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The Surface Evolver is an interactive program for studying the shapes of liquid
surfaces. Recently added features permit the calculation of the Hessian matrix of
second derivatives of the energy. The Hessian can be used for fast convergence
to an equilibrium, and eigenvalue analysis of the stability of that equilibrium.
This paper describes the use of the Hessian by the Surface Evolver, presents
some sample stability analyses, and gives some numerical results on the accuracy
and convergence of the methods. It is also shown how one can evolve unstable
surfaces.

1. Introduction

The Surface Evolver is an interactive computer program for the study of lig-
uid surfaces shaped by various energies and constraints. Energies include surface
tension, gravitational energy, surface contact energy, user-definable integrals, and
many others. Constraints may be pointwise, such as a free boundary on a con-
tainer wall, or global, such as fixed volumes. The surface is represented as a
collection of triangles connected in an arbitrary topology, permitting the repre-
sentation of complicated structures such as foams. Since its initial release as a
public domain program in 1989, the Evolver has become widely used for such
diverse problems as capillary surfaces (Mittelmann 1993), liquid metals (Racz et.
al. 1993), foam rheology (Kraynik and Reinelt, 1995; Reinelt and Kraynik, 1995),
cell membranes (Michalet et. al. 1994), elastic surfaces (Hsu et. al. 1991), and
fuel in spacecraft tanks (Tegart 1991).

The main use of the Evolver has been to minimize the energy of a surface.
The total energy is regarded as a function of the coordinates of the vertices of
the triangulation, and the methods of gradient descent or conjugate gradient
are available, for which a general reference is (Hackbusch 1994). These are first-
order methods, requiring only the calculation of the first derivatives of energy
and constrained quantities. While very straightforward, gradient methods can be
slow to converge. When the energy decreases very little with each iteration, it is
difficult to know whether the surface is near a minimum, a saddle point, or just
some small gradient configuration.

These problems can be addressed by considering second-order information, the
Hessian matrix of second derivatives of the energy with respect to the vertex
coordinates. The Hessian can be used in Newton’s Method to converge rapidly
to an equilibrium, usually in just four or five iterations once one is reasonably
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close. Furthermore, the lowest eigenvalues of the Hessian reveal the stability of
the equilibrium, and the corresponding eigenvectors are the most unstable modes
of deformation. These modes can be visualized using the graphics output of the
Evolver.

Section 2 gives a brief review of the mathematics of the Hessian, and describes
how key features are implemented in the Evolver. Section 3 analyzes a very simple
example, a square surface. Section 4 analyzes a spherical bubble, which has a
volume constraint. Section 5 discusses stability bifurcation diagrams and how
to navigate around them with the Evolver. Section 6 explores the bifurcation
diagram of a catenoid surface on parallel rings, how one would determine the
critical separation of the rings, and how one could evolve unstable catenoids.
Section 7 is an analysis of a two-dimensional wet foam with periodic boundary
conditions. Section 8 does a triply periodic minimal surface. Section 9 discusses
accuracy and convergence issues. Section 10 concludes with some remarks on
future possibilities.

Operational details of the Evolver are rarely mentioned in this paper, but a few
Evolver commands are mentioned for ease of reference. For further information,
see the Surface Evolver Manual. The complete Surface Evolver package, including
source code, manual, and sample datafiles, is available by anonymous ftp from
susqu.edu as /pub/software/evolver/evolver.tar.Z. The source (in C) can be
compiled and run on any unix system. There are also separate executables for
DOS and Macintosh systems. A separate PostScript version of the manual is also
available in the same directory.

2. Hessian, eigenvalues, and eigenvectors

This section presents some general background on the Hessian matrix, its eigen-
values and eigenvectors. For a good general introduction, see (Strang 1988), es-
pecially chapter 6.

The fundamental variables in the Evolver are the coordinates of the vertices of
the triangles that constitute the surface. In Evolver’s linear mode of operation,
each triangle is a flat triangle determined by three vertices, but in quadratic mode,
each triangle is a quadratic surface also depending on vertices at the midpoints of
edges. It is convenient to represent all of the coordinates together in a single vector
X, which may have thousands of components. When considering perturbations of
a particular surface, we will take X to represent displacements from the current
positions. The energy of the surface may be expanded in a Taylor series,

1
E(X)=E, +G"X + 5XTHX +...,

where G is the gradient vector, whose components are the first partials of E(X),
and H is the Hessian matrix, whose components are the second partials of £(X).
Note that H is a real symmetric matrix, and usually very sparse.

