c

1 then

2
lou 4
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E(t; + At) < -8/2, and we can go through the above with v-1

instead of v. Thus, we take €1 = 2At. m]

Remark: This lemma can be done with v > 2, but it would
require ¥ approximating the characteristic function of B(0,1)

better.

6.7. Truncated heat kernel.

We would like to exploit the close similarity between heat
transfer and motion by mean curvature to show that a varifold
smoothes itself out. To this end, define a truncated kernel for
the heat equation as follows: Fix T € G(u,k). For 0 < t <1

and x € gn let
(1) viex) = gt 2 (172, %) expl-|T(x) | /48],

where ¢ is chosen so that J w(t,x)d%%x = 1.
T

One may calculate that

-k/2

(2) |ap/at-Ay| < (4p/t) (4mt) exp[-1/16t].

6.8. Near diffusion.

Here we show that instantaneously the height of a nearly
flat moving varifold is diffusing like heat. This is done by

looking at the behavior of the varifold with respect to the
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truncated heat kernel just defined. The estimate is in terms of
an upper bound in one direction, but we will later look in all

directions to get a complete estimate.
Lemma: Suppose

(1) VELY (R, T =g A--Ag €60k,

m € {k+l,++e,n}, T >0, 0 <t <1,

(2) spt|[v|]] nc(T,0,9) < {x €R™: T < X, < 3tl,
e
(3) Ok(“V“,x) =1 for |[Vv| almost all x € ¢c(T,0,9),
w IvlB(0,1) > &2, and
5) | v|B(0,3) < (38/2)3%, |[v]c(T,0,9) < 2-9%a.

Then there is < « such that

€15

(6) max 0,8(V,x ¥(t,x-2)) (&(V,x))
8% (0,1/3)

- [V ] (x 30 (£, x-2) /3t) }aFz
A j In(v,x) | %a||v]x
B(0,8)

+ Tt_k/zexp(—l/th) 1.
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Proof: By the convention of 3.2, the conclusion is trivial
unless the first variation of V is entirely represented by the
mean curvature in B(0,8). 1In the latter case,. for each

z €B85(0,1/3), by 3.2,

(7) 6(ermw(trx-z)) (Q(V,X))
= -J|g(v,x)]2xmw(t,x—z)d”V”x
+ J xmg(v,x)-S*(Dw(t,x—z))dv(x,s)

+ J Q(V,X)'éi(gm)w(t,x—z)dv(x,s).
The first term on the right hand side of (7) is nonnegative and
thus can be neglected for conclusion (6). To estimate the second

term, we use the fact that y depends only on |T(x)| and

Minkowski's inequality:

(8) IJ x h(V,x)-S (DY (t,x-2))av(x,s) |

IA

3T j[g(v,xﬂlDw(t,x—z)I”S—T”dV(x,S)

IA

37 J|g(v,x) |2[D\p(t,x-z) la|v]=

+ 3t J“S'Tnlew(t,x-z)|dV(x,S).

We will return to (8) later.

The third term of (7) is the significant one. By the per-

pendicularity of mean curvature and the definitions of 2.9,
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(9) J Q(V,X)-S*(gm)w(t,x-z)dv(x,S)

J }__l(vrx) ‘gmll’(tlx—z)dv(xls)

-8V (g ¥ (t,x-2))

—J gm-S(Dw(t,x—z))dV(x,S).

We next estimate this integral using the Lipschitz approximations
f: 7> T* and F: T » 5? constructed in 5.4 for v =1 and

p=2. Let X and Y be as in 5.4, and note that since v =1

we may take Lip(f) = 1. Estimating as in 5.6 (39)-(41),
W) [ g soute,x-znavix,s) - [ pe () -pule,y-2)afy
T

gm-s(Dw(t,x—Z))dV(x,S)

B(0,1)~X
+ J e rimage DF(y)(Dw(t,y—z))lAkDF(y)I— Dfm(y)'DW(t,y-Z)d%ky
Y
+ J Dfm(y)-Dw(t,y—z)d%ky
85 (0,1)~y
< [Dy (t,y-2) |a|[v]x
Q(Oll) ~X

* & J [s-7? D (t,x-2) |av (x,S)
X

+

Ipy (t,y-2) |afy,
gk(OIl)NY

where ¢ is from [AWl 8.14]. These error estimates are not

2

183



simplified further because later they will be integrated with
respect to z.
Since £ is Lipschitz and ¢ has compact support, we can

integrate by parts:
(11) J DE_(y) Dy (t,y-2) afy
- T
- -| gaw e, y-mady,
T
We then make a similar set of estimates to get back to the varifols

(12)

j fm(y)Aw(t,y—z)dﬁﬁy
T

+

J x A (t,x-2)d|V]x

xmAw(t,y-x)d“V“x
B(0,1)~X

+ J fm(y)AW(t,y—Z)[lAkDF(y)|—1]d%¥y
Y

+ J £ (y) Aw(t,y—z)dgégy
B*(0,1) ~y

< 31 |89 (£, x-2) |d]|v]x
B(0,1)~X

+ 31 g, J HS-THzlAw(t,x—z)]dV(x,S)
X

+ 31 J ]Aw(t,y-z)ld%ky.
BX(0,1) ~v
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(13) JxmAW(t,x—z)d“V”x . fxmaw(t,x-z)/at av]x
< 3t|Ap-dy/at]||[v]c(T,0,1)

< 31(4p/t) ot ¥/ %expl-1/16t1 o351,

To facilitate integrating these estimates over z,

IDw(t,x—z)Idﬂkz and

10 gt
8¥(0,1/3)

]Aw(t,z-x)ld%#z.

15 g, (%)
85 (0,1/3)

I

Therefore, adding (8), (10)-(13), and integrating over

(16) J max {0, 8§ (V,x_(t,x-2)) (b(V,x))
8%(0,1/3)
- Ve du(t,x-2) /ot) }aFz

A

3t j|g(v,x)[2;l(t,x)d”V“x

+ f £ (t,x) + 31z, (t,x)d|V]x
E(Oll)’“x

+ g, JX”S—THZ(cl(t,x) + 31, (t,x))av(x,s)

+ J gy (tyy) + 31;2(t,y)d%ky
8% (0,1) ~¥

+ 31(4p/t) gt %/ Zexp-1/16t103% 188" (0,1/3) .
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One may compute that

(17) sup{z, (t,x): x € R"} < kt™Y2 ana
(18) sup{cz(t,x): x € 5?} < xtL,
Therefore (16) becomes

(19) [ max(0,6(v,x_u(t,x-2)) (B(V, %)

8%(0,1/3)
"“V”(Xm3¢(t,x-z)/at)}d%kz

< 31kt™Y/2 |n(v,x) | 2a|v]x

B(0,1)
+ et™Y 23 ™) v (0, 1) ~x) + 2 (85 (0,1) ~¥) ]
+ gz(kt_l/2+3rkt-l) j ”S-T”de(x,S)

B(0,1)*xG(n,k)

+

31(4p/t) ot ¥ 2exp[-1/16t]302.
From the Lipschitz approximation theorem 5.4

(20) [[V][(B(0,1) ~x)+# (BX(0,1)~¥) < pI In(v,x) |2dv|x
B(0,7)

+ J ”s-T”2dv(x,s)
B(0,7)

. j 7 (x) | 2a[v]jx] -
B(0,7)
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Also, from 5.5 (6) with ¢ = ¥,(8,+) and Minkowski's inequality,
T

(21) [s-T|%av(x,s) < 16(p/8)> IT(x) | %) v/ x
B(0,7) B(0,8)

c20 [ e Paix [ 12teo Pajvia Y2

B(0,8) B(0,8)
< o272 |v||B(0,8)+ ln(v,%) |2a]vx.
B(0,8)
-1/2 -1

Since t < 1, we have t <t -, so we see from (5), (19),

(20), and (21) that there is a constant C1g <@ such that the

conclusion of the lemma holds. ]

6.9. Flattening out.

We apply the previous lemma to a moving varifold to show that
if the varifold is reasonably flat on a certain scale to start
with, then later it is much flatter on a much smaller scale. This
result is somewhat like that of 5.6, but with time thrown in.
However the proof is much different, relying on the heat analogy
rather than blowing up. In 5.6, the curvature had to be small
compared to the roughness, but here it is large, although we are
able to put a bound on the ratio. This is the lemma where the
unit density hypothesis is critical.

