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INTRCDUCTION. 1In 1893 J. J. Sylvester conjectured that given a finite number of noncollinear
points in the plane and all the lines determined by them, there must be at least one line contain-
ing exactly two of the points. The conjecture was first proved by Gallai in 1933. The problem
then became: fon all configurations of n noncollinear points in the plane and the Lines determined
by them, what L& the minimum number of Lines containing exactly itwo of the points? For n > 13
this is Research Question 10 in this journal (see Volume 1, #2, 1969, page 133).

A line containing exactly two of the n points is called an cadinary Line. The number of lines
containing exactly i of the points is denoted by t;. The least number of ordinary lines possible
for any configuration of n points is denoted by tz(n). We call this Sylvester's function. Results
are derived for points on the real projective plane because of the ease of construction of certain
configurations and because of the duality between points and lines. Because we are concerned with
a finite number of points, results in the projective plane apply also to the Euclidean plane, and
conversely.

Gallai in 1933 proved tz(n) > 1. Dirac showed tz(n) > 3 in 1951. 1In 1958 Kelly and Moser [2]
proved tz(n) > (3/7)n. This is the best lower bound presently known. Motzkin and Boroczky have
constructed examples giving upper bounds for tz(n). If n = 2k, then t, = k can be achieved by con-
structing a regular k-gon and the k points at infinity determined by lines through pairs of ver-
tices. If n = 4k + 1, then t, = 3k can be achieved by adding one point at the center of the poly-
gon in the configuration for 4k points. If n = 4k + 3, then t, = 3k can be achieved by deleting
from the 4k + 4 configuration a point at infinity not determined by an edge of the polygon. The

values of tz(n) presently known are listed below.

n | 3456789101112 13 14 16 18 22
t, (n) ‘3343346 5 6 6 6 7 8 911

For proofs and diagrams for 3 < n < 13, as well as bibliographic references, see Crowe-McKee [1].

The last four values are the subject of this paper.

1. USEFUL FORMULAS. 1In this section we establish the formulas (1), (10), (12), which are
the essential tools for deriving our new values of tz(n). In a configuration of n points and
their connecting lines there are (3) = [n(n-1)]/2 pairs of points, each of which must be included

in some line. A line containing i of the points includes (%) of the pairs. Thus
n i
= X Ty €3]
(2 o2 (2ty

Next consider the dual of a configuration in the projective plane. In the dissection of the

plane by this dual, let V; denote the number of vertices with i edges, F the number of regions

i
with i edges. Let V, E, and F denote the total number of vertices, edges, and regions. Then,

since we have only even vertices,
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<
"

V, *+ Vg + Vg v oo (2)
F = F3 + Fh + F5 + e (%)

Since each edge has two vertices and each edge belongs to two regions,

2E = 4V, + 6V + 8V + -e- (4)
2E = 3F, + 4F, + SF, + «-» (5)

Adding half of (4) to (5) yields
3E = 2VL+ + 3V6 + 4V8 e+ 3F3 + 4FL+ + 5F5 +ovee (6)

Euler's formula for the projective plane is
V~-E+ F-=1. (7)

Multiplying (7) by 3 on both sides, substituting the values for V, E.and F given by (2), (3) and
(6), and simplifying gives ‘

v, = 3+ Vg + 2V10 + 3V, b E,o+ 2F6 + 3F6 +oree, (8)

The values of the F;'s must be non-negative, so

VL+ =3 + V8 + 2V10 + 3V12 + s, (9)

Dualizing back to the original configuration gives

t, >3+ t, * 2tS + 3t6 + e, (10)

LEMMA. Given n points in the plane, n even, ther each point must Lie on an odd number of
Lines containing an even number of points.

PROOF. Let p be a point. There are an odd number of points distinct from p. Each odd line
through p contains an even number of points distinct from p, and each even line contains an odd
number. Each point distinct from p is on exactly one line through p. Hence an odd number of

even lines contains p.

COROLLARY 1. I n 44 even and exactly two ordinary Eines pass through p, then p Lies on at
Least one even Line with at Least four points.