Each iteration of ordinary gradient descent uses a motion

X = —\G,

where X is chosen by a line search to minimize E(X). This is guaranteed to
reduce the energy each iteration, until a local minimum is reached (or a saddle
point, if one is unlucky). Convergence is slow, but can usually be sped up by
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the conjugate gradient method. However, much more rapid convergence can be
obtained by retaining the quadratic Taylor approximation,

1
E(X)=E+G"X + 5XTHX,

and solving for the critical point,

grad E(X)=G" + X"H =0,

or
X =-H'G.

Using such an iteration is called Newton’s method. It requires the calculation of

H and the solution of the sparse matrix equation H X = —G. One such iteration

may be done in the Evolver with the hessian command. Note that hessian seeks
only an equilibrium point, G = 0, not necessarily a minimum.

One drawback of using hessian is that the surface must be near enough to
a critical point for the quadratic approximation to be a good approximation.
Using hessian too far from an equilibrium will give nonsense results, sometimes
wrecking the surface. Hence some form of gradient descent usually must be used
to get a reasonable approximation of the critical point.

Another problem that arises is that the Hessian H may be singular. There
are two common causes for this. One is symmetries of motion, i.e. rotations and
translations. If X represents one of these, then F(X) = Ey and HX = 0. The
other common cause is vertices in flat parts of the surface. Moving such vertices
tangentially does not change the energy, again causing a singular Hessian. The
Evolver is able to cope with singular Hessians as long as the gradient GG is in the
range space of H, so that HX = —(G is solvable.

However, tangential motions in curved surfaces give rise to nearly singular Hes-
sians. Furthermore, it is observed experimentally that it is the tangential motion
of vertices that prevents successful use of hessian very far from an equilibrium.
The vertices want to form exactly the right triangulation, even if the improve-
ment in energy is miniscule. To avoid this, the Evolver has a mode of operation
called hessian normal in which vertices are constrained to move only along a
vector perpendicular to the surface. Use of hessian normal greatly relaxes the
needed proximity to an equilibrium, and should always be used unless there is
a definite reason not to. It will be used in all examples below unless otherwise
stated.

Once at an equilibrium point (G = 0), the stability of the equilibrium may
be analyzed via the eigenvalues of the Hessian. Recall that an eigenvalue A is a
scalar and an eigenvector X is a vector that satisfy

HX = )X.

Any negative eigenvalue A < 0 corresponds to a perturbation which decreases
energy:

1 1
E(X)=E, + 5XTHX = Ey+ 5AXTX < E,.

Since H is a real symmetric matrix, there is an orthogonal basis of eigenvectors.
Hence the equilibrium is stable if all eigenvalues are positive (H is positive def-
inite), and unstable if there are any negative eigenvalues (H is indefinite). The
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eigenvectors associated with an eigenvalue form a subspace, and the dimension of
the subspace is called the multiplicity of the eigenvalue. The total multiplicities
of all the negative eigenvalues is the index of H, and is essentially the number of
independent ways the energy may decrease. The triplet of total negative, zero,
and positive multiplicities is called the inertia of H. By Sylvester’s Law of Iner-
tia, any matrix A that is congruent to H,i.e. H = PT AP for some nonsingular
matrix P, has the same inertia as H. Hence the inertia of H may be found by
factoring H = UT DU, where D is diagonal and U is upper triangular, with-
out explicitly finding any eigenvalues. The Evolver’s implementation of Newton’s
method involves such a factoring, so knowledge of the index is essentially a free
byproduct.

The Evolver’s eigenvectors may be interpreted as physical modes of vibration
of a membrane if mass is introduced to make dynamics applicable. Let X be
position and X be velocity. Then the total energy is

1 1. )
E=FEy+ 5XTHX + 5XTMX,

where M is a symmetric matrix that plays the role of mass. Standard dynamics
gives the corresponding equation of motion

—HX = MX,
which is Newton’s Law of Motion, F' = ma. If X is a generalized eigenvector,
HX =AMX,
then a positive A gives an oscillatory solution,
X (1) = cos(VA) X,
and a negative A gives an exponentially growing solution,
X(1) = eV=MX.