We say that a varifold V moving by its mean curvature has

t

wnit demsity if ©°(|v.|,x) =1 for ||v,| almost all x €E

for almost all t > 0.
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Lemma: For any € > 0 there exists 6(e) > 0 such that

if 0 <R < ©(e) then there exist 0 < Ny < 1 with the following

property:

If Vt is a unit density integral varifold moving by its

mean curvature,

(1) T = e (S _G_=(n;k): 0 <1 < nlr

1 =k

0 <ty <ty <o
(2) sptfv [ nc(T,0,9) < {x: |Tx)]| < 1},
(3) B2 < V| x2) < 3g/2,

(4) v iB(0,3) < 3w/2)35,|v jc(T,0,9) < 2-954,

N

for almost all t € [to,tl];

(5) c11 is as in 6.7 and t. + ¢ +1<s, <t

0t °11 0 <t "¢~ L

then there exists A € A(n,k) such that if A =1T* + a,

T* €G(n,k), and a €T% then

(6) [r*-t| < 27, |a| < 21,
(7 SPt”Vt“ n c(T*,a,R) < {x: dist(x,A) < RZ_ET},
(8) (8/2) < (R/9) 75|V, [ 62, (R/9,%)) < 38/2, and
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(9 [v,lB(a,r/3) < (3g/2) (R/3)%, v _[c(T*,a,R) < 2-oRF

el

for s, <t <s

2
for s, + 4(cll+l)R .

0

Proof: We may assume that (2)-(4) hold for all t ¢ [to,tl]

because we will be concerned with integrals over t. Applying
2 2

6.6 with p” = 2a1°, we see from (3) that
2 2 2 2 2
(10) —eloh” < IVelltxgp) - B < efqn
for t0 + c11 t< tl = Cq17¢ This means that there is a limited

amount of mass to be lost in this time interval, and hence a

limited amount of mean curvature. In fact, defining
(11) a(t)? = j]g(v,x)|2x§(x)d“vtux,

by 6.5 (3) we must have

(12) JS -a(0)?/2 + 320%0%ae > JS Bllv, [l (x3)at
s~-1 s-1
S AP = I O s
> -2010u2.
Hence
(13) JS lu(t)zdt < 4legy + 160712,
.

where the relationship of s to s will be defined at eq. (24).

0
1/2

To apply the previous lemma, 6.8, let p = 1 and
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q = 36R€—p, where g will be pinned down later. Let y be a
unit vector in T*, and assume y = en: Define

W, = ;(Ztgm)#vt, so that
(14) spt[w|| nc(T,0,1) < {x: © < x < 31}.

Adjusting for the different scale in 6.8, we infer from 3.6 and

6.10 that

(15) J max{O.HWs“(w(p,x—Z))—HWs_qH(w(p+q,x—2))}d%kz
8% (0,1/27)

S

IA

max{o,ﬁ”Wt”(w(p+s-t,x—s))}dtd%kz
BX(0,1/27)" 574

IA

S
j j max{0, 8 (W, ¥ (p+s—t,%-2)) (b (W,x))
$=9 g¥(0,1/27)

+ W] (v (prs—t,x-2) /ot) }af zat

A

S
J clS(p+s-t)‘l[12+a(t)2+r(p+s-t)“k/zexp(-l/le(p+s-t))]dn
s-q

where the scaling factor involved in applying 6.8 has been absorbed

into Cy5- Using (13) and p < p+s-t < p+q, we have

(16) J max {0, [W_|| (4 (p,x-2))
2?(0,1/27)

- ”Ws_qH(w(p+q,x—z))}d%kz

IA

-1 2 2
Cygp [l + 4(c  +l6pT) ]t

+ c1532(p+q)(z'k)/zexp(-l/l6(p+q))r.
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Define an affine map L: T - R by
(17) L(z) = HWS_qH(xmw(p+q,x)-xmz-Dw(p+q,x)).

To calculate how much W deviates above the plane X, = L(T(x)),
ve first compute how far ”Ws—q “(xmw(p+q,x—z)) deviates. By

Taylor's formula with remainder,
(18) V(p+q,x-2) = yY(p+q,x)-2z*DYP(p+q,x)
1. P
+ J (1-96) (z®z) D Y (p+q,x-062z) ds.
0

One may calculate from 6.7 that for W € T

(19)  Dylt,w) = [DZx(1/2,w)-Dx(1/2,w)ew/t-x(1/2,w)T/2t

k/2exp (- |w|?/at) .

+ x(1/2,w) (wew) /4t2] (4mt) ~

Therefore,

(20) Wg_gll (20 (p+a, x=2)) ~L(2)

((z®2) *D2¥(ptq, x-z2) ) dr

IA

1
31 Jo(l—g)uws_qh

IA

3r]z|24p(4n(p+q))‘k/zexp[—l/ls(p+q)]“ws_q”g(T,o,l)

3t|z|2(20/ (pra)) (4m(ptq)) /2

+

exp[-1/16(p+q) ] “Ws_q“g(T, 0,1)

+

1 2
3 f (1-2) (]z]%/2(p+a)

0
-f[l+(]T(X)|2+[2[2)/(P+Q)]W(p+q,X-CZ)d”WS_q“XdC'
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We may find gq with 36RE < p+g < 72R®  and
(21) o (s-q) < 8(c,o+160%) u%/q.

Then we may use the Lipschitz approximation theorem 5.4 to see

that there is a constant C;g such that when |T(z)|2 < p+tqg we

have
(22) f[1+( IT(x) |%+]2]2) /(p+q) 1W(p+a,x-62) d|W_[ix
<3+ clg(p+q)_(k+2)/2’r2.
Hence, in case (19) holds,
(23) ”Ws_qu(xmw(p+q,x-z))-L(z)
< 3t(]2]%/2(p+@) (3+ep g (prg) K+ /2,2
< 6t|z|%/(prq) if c18(12'+<;{)"(k+2)/212 < 1.

We shall take 1 small enough compared to R so that (23) does
hold.

We have already seen that ”Ws_q”(xmw(p+q,x-z)) approximates
[Wgll(x ¥(p,x-2)), so let's see how the graph of |[W || (x ¥(p,x-2))
as a function of 2z approximates W . This is where the unit
density hypothesis is critical.

By (13), we may find s with so-2(cll+l)R2 <s < S and

(24) a(s)? < 4(c10+16p2)u2R_2.
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Then letting £: T - 7% be the Lipschitz approximation constructed

in 5.4, we see using (24), 5.5, and (14) that there is a constant

c19 such that
(25) W [{x €c(T,0,1/27): x > L(T(x))+67|T(x) |2/ (p+q) }
< #z € 8%0,1/21: £ (2) > Lz)+6t]z|/ (pra) }
+ clgrzR_2 and
(26) J |w_ ]l (2 9 (prx-2)) - J £ (v) ¥(p,y-z) aB'y|afz
B(0,1/27) T
< clgrzR—z.

Estimate (26) is similar to those made in 6.8. Next, we may

calculate
(27) £0(2) - [ £, v, y-2) affy|adt
B(0,1/27) T
P X .
S | J W (t,y-z)/3tf () a% ydtld_»;?(z
g%(0,1/27) 0 T
< I Mp(t,y-2) £ (v) afyat|afz
BX(0,1/27) 0T

2 p
+ 31g J | dy/3t-Ayp|dt
0

DY(t,y-2) -Df_(y) afyat |a#'z

A
—
o o

~ B%(0,1/27)

T
p -
+ 3192 J (4p/t) (4mt) ¥/ 2expl-1/16tlat
0
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IA

p
J f cl(t,y)IDf (y)Id%kydt + pT where %y is as in 6.8 (14
0t "

IA

P -
f [ kt l/2|Dfm(y)|d.%?‘dt + pt
0 ’T

1/2

IA

2kp |DE_(y) |a#* + pr

8%(0,1/27)

< C19P TR + pT.