COROLLARY 2. 1§ n is even and a point p does not Lie on an even £ine with at Least four
points, then p 4s on at Least one ordinary £ine.

A point that lies on exactly two ordinary lines is called a k-point. A pair consisting of
a point and an ordinary line containing it is called a {Lag. Thus a k-point is on two flags, and
since an ordinary line contains two points, the number of ordinary lines is half the number of
flags.

In their proof that t, z (3/7)n, Kelly and Moser establish the inequality

t2 > n/2 - k/6 (11)

where k is the number of k-points.

THEOREM. 14 n 44 even and t, < n/2 - 1, then
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752t + 3t + At eee, (12)

PROOF. 1If t, <n/2 - 1 then by (11) k > 6. By COROLLARY 1 these k-points are all on even
lines with four or more points. There are at least 12 flags on these even lines. The number of
points not on these even lines is at least n - (41:H + 6t6 + 8t8 + +++). By COROLLARY 2, each of
these points has at least one flag. Therefore the total number of flags is at least

12 + n - (4tq + 6t6 + 81:8 + ot}
The number of ordinary lines is half the number of flags, so
12 + n - (41:L+ + 6t6 + 8t8 + ¢*0}) < 2(n/2 - 1) or 14 < 4tq + 6t6 + 8t8 + v,

Dividing by 2 gives the desired result.

2. DETERMINATION OF t2(n), n=14, 16, 18, 22. We now derive t,{n) for n = 14, 16, 18, and
22. We need only consider values of t, between the lower bound (3/7)n of Kelly and Moser and the
upper bound of n/2 found by Bordczky

By the above bounds t2(14) = 6 or 7. Suppose t2 = 6. Then (10) becomes

6 >3+ t, + 2t5 + 3t6 + e, (13)
Another way to write (13) is
6 22t + 4t + 6t + oo (14)

Comparing (12) and (14) shows that no solution is possible. Since t2 = 6 1s impossible, t2(14)=7.
If n = 16 then t2(16) = 7 or 8. Suppose t, = 7 then (1) and (10) become

16, _ _
(*3) =120 = 7 + 3t + 6t, + 10t_ + 15t_ + 21t, (15)

42t + 2t + 3t + 4t (16)

i
In order for the right hand side of (15) to be divisible by 3, we must have t, = 2 (since (16)
implies t, < 2). Then (16) implies t, =t = 0, which contradicts (12). Therefore t2(16) = 8.

The possibilities for t2(18) are 8 and 9. Suppose t, = 8. Then we have
18, _ _
(73) = 153 =8 + 3t3 + 61:I+ + 10t5 + 15t6 + 211:7 + 28t8 17)

5 2t + 2t5 + 3t6 + 4t7 + StB' (18)

If t, = 1 then by (18) t,=t, = 0 so (12) cannot be satisfied. Then for the right side of (17)
to be divisible by 3, t, must be 1. By (17) t, * 3t6 < 3 so (12) again cannot be satisfied. Hence
t2(18) = 9.

The possibilities for t2(22) are 10 and 11. Suppose t, = 10. Then

22
("2) = 231 10 + 3t3 + 61:L+ + 10t5 + 15t6 + 21t7 + 28t8 + 36t9 + 45t10 (19)

7 2t o+ 2t5 + 3t6 + 4t7 + St8 + 6t9 + 7t (20)

10

If tio = 1 then t, =t
right side of (19) to be divisible by 3. Then t, =t = 0 and (12) fails. With ty = 0, t. must
be 2. Then by (19), 3 > t, * 3t6 and (12) cannot be satisfied. Therefore t2(22) = 11.

A similar analysis for t2(20) = 9 leaves undecided the case with t, = 1, t, = 4, and t, = 49.

=ty = 0 and (12) is not satisfied. 1If ty, = 1 then t, must be 1 for the

This case has the interesting property that (10) becomes an equality. Therefore by (8) all the

regions in the dual configuration must be triangular. So far we have not been able to make use
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of this fact.

Further significant progress on this problem will likely require a new approach. As n in-
creases, the number of undecided cases grows rapidly, and for odd n the formula (12) that is so

useful for even n does not apply and there is no corresponding formula that is useful.
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