It can easily be shown that the generalized eigenvalues are the ordinary eigenval-
ues of a matrix congruent to H, so the inertia is the same and the choice of M
does not affect stability. Standard eigenvectors take M to be the identity matrix,
which corresponds to a unit mass at each vertex. Since triangulations can be
very irregular, this is not a very good approximation to the mass distribution of
a smooth surface, and the eigenvalues will change with the triangulation. A more
informative choice is to take an M that does approximate the mass distribution
of a smooth surface. This is done through defining X7 M X by interpolating X
over the facets and integrating with respect to area. Recall that X is composed
of a vector at each vertex, and for each facet, the vectors at its vertices can be

interpolated across the interior of the facet to give a vectorfield X. Then we define
X"MX = / X7 X dA.

In linear algebra terminology, M is called a metric, since it is used to define the
inner product of vectors, < X, X >= X7MX. In Evolver’s linear mode, it has
been found that more accurate eigenvalues result from concentrating half of the
mass at the vertices instead of having it all evenly distributed over the surface.
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Table 1. Eigenvalues for square surface at several refinements.

Linear mode

ideal 41 vertices 145 vertices 545 vertices 2113 vertices
2 2.0365492403543 2.0099742163701 2.0025688911659 2.0006483680965
5 4.9597203065508 4.9994990426854 5.0005039961225 5.0001661112756
5 4.9597203065508 4.9994990426854 5.0005039961225 5.0001661112756
8 7.7646341433346 7.9853849437890 7.9990889953386 7.9999430908325
10 10.0987980693166  10.0901564190790  10.0268080202750  10.0069731552839
10 10.4997170691025 10.1865249154711 10.0519390576227  10.0134019138280

Quadratic mode

ideal 41 vertices 145 vertices 545 vertices 2113 vertices
2 2.0143130550007 2.0009834270978 2.0000639512383 2.0000040664883
5 5.2654046952594 5.0174195838750 5.0011615965936 5.0000744115833
5 5.2654046952594 5.0174195838750 5.0011615965936 5.0000744115833
8 9.4936356610833 8.0566039391621 8.0039725121210 8.0002582433143
10 10.5839769876880  10.1052358235150  10.0078121665966  10.0005196327577
10 11.0713290521096  10.1082736933458  10.0080916241102 10.0005313858573

Quadratic mode does not benefit from this, so the quadratic metric uses only pure
quadratic interpolation. The net result of using the metric is that eigenvalues and
eigenvectors are nearly independent of the triangulation, and approach those of
the continuous surface as the refinement increases.

When there are constraints on the surface, such as a volume constraint, all
perturbations X obey the constraint, and the proper Hessian is the energy Hessian
projected to the constraint tangent space. Further, each nonlinear constraint
(such as volume) contribute an adjustment to the Hessian that is proportional to
the Lagrange multiplier for that constraint. The Evolver automatically takes care
of all this, and automatically solves for Lagrange multipliers during a hessian
iteration.

3. Square surface

The first example is a membrane spanning a square boundary of side length
7. A basis of eigenfunctions of the continuous surface is {sin mzsinny : m,n =
1,...}, and the eigenvalues are m? + n? for m,n = 1,2,3,.... Hence the lowest
eigenvalues are 2,5,5,8,10,10,.... This provides a test for the accuracy of eigenvalue
calculations. Table 1 shows results for various levels of refinement and different
modes. See section 9 for a discussion of the accuracy of the eigenvalues.

Notice that the multiple eigenvalue 5 remains multiple in the discrete approx-
imation, while the multiple eigenvalue 10 splits. Multiple eigenvalues are usually
due to symmetries, here the symmetry of the square. Figure 1 shows two eigen-
vectors for eigenvalue 10, one with full square symmetry and one without, which
have different discrete eigenvalues. One can use this effect to advantage to get
a nice-looking set of basis vectors for an eigenspace. If the discrete eigenvalue is
multiple, one can perturb the problem slightly (make the square slightly rectangu-
lar, say) in order to break the symmetry and perhaps get a more comprehensible
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Table 2. Eigenvalues for sphere without hessian_normal mode, linear model.