Combining (25), (27), (26), (16), and (23), we get

(28) f max{0, % ~L(T(x)) =67 |2 (x) |2/ (p+a) }aW_|x
B(0,1/27)
< max{O,fm(z)—L(z)"6T|Z|2/(P+q)}dﬂﬁz + 3T'019TZR_2
k
B*(0,1/27)
< |£0(2) = | £, v(p,v-2) afy |agts
8%(0,1/27) T
+ |f £ () (o, y-2) dBy=W_|| (x_v(p,x-2)) |a% 2
8% (0,1/27) T
+ . f max{o,“ws“(xmw(p,x—z))-HWs_qH(xmw(p+q,x—z))}df%
B (0,1/27)
_ ) P
+ max{O,“Ws_ Ix_w(p+a,x-z)) -L(z)-61|2z]|“/ (p+q) }a&'s
k a
B"(0,1/27)
+ 3c19'r3R-2
< clgpl/er_l+pT + clg’rzR—2

-1 2 2
+ c15[p [1+4(c10+16p )it
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+ 32(p+q)(2—k)/zexp(-l/16(p+q))rl

3,-2
+ 0 + 3c191 R “.
For convenience, write this last quantity as drt.
Now consider the ball B(b,R,) that has radius
R0 = (p+q) /121 and center b in the plane spanned by T and

& and is tangent to the graph of the paraboloid

(29) G={x €R: x = L(T(x))+61]|T(x) Iz/(p+q)}

at the point (0,L(0)) € RS x gn'k. Note that B(b,Rj) is

is entirely "above" G.

We want to apply the clearing out lemma 6.3 to g(b,Ro).

Letting
1- lx—blz/Rg for 0 < |x-a] < Ry
(30) o(x) =
0 for [x-a| > Ry,
note that
3 -6 3 3
(31) o7 (x) = Ry~ (Ry+[x-D|) (Ry=|x-b|)

-3
BRO

A

412(R0—|x-b!) and
2 2
(32) Ry |x=b| < x -L(T(x))+6T |T(x) |“/ (p+q)

for x €B(b,Ry) N sptﬁvt“ nc(r,0,1). Even though it may be
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that B(b,R)) is not entirely contained in ((T,0,1), we can

check that B(b,Rj) N {x: x < 3t} is in ¢(T,0,1). We may thus

modify ¢ +to vanish outside c(T,0,1) without affecting the

following calculations. From (28), (30), and (31) we find that

3..3

(33) “wsu<¢3) < 32r7 %50

< 32'(12/(P+q))k+3<5Tk+6R18.

Hence, by the clearing out lemma 6.3 with m'= 3, we have
(34) Wy pglB (/R =0
when As > Aso, where

(35) Asy = c(3) [32- (12/(p+q)) KF38Ke) 2/ (46) [ (p 0y /1172

= ¢(3) 322/(k+6) (12/(p+q))-6/(k+6) 62/(k+6) , and

Ry)=R) = 4kAs/(Ry+R;) > 2kAs/R,

> c(3)322/(k+6)(12/(p+q))k/(k+6)62/(k+6)T

We want to have 1, p, and g so that

(36) As,. < RZ
0
and
(37) Ry-R, < R*F1/3
when
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(38) As < 8(cll+l)R2.

We also want for (23) that

(39) 2 < cl%(p+q) (k+2) /2

1/2

With p =1 and p+q = 36R®, we see that the only term of

§ in (26) that does not contain a positive power of <t is the
exponential term. For R® small enough, this term is small
compared to the relevant powers of R. Then T can be chosen
small enough compared to R so that & is small enough that
B6), 37), and (38) hold.

Now go back to Vt' Let the soughi:—for A € A(n,k) Dbe
the graph of the affine maps L*: T - T* defined by

L*(z) = nvs_qn(T*(x)w(p+q,x)—T*<x)z-nw(p+q,x>)-
We see that (6) is easily satisfied. To check (7) , note that

|L* (2) +27e -L(2) | < 2rlnvs_qn(w(p+q,x))—1|

+ 2t]z|[[Vg_g IOV (pra,x))

We use the Lipschitz approximation lemma 5.4 as above to see that

HVs_qll(w(p+q,X))-fTw(p+q,y) d?éky < ¢ g(p+a) “k/2.2

and
l“Vs_qH(Dw(p+q,x))1*f Dy (pra,y) afy < opg(pra) (TKTH/2:2,
T
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which shows that

IL*(z)+2Tem—L(z)| < 2°13(P+q)(_k-l)/212

< R2_81/3
for small T.

Since e, Wwas in an arbitrary direction, and the choices

made of times and such did not depend on &,r We put every thing

together to conclude that for x € spt“Vt“ and for
s+AsO <t < s+Aso+8(cll+l)R2
|T(x)-1* (T (x)) | < 2067|T(x) |%/ (pta) ]
+ Ry=R; + R2'61/3.
Hence for IT(x)| < R,
|T(x)-L*(T(x)) | < (R®"®¢ + RZ"S7 + R27Eq) /3.

Finally, we verify (7) and (8). The various upper bounds
clearly hold for Vs’ and by the film popping lemma 6.6 they
remain true. If any of the lower bounds were violated at time t,
then 6.6 would lead to violation of the lower bounds in the

hypotheses at time t + 2cll. O

6.10. Infinite differentiability

Here we show that a nearly flat varifold becomes smooth afte:

a little time. This is done by using the previous theorem induct
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1y

to get spt]Nt“ to be the graph of a HSlder continuously differ-
éntiable function, and then using the near-diffusion lemma 6.8
again to get the function to have continuous second derivatives
and to be a solution of the non-parametric quasi-linear parabolic
partial differential equation mentioned in 3.1. Standard P.D.E.

theory then gives the infinite differentiability.

Theorem: There are constants Cyq < o and T, > 0, such

0
that:

If Vt is a unit density integral varifold moving by its

mean curvature,

(1) T €G(n,k), a €ER’, 0 <ty <t; <« 0 <R<x

(2) Spt“Vt“ n B(a,R) < {x: dist(x,T+a) < TOR},
Ko 112

(3) 8/2 < (R/9) HVth(xT(R/9,')) < 38/2,

(4) v lBta,R/3) < (3y/2) (R/3)* and

“Vt”g(TlalR) < Zng

for all t € [to,tl], then
{(t,x) € (t0+c

2 2
5 R7st ey RY) x Ula,R/3): x € spt|V [}

is an infinitely differentiable manifold.
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Proof: We may assume that T = g Nes e A & a= 0,

t0 =0, and R = 3.

Let € > 0 be arbitrary, and let 6 = 6(e) be as in 6.9.
Let y € gk(o,l). We can apply 6.9 to Ve in ¢(7,y,1) nB(0,3)
because of the boundedness of spt”Vt” given by (2). Applying
6.9 repeatedly, with slightly tilted and every smaller cylinders

of radius oM around y, we find that if
(®)  (epyl) T (eM2 <t < R S R i K
m=0 n=0

then there are Am(t’y) € A(n,k) and F(t,y) € T-l(y) such that

(7 spt|v ] nc(r,y, ™ rB(0,3) < {x: dist(x,A (t,y)) < e‘z‘e’mTo}

for t-62m < s < t + ezm, and
(8) A_(t,y) = lim A (t,y)
m->ce

= Tank(spt“Vt“,F(t,y)) + F(t,y).

_ I m, 2
We take Cyy = (cll+l)m£0(9 ) <.

Let f(t,y) = T*(F(t,y)). Clearly, (7) shows that f is
differentiable in y and HSlder continuous in t with exponent
1-e/2.

Now we establish a little more differentiability for f. 1If
Am(t,y) = Tm(t,y) + am(t,y) with Tm(t,y) € G(n,k) and

a (t,y) €T7l(y), then by 6.9 (6),
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m(l-e)T

(9) [T, (o y) =Ty, (£s9) || < 20 o

(Z-E)mT

(10) Iam(t,y)-am+l(t,y)| < 26 0

Consider Yy1¥Y, égk(o,l). Suppose m €N is such that

6m+ 1

(11) /2 < yymy,l < 6™/2.

Then since (7) holds for ¥y and Yy

. . (2-e)m
(12) dlst(x,Am(t,y)), dlst(x,Am(t,yz)) <8 Ty

for x € spt|v || N C(Ty(y +y,)/2,67/2) nB(0,3).

Hence

(13 Ity =T (k) || < 002790 /(e™/2)

(l—e)mT

< 29 0

e-1 1l-¢
< 41,0 ]yl—y2] .
Then by (9),

(14) I (e yy) =T (E,y) || < [T (Eryy) =T (e ]|
+ “Tm(t,yl)-Tm(t,yz)H+HTm(t,y2)~Tm(t,y2)”

|l/2 +

21y T pll-ela-1

-1/2
< 41,0 / |yl—y2
g=m

-1/2 _ 1/2 (1-¢)m-1,,_,1l-¢ -1
< 4106 Iyl y2| + 21’06 (1-96 )

-1/2 1/2 -2 1-
< 41,6 / Iyl—yzl / +4-r09e lyl—yzl €,
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Hence f(t,y) is HOlder continuously differentiable in y with
HOlder exponent 1l-¢.
Likewise, we can show that Df(t,y) is H8lder continuous

. k
in t. If y €B"(0,1), 9c < t, < t3 < tl—9c21 and

21 2

(15) e2(m+l) 2m’

< lty-tg] <8
then we may assume that Am(tz,y) = Am(t3,y), and therefore by
(9) again

e(l-e)m-l

(16) “Tw(tzly)-Tm(t3,y)H 0

IA

4T

e-2 _ (l-e)/2
<4t Tl e,mty | .

Now we re-examine the error estimates for near-diffusion
as in 6.8 using our much improved smoothness. Letting 1, g, q,
m and 2z, serve the same role as in 6.8, and noting that the
Lipschitz approximations are exact, we can extract from 6.8 (8)

(10), (12), (13) the estimate

(18) a(v,xmw(t,x—z))(g(v,x))—ﬁv“(xmaw(t,x-z)/at)
< 3t JHS-THzlx-zlz/t2w<t,x—z)dv<x,s>
+ g, J”S-T“lew(t,x—z)]dV(x,S)
+ 31, J”S—T“zlAw(t,x-z)ldV(x,S)

+ 37t (4p/t) ot F Zexp-1/16¢] a3 L.
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Take a specific time t2 and a radius R > 0. Re-orient

everything so that f(tz,o) =0 and Df(t2,0) = 0. Let M be
a general purpose constant. Then, from the first part of this

theorem, we can take
(19) x, < M]t-tzll_e/z + M|T(x) |27% and

IIs-1| < MlT(x) |17C + Mlt—tzl(l_e)/z

for |V almost all (x,S) € B(0,1) x G(n,k) and all

el

£ € [ty,t +R%]. Thus

2

(20) S(Vt,xmw(t2+t,x—z))(g(vt,x))—”VtH(xmaw(t2+t,x—z)/3t)

-<— M3[tl—3€/2+|zlz—2€t"€/2+Izl4“3€t—l+lzl2—€t—(l+€)/2]

+ g2M2[|z|2-2€t—l/2+tl/2—‘€]

+ M3[tl—3€/2+lzi2—2€t—€/2+lzl4—3€t-l+|z|2—€t-(l—€)/2]

+ M[tl_e/2+[z]z_e]t_k/z_lexp[—l/th].
Integrating t from t2-q to t2, we find

(21) HVtZH(xmw(p,x—Z))—Hvtz_q“(xmw(p+q),x—Z))

2M3[(p+q)2~3€/2 2-2€(p+q)l-€/2+lzl4‘3€l2n P|+|Z|2_€(P+qﬁl€}

A

+|z|

+ gzMZIIZIZ_ze(p+q)l/2+(p+q)3/2_€]

-k/2-1

+ M(pta) 27 %4 |2 278 (pra) ] (p+@) exp(-1/16(p+q) 1.

203



Now take p+q = R® and p = R>. Then for |z] <R

(22) uthU(xmw(p,x—z))—”vtz_q”(xmw(p+q,x-z))

2M3[R3_9E/4+R7/2_1l€/4+R4_3E|Qn R3]+Rll/4-7e/4]

A

+c M [Rll/4 2e, 9/4-36/2]

+ M[R3-3€/4+R7/2—€]R—3k/4_3/2exp[—l/16R3/2]

Rl7/8/3

for € = 1/100 and small enough R.

Next, we show that ”Vt ”(xmw(p,x—z)) is a good approximatio
2

to fm(tz,z). By judicious rewriting and using the estimates from

(19), we find

(23) ”Vt ”(xmw(p,x—z))
2

£.(9) ¥(p,x-2) | A, DF (y) |afy
T

fm(z)w P,X-2 )dﬁ%y

T

=]

[£,(¥) -£, (2) - (y-2) *DE_(2) 1y (p,x-2) Ay

=]

+ f (y-2z) -Df (z)w(p,x z)d%#y

(V) V(e x=2) [ A,DF (y) |-11a%y

> £,(2) + 0 - { Mly—zlz-ew(p,x—z)dﬁ%y
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[ fm(y)w(p,x-z)kHS-THZd%kY

Iv

fm(Z) _Mpl-e/2_kM2 [p2-3€/2+|z l 2-2€pl-€/2+ l z l 4"3€+ l le—ep(l-E)/z]

Iv

£ (2)-MR3-kae? [RET4E/2, 55776/ 2, pd=3€ 7/ 2-5¢/2

17/8

Iv

fm(z)—R /3

for small enough R compared to M.

Next, the smoothness of ”Vt (2 ¥(p,x-2)). Let H: T »R
2
be defined by

(24) H(z) = uvtz_q”(xm[w(p+q,x)

- z-D¢(p+q,x)+(z®z/2)'D2W(p+qIX)])-

Then by Taylor's theorem with remainder

(25) “Vtz_qﬂ(xmw(p+q,x—z))—H(z)

]

1
Jf (1/2)(l—c)z(z®z®z)'D3w(p+q,X-CZ)dCdHVt —gll®
=0 274

A

lz|3fln3w<p+q,x>lanvtz_qux

2| 3u(p+q) ~3/2

[

R3--3e/2 17/8

< R

[

/3.

Thus, combining (22), (23), and (25),
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(26) £ (t,,2) < H(z)+Rr7/8

for |z| < R. Looking at things from the opposite direction,

we likewise have

(27) T-£ (ty,2) < “Vtz_qH(T-xm)[w(p+q,X)

- Z’DW(p+q,X)+(z®z/2)-Dzw(p+q,x)])+Rl7/8.

Hence

(28) £.(ty,2) > H(z)+1-1[V, | (Y (p+a,x))

2'ql

+ TV, _ lltz+Dy(pra,x) +(z62/2) D7 P(pra,x) 1.

-l

Using the estimates of (19) again,

(29) v, __ [[twipta,x)) < J Y (p+q,x) (1+kDEf (t ,x)z)dﬁkx
t2 q T 2

< 1+kM2 (prq) 1€,
Ve _qlltz-pvtmra, 1 < [ 2-py(pra,n afs
t2 q
+ IIZIIDW(P+qu)IkDf(tz,x)zd%%x
1/2-¢

< kM2]z|(p+q) and

”Vtz_q”[(z®z/2)'Dzw(p+q.X)] < xu?|z| 2 (pra) TE.

Since T < R, we have for |[z]| <R
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(30) £ (ty,2) > H(z)-2r"7/8,

By applying Euclidean motions before and after the fore-
going analysis, we may find such an H for any direction, any
center y € gk(o,l), any time t with €51 < t < tl—czl, and
any small enough R, 4i.e. we have H(t,y,R): T - T% such that

(31) |£(t,2)-H(t,y,R) (z) | < r}7/8

for |y-z| < R. As in 6.9, we find that 1lim H(t,y,R) exists,
R>0

so £(t,z) has second derivatives in z. By comparing
H(t,yl,R) and H(t,yz,R), we see that sz(t,z) is HOlder

continuous with exponent 1/8.

If Df(t,0) = 0, then our estimates imply that
3E(t,0) /3t = Lim|[V[(T*(x) 3 (q,x)/3t)
a0
= Lim[V, [[(T*(x) Ay(q,x))
g0
= Af(t,0).