50 vertices

194 vertices

770 vertices

0.0000000000000
0.0000000000000
0.0000000000000
0.0000000000000
0.0000000000000
0.0000000000000
0.1268571808241
0.1268571808241
0.1542354144874
0.1542354144913

-0.0000000000001
-0.0000000000001
0.0000000000000
0.0000000000000
0.0000000000000
0.0000000000003
0.0326492834861
0.0326492834861
0.0392714891707
0.0392714891708

-0.0000000000003
-0.0000000000003
0.0000000000000
0.0000000000000
0.0000000000000
0.0000000000005
0.0081786702183
0.0081786702183
0.0098453504444
0.0098453504444

set of eigenvectors. Left to its own devices, the Evolver will produce a random
orthogonal basis of eigenvectors for an eigenspace.

— YATAVN A(A';;;i;\
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Figure 1. Symmetry breaking of multiple eigenvalue due to discretization.

4. Spherical bubble

This example is a spherical surface of radius 1 enclosing a fixed volume of
47 /3. This is another case where the eigenvalues are known, being n(n + 3) with
multiplicity 2n 4+ 3 for n = 0,1,..., but the main purpose of this example is to
show how hessian normal mode affects singular and near-singular Hessians.

Without hessian normal mode, when every vertex has complete freedom of
movement, the lowest eigenvalues are listed in table 2 for several refinements. The
first six eigenvalues in table 2 are three translational and three rotational degrees
of freedom. The next eigenvalues represent tangential deformations. There is a
plethora of these small eigenvalues, which cause problems in convergence, and
which disguise the eigenvectors we are really after. The problem gets worse with
successive refinements. In linear mode, for an N-vertex triangulation, there are
about 2N eigenvalues of tangential modes more or less evenly distributed between
0 and 2, while the first interesting eigenvalue is at 4. In quadratic mode, the prob-
lems are even worse. All these problems are cured, however, in hessian normal
mode.

Table 3 shows eigenvalues for a sphere with hessian normal mode in effect.
By permitting only normal motion, all the rotational and tangential modes have
been eliminated. The spherical eigenvalues are more apparent. One might wonder
why the translational eigenvalues have become nonzero. The answer is that a
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Table 3. Eigenvalues for sphere with hesstan_normal mode, linear model.

ideal 50 vertices 194 vertices 770 vertices 3074 vertices
0 0.1002018756377  0.0262263658891 0.0066227945708 0.0017502955852
0 0.1002018756377  0.0262263658891 0.0066227945708 0.0017502955853
0 0.1002018756377  0.0262263658891 0.0066227945708 0.0017502955854
4 4.0212279424347  4.0310354860744 4.0093668727492 4.0021201809839
4 4.0212279424347  4.0310354860744 4.0093668727492 4.0021201809839
4 4.0212279424347  4.0310354860744 4.0093668727492 4.0021201809839
4 4.0937433036690  4.0380985434588 4.0104226479940 4.0043427060926
4 4.0937433036690 4.0380985434589 4.0104226479940 4.0043427060926
10 9.1896788636549  9.9557516924035 9.9987386011587 9.9986176742591
10 9.5106749007852  9.9996538541661  10.0081604521679  10.0049321180465

translation of the sphere has to be done with individual normal motions, leading
to a distortion of the triangulation, which raises the energy. Figure 2 shows such
a deformation.

Figure 2. Triangulation deformation due to translation.

5. Bifurcation diagrams

A convenient way to visualize the stability properties of a surface is with a
bifurcation diagram, such as figure 3. The independent variable is some control
parameter, such as liquid volume or physical dimension. The vertical axis is some
interesting shape parameter describing the response of the surface to the control
parameter. Usually the interesting shape is along the mode of the lowest eigen-
value. On the diagram are plotted the possible equilibrium configurations, which
form curves. Curves of stable equilibria are shown solid, and unstable equilibria
are dashed. In figure 3, for low values of the control parameter there is one stable
equilibrium, and for high values there are two stable equilibria separated by an
unstable equilibrium. The most interesting point is where the equilibrium curves
intersect, called a bifurcation point. At the bifurcation point, or anywhere there
is a transition from stability to instability, the Hessian must have a zero eigen-
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Figure 3. “Pitchfork” bifurcation diagram.

value. Hence one can find the bifurcation point with the Evolver by following the
stability curve toward the bifurcation point and watching the lowest eigenvalue.
For more background on stability and bifurcation diagrams, see (Arnol’d 1992)
or (Hale and Kocak 1991).

It is possible to use the Evolver to navigate around the bifurcation diagram. The
user designs the problem so the control parameter can be changed manually in the
Evolver to move horizontally on the diagram. Gradient descent moves vertically
on the diagram, toward a stable equilibrium. Hessian iteration moves vertically
toward the nearest equilibrium of any type. Moving along the eigenvector of the
lowest eigenvalue is another way to move vertically. This can let the user control
which branch of the diagram the surface is on. It is possible to trace along an
unstable equilibrium curve by changing the control parameter slightly and using
hessian iteration only. Controlling one’s position around a bifurcation point
is trickier, but generally can be done by using the control parameter to move
horizontally and the eigenvector of the lowest eigenvalue to move vertically.

As an example of the technique, consider navigating around figure 3. The hori-
zontal stable-unstable line might represent a symmetric shape, and changing the
control alone parameter may preserve symmetry. Suppose one starts with a non-
equilibrium surface at point A of figure 3. Gradient descent and then hessian
gets the surface to point B. Then the control parameter is increased gradually,
reconverging the surface each time, until point C is reached. The next increase
of the control parameter lowers the lowest eigenvalue below zero, so one is in
the unstable zone. Using hessian iteration only, the surface gets to point D, an
unstable equilibrium. One could keep changing the control parameter gradually
and use hessian iteration only until the surface gets to point E or beyond. Or,
from point D, one could use the eigenvector of the lowest eigenvalue as a direction
of motion and seek in that direction for the lowest energy. This would wind up
near points F or G, and gradient descent and hessian could be used to converge
exactly to F or G. From F, one could likely use the eigenvector of the lowest
eigenvalue to reach the neighborhoods of D or G.
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6. Catenoid

The catenoid is the soap film that forms between two parallel rings that are
not too far apart. The control parameter in this system is the height between
the rings. For rings at less than a critical height H., there are three equilibrium
surfaces: a stable thick-necked catenoid, an unstable thin-necked catenoid, and
a stable pair of disks. For rings farther apart, only the pair of disks exist. The
bifurcation diagram is sketched in figure 4. This diagram illustrates a catastrophe.
If one starts with a stable catenoid and pulls the rings farther apart, the surface
moves to the right along the stable branch. But as the height passes the critical
height H,, there is no continuous path along a stable branch available. The surface
falls down to the two-disk stable branch, i.e. the catenoid pops.

From the form of the stability diagram near the catastrophe point, it may be
expected that the height parameter is a quadratic function of the lowest eigen-
value, i.e. the neck radius is monotone with respect to the lowest eigenvalue.

R4
stable neck
A
neck
radius
o""
- B
......... Unstable neck
......... two disks
0
T
0 He

ring height
Figure 4. Catenoid stability diagram.

Figure 5. Stable and unstable catenoids on the same rings.

A stable and unstable catenoid for the same rings are shown in figure 5, where
the ring separation is 0.98 H.. The unstable catenoid was generated by first evolv-
ing the stable catenoid (point A in figure 4), finding the eigenvector of the lowest
eigenvalue, moving along that eigenvector in the thin-necked direction to some-
where near the unstable catenoid (which is a maximum of energy in the search
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Table 4. Figenvalues for catenoid near instability, with extrapolated values of the critical height.