Again, this can be made to apply to any point in g}(o,l), so
f(t,z) is a classical solution to the non-parametric quasi-linear
parabolic partial differential equation discussed in 3.1 for

c <t < t,=-c

21 1 T21
theory, for example [ES], that £(t,z) is infinitely differentiable.

and |z| < 1. It now follows from standard P.D.E.

O
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6.11. Local regularity

The smoothness theorem 6.10 requires an absolute bound on
the distance of spt“Vt” from a plane T. However, what is
available in practice is a bound on the integral of the square

of the distance. This lemma links the two.

Lemma: There are constants Coyr 023, and no such that

0 < c < c and

22 23 >0 and if Vt is a unit density integral

varifold moving by its mean curvature,

(1) T € G(n,k), 0 < ty <® 0 <R <,

(2) J [T*(x)lzd[[vt IIx < noRk+2, and
B(0,R) 0

(3) w/2 < (R/2) v |B(0,R/2) < 3g/2,

RV, [B(0,R) < 39/2,
then
2 2 |
{(e,x) € (gy+cy RY, o+, 3RT) x U(0,R/2): x € spt”Vth}

is an infinitely differentiable manifold.

Proof: We use the clearing out lemma 6.3. We may assume
that T = £y At A = t0 =0, and R = 4.
Suppose b € QF(O,Z) and y € T%b with |y-b| = 1. Then

B(y,1) <B(0,4). Define
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A
(=]

l-]y-x|2 for ly-x| <
(4) d(x) =
0 for |y-x| > 1.

Since l—|y-x|2 < 2|t*(x)| for x €B(y,1), we have

(5) ”V0“(¢2) < 4 J !TL(X)lzd“VOHX < 4k+3n0.
B(y,1)

Hence, by lemma 6.3, for t > c(2)[4k+3n0]2/(k+4)

(6) v lB(y,R(£)) =0 for R()? = 1-akt.

Now take T and c as in 6.10 and let

0 21
(7 r = 1,/24ke At = 12/432k%c

0 217 0 217
and choose no so that
(8) c(2) (430125 = ae,

Then for At < t < 4At, it follows from (6) that for all

x €spt|v, | n (8%, r) x B"(0,1)),

yTHx) < (1-R(t))+r>

< 2k-4At+r2

2
< 1:0/54kc21 + rro/24kc21

< TNT.
0
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Since the direction of y was arbitrary, we actually have

of* Also, by (7), we have At > chrz. Lemma 6.5

and (3) ensure that 6.10 (4) holds where needed, so theorem

[THx) | <t

6.10 says that
Ue,x) € (20¢,308) x U(k,x/2) x B ®(0,1): x € spt|v,[)

is an infinitely differentiable manifold.

Note that r, At, and are fixed constants, independent

Mo

of b and V so the above analysis holds for all

t'
b €85(0,2). 0

6.12. Main regularity theorem

Finally, we show that V_ is almost everywhere an infinitely

t
differentiable manifold, except when there is a jump decrease

in mass.

Theorem: Suppose V is a unit density integral varifold

t
moving by its mean curvature, ty 0, a € 5n, 0 <Ry <
and lim |V ”(Xz(R ,x-a)) = ||V ”(Xz(R ,x-a)). Then there is a
ttt t 0 tO 0 - T~

closed set B cR" with #(B) = 0 such that if

x, € B(a,R/2)~B, then spt”Vt” is an infinitely differentiable

0
manifold in some neighborhood of (to,xo) in Rt x %,

Remark: Saying "for all x € B with %%(B) = 0" 1is stronge

v

than saying "for L almost all x." Indeed, it is possible

t0”
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to have a unit density integral varifold W such that spt[W]

is a smooth manifold in some neighborhood of |W| almost every
point, yet not in any neighborhood of a very large set of points.
An example may be constructed by taking W to be an infinite
collection of tiny k-spheres that stay away from each other, yet

the closure of the set of spheres has positive %P measure.

Proof: We may suppose that R0 =1 and a = 0.
If B is the set of points where regularity fails, then
B is the complement of a union of open balls, and hence closed.
By the unit density hypothesis and [FH 2.10.19], for %k

almost all x € R" either Ok(“Vt l»x) =1 and
0
Tank(“Vt l»x) € G(n,k), or ek(“vt l»x) = 0. We shall show that
0 0

in the first case the local regularity theorem 6.1l can be applied
shortly before ty except on a set By with %%(Bl) = 0. In
the second case, the clearing out lemma 6.3 will show that a

neighborhood of (to,x) is empty, except for a set 32 with

. —_
ﬂ¥(B2) = 0.
Let B, be the set of x €B(0,1/2) such that
(v, [0 =1 ana Tan®(Jv_ [,x) €g(nX, but spt|v, | is
0 o - £
not a smooth manifold in any neighborhood of (to,x). Consider
some b €B;, and let T = Tank(“vt |l/b). Pick R(b) > 0 so
0
that
(1) J|T*(x)|2x2(R,x—b)d”Vt Iz < nORk+22"k—3 and
0

211



k

(2) 8-1/8 < R~ J XZ(R,x-b)dHVt |lx < g+1/8
0

for 0 < R < R(b). In order for 6.1l1 not to provide a nice

neighborhood of (to,b), one of the following must hold for

every t and R with t = to—CZle/Z:
@ 12400 B3 @ xp alv x> ngrE 2272,
(4) R-k 2 |

X (R,x—b)dhvt”x < B-1/8, or

(5) rRK J Xz(R,x-b)d“Vt”x > B+1/8.

Let B3(t), B4(t), and Bs(t) be the subsets of B where

1
(3), (4), or (5), respectively, fail at time t.

Define
(6) o2ty = J lh(v, % |%q]v, |x and
b =t t
B(b,R)
(7) ui(t) = J|T*(x)|2x2(R,x-b)d“Vt“x.

We shall estimate how fast various integrals can change in terms
of o and B.

Let ; € 3(5?,5?) be like ¥ in depending only on |x|,
having spt x ©<B(0,1), and x(x) = 1 for x € B(0,3/4), but
also suppose x(x) < x(x) and |DX(x)|, ”Dzi(x)“ < My(x) for

all x for some constant M.
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Let us look at B3(tl) for a particular time tl. Con-

sider a point b € B3(t2). In going from (3) holding at ty

to (1) holding at to, something must happen to the excess

IT*(zH . First, we find out what happens if the excess tries

moving towards T.

Let R be the above-mentioned radius corresponding to tl.
i . 3,,n _+
Define functions Ty C1p’ Cap € go(g /R') by

(8) 21, (0) = x?(R,x-b) (1-|T*(x-b) |2/R?),
Sop(®) = x?(R,x-b) |2 *(x-b) |2/R?,  ana
L (x) = g (x) + g, (x).

These functions will be used to detect the motion.

Suppose tl < t < to. Using 3.3 and Schwarz' inequality,
2
(9) §(Vergy) (v, ) = —Jlg(vt,x)] gy (x)dfjv, =

+J g(Vt,X)'S*(Dcl(X))dV(x,S)

1A

f B(V,,%) -8 *[2X (R, x) DX (R, %) (1-|T *(x) | 2/R%)

—ziz(R,x)T*(x)/RZJdvt(x,S)

IA

f 2|n(V,, %) | [X(R,%) |s “(DX(R,%)) |

+i2(R.x)IT*(x)lR"ZJth(x,s)
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< 4{f!g(vtrx>|2i2<R.x>anvt“x
—[flSJ'(Di(R,x)) |2 + R—4)22(R,x) IT‘L(x) lzdvt(xls) ] }1/2'

From the properties of ir

(10) |S*(DX(R,x)) |

A

|T*(DX(R,x)) |+||s*-T | |DX(R,%) |

MR™2 |7 *(x) | x(R,x)+||S-T|| |DX (R, %) |,

A

so, using 5.4 with ¢ = |DX(R,x) |,

(11) f|s*(oi(R,x))]2dv£(x,s)

A

am?r™4 J]T*(x)|2X2(R,x)d“vt”x

+

2 fHS-TH2 Di(R,x)|2avt(x,s)

A

2M2R-4u§(t)+32 f]DIDi(R,x)IIZIT*(x)lzd”vt“x

+ 4[[|g(vt,x)|2|Di(R,x)|2d”Vt“x Jlni(R,x)[2|T*(x)lzd“vt”x]l/2

A

2M2R'4ug(t)+32M2R'4u§(t)+4M2R'2ab(t)uo(t)

A

2 -4 2 2_-2
34M°R ub(t)+4M R ab(t)ub(t).
Thus

(12)  §(V,, 5 (B(V,, ")) < 2aMR™ 20, (£) py (0) +8MR Yoy (632 (0 V2,

£ 1
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Next, we make for imminent use the estimate

(1) [180v, 0 [ Ipe, 0 v lix

IA

[180v 0 1222 (xR0 [Dxta/m | |20 |2

+ xR [T [1a) v x

A

21w, |2 |ox(R,m0 2|74 |2 2a v x
'f XZ(R,X)IT*(x)IZdHVt“x}
+ 2872 nve,m B3R av

[ m Im 40 12afv <)

IA

-2
4MR ab(t)ub(t).