Linear model

60 vertices 216 vertices 816 vertices
height lowest eigenvalue | height lowest eigenvalue | height lowest eigenvalue
0.95 0.7843072020538  0.97 0.6794680620506 | 0.995 0.2613684324282
0.97 0.4975872956970 [ 0.98 0.5285333398723 | 0.997 0.1821410586137
0.98 0.2157674752854  0.99 0.3181538066139 [ 0.998 0.1236805711725

0.9811 0 (extrapolation) | 0.9964 0 (extrapolation) | 0.99878 0 (extrapolation)

Quadratic model

216 vertices 816 vertices 3168 vertices
height lowest eigenvalue | height lowest eigenvalue | height lowest eigenvalue
0.997 0.2354964551417 | 0.997 0.2286534698147 | 0.997 0.2282417834338
0.998 0.1960813689387 [ 0.998 0.1871625778573 | 0.998 0.1866111210436
0.999 0.1465675481787  0.999 0.1331531751143 | 0.999 0.1322838713261

1.00029 0 (extrapolation) | 1.000008 0 (extrapolation) | 0.999991 0 (extrapolation)

direction), then using hessian iteration to converge to the unstable catenoid
(point B). The unstable catenoid has index 1, and the corresponding mode leads
to the stable catenoid in one direction and the pair of disks in the other direction.

Table 4 shows some eigenvalues for discrete surfaces around the bifurcation
point. At each refinement there is a critical height slightly different from H,.. To
find this critical height, I have chosen to use the quadratic relation between the
control parameter and the lowest eigenvalue to extrapolate the critical height. At
the critical height H. there seems to be no discrete equilibrium in the linear model.
Further experiments at H, verified this. Attempts to use hessian iteration just
bounce back and forth, like trying to find a root of 2+ 1 with Newton’s Method.
Sometimes the Hessian is positive definite, and sometimes it has index 1. So even
getting a positive definite Hessian does not mean the surface is near a minimum.
In the quadratic model, sometimes a discrete equilibrium does exist at H,., and
sometimes it does not. At a particular refinement, sometimes the existence of an
equilibrium at H,. depends on the particular history of the evolution.

When an equilibrium does not exist (for example, immediately to the right of
the catastrophe point in figure 4), one can find a near-equilibrium in the sense
of minimizing the square of the gradient of the energy. The Evolver can find
such surfaces by using hessian iteration with adjustable step size as a gradient
descent method for square-gradient.

Note that due to the quadratic relation between control parameter and eigen-
values at the catastrophe point, very slight shifts in the control parameter can
give a large change in the eigenvalue. Furthermore, discretizing the surface shifts
the equilibrium curve slightly, further damaging the relation between discrete
eigenvalues and smooth eigenvalues. Hence a general a priori estimate on relative
accuracy of eigenvalues is not possible. However, the presence and location of a
catastrophe or bifurcation point are relatively stable, and that is the real target,
rather than exact eigenvalues.
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7. Wet foam

Foams are collections of bubbles. Wet foams contain enough liquid to form
appreciable “Plateau borders,” which are thickenings of surface junctions. Foams
behave as non-Newtonian liquids, with an intricate stress-strain relationship and
topological changes during movement. The Evolver has been used to investi-
gate foams in two and three dimensions (Kraynik and Reinelt, 1995; Reinelt and
Kraynik, 1995; Phelan et. al. 1995). To simplify matters, the foams are usually
taken to have periodic boundary conditions with a managable number of bubbles.
The Evolver has a flat torus mode which enforces periodicity. The fundamental
cell may be any parallelogram, and its shape may be varied at runtime (which
is useful for putting strain on a foam). Thousands of bubbles are possible in two
dimensions, and a few hundred in three.

As foams evolve, they can pass through unstable critical points, and it is rea-
sonable to assume that the further evolution follows the most unstable mode.
As a very simple example, consider a two-dimensional wet foam with periodic
boundary conditions and just a few cells in a regular square lattice.

A. B. C.

Figure 6. Foam and instability modes.

The fundamental cell of a single bubble foam is shown in figure 6A. This
configuration has index 1 for a liquid fraction less than a critical value (which
in this simple case can be calculated to be (4 — 7)/16 = 0.0536...), and the
corresponding unstable mode is shown in figure 6B. However, if the fundamental
cell is doubled, then the index becomes 2, and a second unstable mode appears,
shown in figure 6C. This second mode has a lower eigenvalue than the first, and
is unstable at all liquid fractions. For larger fundamental cells, this remains the
most unstable mode. This mode represents a sliding of columns of cells towards
a hexagonal configuration. However, the Evolver cannot follow the evolution all
the way to the hexagonal configuration because (at the time of this writing) it
lacks detection of films running into other films.