Now suppose B 1is a collection of disjoint balls B(b,R)

< t < t

with b €Bj(t;). By 3.3, for t; o’

5 2 .
(15) SV = Joy) BV )

A

-flg(vt'x)Iz(xz(x)-icb(x))d”vt”x
L

+ [Ig(vt,x)IZX(x)[Dx(a)ld”Vt”x

+ Z f h( t,x)HS (DCl(X))IdV (x,8)
b

+ f h(v [s(Dty(x)) |av, (x,s).
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By Minkowski's inequality,
[1atvy,m 12x00 [0 lav, 1«

s | v BEmalvyle + [Ioxe 12w )x.
spt Dy

Since spt % N spt Dx = ¢ for each b in the sum, the first
two terms on the right hand side of (15) are dominated by
IIDX(X)Izd“Vt“x. The third term is what was actually estimated

in (9)-(12), and the fourth term is taken care of by (14). Thus

(15) becomes
2 2
(16) 8§V, x —Z;b)(g(vt,-)) < Jlnx(x)l aljv, [=
)

3/2 /2

ZFZBMR-zab(t)ub(t)+8MR_lab(t)

1
uo(t)
%

1.

From (12) and (16) we may calculate that
an v [6A -1V 163 < v, 1(580-v, [1(36,,)
0 " 0 5 o

0
+ ft 8V Jzy) (AV,-))dt
* £

t

0
+ f G(Vt,xz—Zcb)(g(Vt,-))dt
ty &

t
_ 0

< ®RPInd e -ude) 1 + [ v itk Dae
;o ty

0
+ ] f [52MR™ 2y, (£) yy (6 +16R Yoy (£) 32y (612,
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Now we choose B and t, to use in the above. Let

Bg(tl) be the set of points b € B3(t2) such that

(18) v, IB(b,R) < (4/3) gr¥.
0

If lim sup ?é}((B3(tl)) > 0, then the unit density hypothesis
t., 4t
170

implies that there are tl arbitrarily close to to such that

; k
(19) FE3e) > /mEFE, ).

By the Besicovitch covering theorem 2.2, we can find a disjoint

collection B of balls B(b,R) with b €B3(t1) and

(20) uvtou(ui» Z_B(n)_lHVtOHB;(tl).

We infer from (18), (19), (20), and unit density that

(21) Jar® > (3/4) |Iv, B(,R)
i o 0

\"2

(3/4g(n))],'vt HB;(tl)
0

v

(3/4B(n)) (8% (£))

Vv

(1/2B(n) £ (B, (£)) .

Now let t, be a value of t for which Zukz)(t) is nearly

ol
maximél for tl <tx to. From (1), (3), and (21) we see that

we may assume that
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(22) T () -1l () 1 > (1/28%) [l (e,)
P %

k,-k-3

2=

|v

IngR

2'k"4g(n)'ln0%*(53(tl)).

|v

Note that this last estimate does not depend explicitly on R.

Suppose that

lim sup ﬂk(B3(tl)) > 0.

tlfto

By hypothesis, 1lim ”Vt”(xz) = ”Vt “(xz), and barrier functions
ttt 0
0

may be used to show that “Vt”(IDxlz) is bounded. Thus (22)

shows that we may assume that tl is such that (17) implies

R27 12 (e,) 12 (£,) ]
%

t
o _ -
100M f [R™%ay (£) w (0)+R Loy (6320 (01210t
b Tty

IA

1/2

IA

t
0
100MR"222ub(t*)(to—t*)l/z{f o2 (t) at}
B 1=
o
100MR_122ub(t*)l/z(to-t*)l/4{J ol (t)ae}?/4,
B Ex

+

Using (22), t0 - t, < clez, and Schwarz' inequality on the

sums, we get
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(1/400M)Zug(t*)
b

t
0
RN e 12 [ e naeyt/?

Vsl t*

< c

t
0

T S DR LA O LS LA
i RN

This implies that

t

0
(23) I f of(vyat > Jul(t,) /400%m2c, B2
E Tty b :
Thus, using (22),
)
(24) ) f ol (tyat > 278722 (n) "In2e In @ (B, (£))).
b "ty

But now we can easily calculate from 3.3 and Minkowski's
inequality that

t

0
Gs) v 6=l 162 < ft SV, W) (B(V,,))dt
*
t

0 2.2
< —(l/Z)I Jlg(vt,x)| X (x)d“Vt“x dt
t*

t
0 2
+ 4 J HVtH(le(x)l )dt.
t

*

We know “Vt”(le(x)lz) is bounded, so (24) implies

26 v 63 s uvtou(xz)-z'k‘23g(n)'lm oo (B4 (R)) .
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By hypothesis, 1lim “Vt”(xz) = ”Vt “(Xz), so we finally have
t->t 0
0

(27) lim sup %*(33(t1)) = 0.

tl+t0

If B4(tl) and Bs(tl) are the subsets of Bl where (4)

or (5) fail respectively, then similar (but simpler) analyses

show that
(28) lim sup %k(B4(tl)) =0 and
1%
(29) lim sup ﬂ%(B (t)) = 0.
571
tl¢t0

Since Bl = B3(tl) u B4(tl) U Bs(tl) for any t clgarly we

l’
must have %k(Bl) = 0.

For the second part of the proof, let B2 be the set of

points x € B(0,1/2) with ek(“vt [l»x) = 0, but for every
0

2

R > 0 having “vt”g(x,R) >0 for some t € [t,-R%,t +R?%].  Let

0
c(3) be as in the clearing out lemma 6.3, and define

l—lx]2 for |x|

IA

1,
(30) $(x) =

0 for x| > 1.

Choose n > 0 so that

2/ (k+6)

(31) 4kc(3)n < 1l/2.
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Let B6(R) be the set of b € B, such that

(32) [ o mmaly, fx < 2Rk,
0

Let t, = tO-RZ/Gk. Then the clearing out lemma implies that

for b EB2

(33) f o> ((x-b) /R)A[V, [x > nRX.

t
It follows from the definition of Hausdorff measure and
the Besicovitch covering theorem that there is a collection %

of disjoint balls B(b,R) with b EBb(R) and

(34) Jar® > (1/2B(n) (B (R) .
b
Equations (32) and (33) show that mass is being lost from

Ub, and we next show that it can't be going elsewhere. We

i < < :
estimate for tl t tO

(35) 8(V,,x°=16>((-=b) /R)) (B(V, "))
b

A

-J |a(v,,x) 12 (x% (%) -Z¢3( (x-b) /R)) d|V, [x
b
+[IB0v, 0 2000 [Dx0o) [afv,x

+7 flg(vt,x)|3¢2((x—b)/R)|D¢((x-b)/R)|auvt“x
b

A

[1ox 12ajv, =
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+ 3Z{J|£(Vtrx)l2|D¢((x-b)/R)lz¢((x—b)/R)d”Vt”x
b

IR LA

Define

2 2
(36) a (t) = |h(v,x) | ajivlix,

B(b,R)

2 3
(37) B2(t) = f 8 ((x=b) /R) d ||V, [ .
Thus
(38) 8 (Vs ¥=10° (*=b) /R)) (B(V, "))

k

< v liciox]® +6r7tay (0 gy (6)

Let t, be a time for which ng(t) has nearly its maximum
b

value between tl and to. Integrating this from ¢t to t

1 0

and using (32) and (33) we get

(39) Ve lw=Ive lfw < 182 (ty) =82 (¢,)
0 b
t

0 ) 1. (Fo
+ f Ve ll¢IDx|€)at+6r™ "] J o (£) By () dt.
ty b “t,

Again we may neglect the terms explicitly containing x and
Dx. By Minkowski's inequality, (32), (33) and the definitions

of t,, (39) then becomes

222



t

0
0 (I8, (£, 2 (k=) 12 f o2 (v at)
b @ Tty

1/2

> Z(sﬁ(t*)-eﬁ(to))R/s
b
> (r/12) 82 (¢,) .
b

Hence

‘o, 2
(41) ) J o (t)dt > (1/12)23b(t*)
b s b

> (n/24B(n) g (8 (R) .
As before, this implies

lim sup BG(R) = 0.
R0

Since very b €B is in BG(R) for small enough

2
implies %k(Bz) = 0.
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Appendix A: Grain growth in metals

The purposes of this appendix are to describe a physical
system involving motion by mean curvature and to correct a
calculation made in [RCD].

The physical system is the motion of grain boundaries in
an annealing piece of metal such as aluminum. The lowest energy
state of aluminum at a temperature just below its melting point
is a certain crystalline lattice. However, when a sample of
molten aluminum solidifies, crystallization may start in many
different places with random orientations, and the solid metal
will be composed of many small regions, each with uniform crystal
structure. Each connected such region is called a grain.

An atom on a grain boundary is only partially surrounded
by a nice lattice; therefore it is in a higher energy state
than an atom in the interior of a grain. This extra energy may
be thought of as endowing the grain boundary with a surface
tension. The size of this surface tension should be about the
same order of magnitude as the surface tension of the liquid
metal [CH]. The surface tension of aluminum at its melting point
is 860 ergs/cm2 [HCP p. F-19] (which may be compared to that of
water at 18°C, which is 73 ergs/cm® [HCP p. F-33]). It would be
expected that the surface tension of a grain boundary would depend
on the orientations of the grains bounded. However, experimentally
the dependence seems small except for small differences in

orientation [SCl].
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It is observed that if pure aluminum with many small grains
is annealed, then the grain boundaries move with velocities
proportional to their mean curvatures [RCD]. On an atomic scale,
the motion may be viewed as due to the probability of an atom at
a grain boundary finding itself, as a result of random thermal
motion, on one or another of the adjacent lattices. Clearly the
probability of landing in a concave lattice is greater than landing
in a convex one, and the measure of the difference of probabilities
in general is the mean curvature [SC2].

Assuming the surface tension independent of orientation, then
by [TJ] one should find throughout the motion that three boundaries
meet at 120° angles in a line and four boundaries meet at
approximately 109° angles at a point. In one sample of aluminum,
over 3000 junctions were examined without finding any other
configurations [RCD].

Since an arrangement of grains such that the boundaries have
no mean curvature, for example, a stacking of Kelvin's
tetrakaidecahedron [K], is extremely unlikely, boundary motion
continues until the sample consists of a few large grains.
Relatively larger grains tend to have more faces than smaller
grains and thus the average face on a large grain tends to be
more concave. Therefore large grains grow at the expense of
small ones. The dividing line between growing and shrinking
seems to be at about 14 faces [SC2]. The general distribution

of shapes seems to be independent of average grain size [RCD].

225



The assumption that the distribution of grain shapes is
independent of time enables one to estimate the rate of growth
as a function of several physical constants. This calculation
was unsuccessfully attempted in [RCD]. Suppose we start at
time t = 0 with a sample whose average grain size is assumed

ideally to be zero. Define

Y = surface tension of boundary,

S(t) = average boundary area per unit volume,

N(t) = average number of grains per unit volume,
H(t) = average magnitude of the mean curvature

u = mobility of the boundary; i.e., the velocity

is mobility times pressure,

o =nmsiw/me,
k= s(oNw Y3,
¢} = ratio of the volume of the average grain to the

volume swept out by the boundary during the

disappearance of an average grain.

Note that o, k, and © are dimensionless and thus constant in
time because of the assumption of the constancy of the distributi

of grain shapes. The average pressure on the boundaries is

P(t) = YH(t).

The rate at which volume is being swept out per unit volume is

HP(t)S(t) = uyH(t)S(t).
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The rate of grain loss per unit volume is

dN (t) /dt -uyH(t)S(t)ON(t).

Using the constants o and k to eliminate H(t) and S(t)

we get
(1) aN(t)/dt = -uyeck—lN(t)'5/3
which has the solution

N(t) = ((2/3)uyeok™2t) ~3/2

which gives the expected power law dependence of volume on time
[SC2]. We can derive the value of © from the principle of
conservation of energy: the work done against "friction" by
the moving boundaries must be less than or equal to the energy
released by the shrinking of the area of the boundaries. By
the work done against "friction" I mean force times speed, or

pressure times area times speed. Thus
2 2
WYTH(t) “s(t) < -yds(t)/dt.

Using ¢ and k again, we have

2 1/3

wr 2ok TN () < -ykaw(e) Y3 /at,

and using (1) for dAN(t)/dt yields
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o™t < x3/30.

From experimental data presented in [RCD fig. 4,11] we get
o =~ 1.33 and k3 ~ 10, so O-l < 2.5. It seems entirely
reasonable for boundaries to sweep out 2.5 grain volumes during

a disappearance.
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Appendix B: Curves in R2

The simplest non-trivial class of varifolds moving by mean
curvature is the class of smooth closed curves in gz. Even
here, exact solutions are hard to find, so we will be content
with deriving some general properties which give a feeling for
the effects of motion by mean curvature.

Because we are dealing only with times when a curve is
smooth, we will use the mapping approach discussed in 3.1.

Suppose tl € R+,

(2}
¥
I

F: [O,tl] X

is smooth, and F(t,+) is non-self-intersecting closed curve

for each t € [O,tl].

Define the metric g: [O,tl] X il - §+ by
g(t,8) = |9F(t,8)/36],
the tangent angle B8: [O,tl] X gl - R by
tan B(t,8) = (e,"3F(t,0)/038)/(g,93F(t,8)/06)

1

and the oriented curvature K: [O,tl] X 87 > by

(]

K(t,8) = g(t,8) 1a8(t,0)/36.

If F(t,+) is moving by its mean curvature in the mapping sense,
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then it can be derived that for all (t,6) € [O,tl] X il

(1) 8g(t,0) /0t = -g(t,0)K(t,8)2,
(2) K (t,0) /3t = g(t,8) 232K (t,0) /362 + K(t,0) 3.

Suppose K(t,8) is positive when the mean curvature vector

points toward the inside of the curve.

PROPOSITION 1: The area enclosed by the curve F(t,-)

decreases at the rate of 2w for all t € [O,tl].
Proof: The rate at which area A(t) decreases is given by
da(t)/dt = —J K(t,08)g(t,0)de

which is -27 by the Gauss Bonnet theorem. O

PROPOSITION 2: The total curvature of F(t,*) is monotone

decreasing for each t ¢ [O’tl]’

Proof: The rate of change of total curvature is
(3/3t) J |K(t,8) |g(t,8)ds
= f [sign K(t,6)](8K(t,6)/dt)g(t, )

+ |K(t,0) | (3g(t,8)/3t)ds,
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using (1) and (2)

2

f [sign K(t,0)][g(t,0) 232k (t,0)/30% + K(t,0)°]

-g(t,8) - [sign K(t,8)1K(t,8) ae

f [sign K(t,8)1[0%K(t,0)/36%1g(t,6) tde

0.

A

The last inequality follows by integrating over intervals of 6
where K(t,6) has constant sign: Suppose a < b,
K(t,a) = K(t,b) = 0, and K(t,0) >0 for a < 6 < b. Let o(8)

be arc-length, so do = g(t,0)d6. Then

1

b : _
f [9°K(t,0)/36%]1g(t,0) —as
a

(%K (t,0(0))/30%) do

{O(b)

o(a)

9K (t,b) /o - OK(t,a)/d0.