8. Triply periodic minimal surfaces

A triply periodic minimal surface is a minimal surface that is periodic in three
directions. Such surfaces have been observed when two materials form interpen-
etrating labyrinths and in cell membranes. As area minimizing surfaces, they are
necessarily unstable, so they must owe their existence to some other phenomenon.
Whatever the reason for their natural existence, their instability poses a problem
for modelling them with the Evolver. There are several techniques available:
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(i) Use symmetry to work with a piece of surface small enough to be stable.
This will work if the modes of instability do not share the symmetry of the surface.

(ii) Use a volume constraint to eliminate one mode of instablility. Unfortu-
nately, this will eliminate only one mode. Eliminating more modes would require
more constraints, and I am not aware of any that would be naturally occurring.

(iii) Define the energy to be the integral of the squared mean curvature, rather
than area. This will be a minimum by definition for a minimal surface. In theory,
one can always define the square of the gradient of the original energy to be a
new energy, which is minimized at any equilibrium of the original energy. There is
recent evidence that this type of energy does actually account for some biological
membrane shapes (Michalet and Bensimon 1995).

(iv) Use only hessian iteration, which converges to an equilibrium regardless
of stability. In fact, hessian iteration may be viewed as a gradient descent step
for a certain form of squared gradient energy.

As an example, consider Schwarz’ P surface, the cubical unit cell of which is
shown in figure 7A. This surface divides space into two congruent labyrinths. With
periodicity enforced by Evolver’s flat torus mode, it turns out that the P surface
has only one unstable mode, which is a more or less uniform expansion of one
labyrinth, shown in figure 7B. Hence a volume constraint is enough to suppress
this mode and make the P surface stable, since the gradient of the volume is
approximately in the direction of the unstable mode.

The symmetry approach can also be used to construct the P surface. Mirror
planes can divide the fundamental cube into 48 isometric pieces, each in a tetra-
hedron with perpendicular contact with the tetrahedron faces. However, such a
piece in a tetrahedron is still subject to the instability and needs a volume con-
straint. There is a further symmetry of 180° rotation about a line, and with this
symmetry a piece is stable. Few triply periodic minimal surfaces are lucky enough
to have this much symmetry.

In nature, the perturbations of a triply periodic minimal surface are not re-
quired to be periodic. To handle perturbations of longer wavelength, the cubic
fundamental cell can be replaced with a larger fundamental cell made by replicat-
ing the cube in each direction. To facilitate this, the Evolver has a command for
duplicating the fundamental cell along any one of the periodic directions. Table 5
shows the lowest ten eigenvalues for several sizes of fundamental cells without a
volume constraint. With a volume constraint, the only difference is that the low-
est eigenvalue is missing. The others shown remain the same since their modes
are all volume preserving.

Figure 7C shows a 2x1x1 fundamental cell deformed by an unstable mode
with a volume constraint. The eigenspace actually has dimension 2, with an
independent mode formed by translating the perturbation by half the diagonal
of the cube. Figure 7D shows a most unstable mode of a 4x1x1 fundamental
cell with volume constraint. It appears that for any size fundamental cell, the low
eigenvalue modes can be viewed as normal motion multiplied by eigenmodes of the
ordinary Laplacian on a flat torus domain. As the fundamental cell gets larger and
larger, the lowest modes become locally more and more like the pure normal mode,
and hence the lowest eigenvalue approaches the lowest unconstrained eigenvalue.
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Figure 7. Schwarz’ P surface. A. Fundamental cell at equilibrium. B. Mode of instability without
volume constraint. C. Mode of instability with volume constraint for doubled fundamental cell.
D. Most unstable mode with volume constraint for quadrupled fundamental cell.

9. Accuracy of eigenvalues

It is difficult to give a general statement on how close the eigenvalues of a
discrete surface are to those of a smooth surface. Several types of behavior may
occur:
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Table 5. Eigenvalues for Schwarz’ P surface for various sizes of the fundamental cell without

K. A. Brakke

volume constraint. Linear model, 764 vertices per cube unzt.