By hypothesis, 8K(t,b)/30 < 0 and ©0K(t,a)/dc > 0, so we are
done. A similar analysis can be done for intervals on which

K < 0. O

1 Fyr [0,e)] x st > g2

moving by their mean curvature, then define for each t € [O,tl]

Definition: If F are two smooth curves
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the area between Fl(t,-) and Fz(t,-), denoted B(t), by

B(t) = i?{x € R2: X inside exactly one of Fl(t,-)

or Fz(t,-)}.

Definition: We say that the orders of mutual intersections

of two curves are the same if the two curves intersect at a
finite number of points and the orders of these intersections
are the same along both curves.

PROPOSITION 3: If F, and F,

moving by their mean curvatures, and if the orders of mutual

are two smooth curves

intersections are the same along both curves for each t, then

the total area between Fl(t,-) and Fz(t,-) is monotonically

decreasing for each t.

Proof: If Fl(t,-) and F2(t,-) do not intersect at all
for a particular t, then it follows from Proposition 1 that
B(t) 1is constant until the curves intersect or one curve vanishes.
Otherwise, suppose without loss of generality that a, b ¢ gl
are parameters of successive intersections as indicated in figure 1l

Then the rate of change of the area B(t) of the region between

a and b is
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b b
fa K, (t,6) g (t,0)d0 - Ja K, (£,0)g,(t,0)ds

dB(t)/dt

Bl(tlb) - Bl(tla) = Bz(tlb) + Bz(tra)

[Bl(tlb) - Bz(tlb)] + [Bz(tla) - Bl(tla)]

IA

0. O

These three propositions suggest that in general dimensions
the "area bounded" ought to decrease, the total curvature ought
to decrease, and two surfaces starting out nearly alike should
get even more alike.

Proposition 1 depends on the mean curvature being the same
as the Gaussian curvature, which is not true in higher dimensions.
For example, if the original surface is a 2-sphere in 53 with
a lot of sharp inward spikes, then the volume enclosed will
increase at first.

It seems intuitively clear that a surface will locally
smooth itself out and thus reduce its total mean curvature. How-
ever, global effects may reverse this. Figure 2 illustrates how
this might happen. The 2-surface in 53 is two infinite parallel
flat sheets with a large diameter doughnut hole. Since the
curvature due to the closeness of the sheets is greater than
that due to the diameter of the hole, the hole will expand.
Therefore the area of the region with high curvature expands, so

the total curvature increases.
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Proposition 3 implies a continuous dependence on initial
conditions if nearness is measured in terms of area between
curves. While continuous dependence on initial conditions would
hold for higher dimensional smooth manifolds, it does not hold
for general surfaces. For example, let the initial surface be
two unit circles in 52 distance d apart, d > 0. If 4 > 0,
the only possible course is for the circles to shrink down to
their respective centers. If d = 0 then the circles may remain

connected and turn into a dumbbell shape.
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Appendix C: Curves of constant shape

C.l. 1In this appendix we investigate one-dimensional integral
varifolds Vt in 52 moving by their mean curvature such that

if s, t > 0 then Vt is a homothety of Vs. Suppose we have

such a varifold Ve and R: §+ > §f is such that for t > 0
Ve = LR(E)),V,.

Then R(t) is a characteristic scale of Vt' and since mean

curvature is inversely proportional to scale, we must have
drR(t)/dt = B/R(t)

for some B € R. Then

R(t) = (28t + R(0)2) /2,

Note that this scaling factor is valid for all dimensions.
We now seek a differential equation describing curves in

52 which remain homotheties of themselves. Let the curve be

2

given by F: gf X R = R" with scaling factor R(t). For a

particular time t € 5?, let vy = drR(t)/dt, n: R ~» §2 be the

normal vector, h: R ~ 52

the mean curvature vector, and K: R >R
be the oriented scalar curvature of F(t,-) so that
K(s)n(s) = h(s) for all t € R. The condition we are looking for

is, for all s € R
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(1) YF(t,s)-n(s) = K(s).

Given Yy, F(t,0), and the initial direction of F(t,+), one
can integrate (1) to get a curve. This I have done on an
HP 9820A desktop calculator with plotter, and some of the results

are described in the following sections.

C.2. Corners

If one takes Yy = 2, F(t,0) = (0,3/8) . and initial direction
horizontal, one gets a curve as in Figure 3, which has asymptotes
at approximately a right angle. If the time origin is chosen so
that R(0) = 0, then we see that the initial surface was
approximately a right angle. Thus we know what the evolution of

a corner looks like.

C.3. Triple junctions

We take Yy = 1 and three curves starting at (.43,0) at
angles of 0°, 120°, and 240°. Since the triple junction
contributes no curvature, and everywhere else obeys (1), this
represents a curve of constant shape. See Figure 4. The para-
meters were chosen so that the initial surface was a vertical

line with a horizontal line meeting it at the origin.

C.4. Multiple rays

Figure 5 shows a possible evolution of two lines meeting at

right angles. The parameters are Yy = 1, starting points
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(0,.28) and (0,-.28), and starting angles 120° apart.

Note the essential non-uniqueness of the evolution. By
symmetry, the same solution rotated 90° is also a solution.

This solution will arise from the reduced mass model (see
4.9 Remark 2) but not in the normal varifold model. Since the
initial varifold has zero mean curvature, one must ask what
Lipschitz mags of small displacement can do. If one is not
allowed to reduce mass, then any non-identity Lipschitz map will
increase mass. Thus in the normal model no;hing will happen.
In the reduced mass model, the first small Lipschitz map can
produce a miniature version of Figure 5, and the rest of the
evolution is driven by mean curvature.

Figures 6, 7, and 8 show possible evolutions of 5, 7, and 8

rayed initial surfaces with no special angles.

C.5. Shrinking loop

If one considers B < 0, then one gets surfaces that shrink
as time increases. A circle is the most obvious example. Another
interesting example is the loop shown in Figure 9. Its parameters
are vy = -1, starting point (0,.83), and angles 90°, 210°,
and 330°. The starting point was chosen so the two lower curves
joined smoothly below the origin. This surface will shrink
homothetically until the loop vanishes, leaving a vertical ray
from the origin. The ray will then vanish instantaneously. This

is an example of non-continuity, and thus non-differentiability.
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Appendix D: Density bounds and rectifiability

The example presented in this appendix illustrates the
necessity of assuming a lower bound on the density of a rectifiable
initial varifold in 4.1 in order to conclude rectifiability later
in 4.17. We construct an initial rectifiable varifold with lower
density bound zero and give an argument that this varifold should
turn unrectifiable as it moves by its mean curvature.

First, let W be the varifold depicted in Figure 10. The
densities are to be such that W is stationary. We intend that
W = 2g(2)#w.

Define B: §2 X G(2,1) ~» £+ by

B(Xllles) = exp]x2| .

Let Vo =W L B € §gl(§2). Note that B was chosen to give V

unit magnitude mean curvature vectors on the vertical segments

0

pointing away from the horizontal centerline.
To see that this initial varifold will evolve as claimed

under the construction of Chapter 4, consider the nth

approximation.
Away from the centerline, motion is outward with a more or less
uniform velocity, which preserves the density gradients, which
preserves the uniform outward velocity. The stuff near the
centerline will be vertically stretched by the small Lipschitz

maps f2 (see 4.9). When we take the limit of the approximations

as m > «, the stretched central stuff converges to a region of
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one-dimensional varifold expanding with unit speed with zero
one-dimensional density but with positive two-dimensional density.

It is thus unrectifiable.
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FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.

FIGURE 9.

FIGURE 10.

FIGURE CAPTIONS

Portions of two moving smooth closed curves and the

shrinking area between them.

A doughnut hole, which has increasing total mean

curvature as it evolves.

A stage in the evolution of an initial right angle.
All stages have a mathematically similar shape.

Evolution of three lines meeting at right angles.
Evolution of four lines meeting at right angles.
Evolution of five lines meeting at random angles.
Evolution of seven lines.
Evolution of eight lines.

A one dimensional surface which evolves by the loop
shrinking down to a point, leaving a line. that vanishes

instantaneously.

A rectifiable one dimensional initial varifold which
intuitively should evolve into an unrectifiable
varifold. The pattern continues indefinitely towards
the center with decreasing line weights. Along the
center line, one dimensional densities are zero, but

two dimensional densities are not.
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