Ix1x1

2x1x1

4x1x1

8x1x1

-1.3751552395274
0.0050557043828
0.0050557043828
0.0050557043828
0.5144097462895
0.5144097462895
1.0859420131168
1.0859420131169
1.0859420132500
2.1301296386849

-1.3751552395274
-0.9707120740664
-0.9707120740664
0.0050557043827
0.0050557043828
0.0050557043828
0.3735205562288
0.3735205562288
0.3735205562352
0.3735205568893

-1.3751552395274
-1.2733834999456
-1.2733834999456
-0.9707120740664
-0.9707120740664
-0.4807931744404
-0.4807931744404

0.0050557043892

0.0050557044219

0.0050557050477

-1.3751552395274
-1.3496765588438
-1.3496765588438
-1.2733834999456
-1.2733834999456
-1.1467446537502
-1.1467446537502
-0.9707120740664
-0.9707120740664
-0.7471956960614

1. The discrete equilibrium may not exist when a smooth solution does. The
linear mode catenoid is an example of this.

2. A discrete equilibrium exists, but a smooth equilibrium does not. This hap-
pens in some cases of the quadratic mode catenoid.

3. Both discrete and smooth equilibria exist, but their eigenvalues are not close
due to sensitive dependence on the control parameter. The catenoid slightly below
its bifurcation point is an example.

4. The eigenvalues of the discrete surface are close to those of the smooth
surface. This is the usual behavior away from bifurcation points, and is seen
in the square and sphere examples. In linear mode, eigenvalues will have errors
on the order of A%, and in quadratic mode errors will be on the order of A*,
where h is the triangle side length. Each refinement of the surface quadruples
the number of vertices and halves the edge lengths, so one generally sees a factor
of 4 improvement in the linear mode eigenvalues each refinement, and 16-fold
improvement in the quadratic mode.

The exact value of the control parameter at a bifurcation point is often the
item of most interest. It is clear from the catenoid example that discreteness
can change the location of the bifurcation point, and not always in a predictable
manner. Hence one should never trust too much in the bifurcation point found
at one level of refinement, but should use several levels of refinement to get an
idea of the errors involved.

The eigenvectors seem much better behaved than the eigenvalues around a
bifurcation point. In all the catenoids, the lowest mode was always rotationally
symmetric and changing the diameter of the neck. This is understandable in the
sense that the bifurcation really involves only the lowest mode, so all the other
modes are slowly changing. Since eigenvectors of a symmetric matrix are mutually
orthogonal, that means the lowest mode must also be slowly changing.

The history of evolution can have an effect on the exact values of the eigen-
values, since in hessian normal mode the triangulation does not get to adjust
laterally. As an example, table 6 shows eigenvalues for the catenoid with two
different histories: evolving with height 1 first and then reducing the height, and
evolving with height 0.97 first and then raising the height.
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Table 6. Effect of evolution history on eigenvalues of catenoid, in quadratic model at lowest
refinement level.

height  Lowering height Raising height true
0.97 0.7756484301625 0.8016978545934  0.732
0.98 0.6477910223247  0.6764366167894  0.592
0.99 0.4980292782834  0.5313773392421  0.416
1.00 0.2964353302531  0.3403379336293 0

10. Conclusion

We have seen that it is possible to use the Surface Evolver to explore eigenval-
ues, eigenvectors, stability, and bifurcation diagrams. It is hoped that the Evolver
will become a widely used tool for such investigations.

Some future developments of the Evolver are clear. There is always a demand
for handling more complicated surfaces, for example realistic foams. Today’s
workstations can handle tens of thousands of facets, and supercomputers per-
haps a million. Parallel versions of the Evolver are available, and will be de-
veloped further. For increased accuracy, higher order finite elements are being
added. Further additions to the Evolver’s capabilities will be made in response
to users’ experiences.

The really interesting developments will be the unforeseen uses people find for
the tools the Evolver makes available.

This work has been partially supported by The Geometry Center, University of Minnesota,
Minneapolis, and by the University of Massachusetts, Amherst.
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