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Abstract

A “dry” conical soap film on a cubical frame is not stable. Recent ex-
perimental evidence seems to indicate that adding liquid to form Plateau
borders stabilizes the conical film, perhaps to arbitrarily low liquid frac-
tions. This paper presents numerical simulation evidence that the the
wet cone is unstable for low enough liquid fraction, with the critical liquid
fraction being about 0.000278.
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1 Introduction

A “dry” soap film is the idealization that a soap film has no thickness. Lamarle
[1] and Taylor [2] showed that the only singularities possible in dry 2D films in
3D space are three films meeting along a curve at 120° and four triple curves
meeting at equal angles at a point, as in the cone over a tetrahedral frame (a
cone in this paper is the union of a set of line segments from a central point
to an outer boundary). Hence the conical film over a cubical frame (figure 1,
left) is unstable and jumps to a film with tetrahedral singular points (figure 1,
middle).

Real films are “wet” in that they have some thickness and have Plateau
borders. A Plateau border is a thickening of the film where several sheets meet,
forming concave triangular tubes in place of the triple junctions of dry films.
The surface tension on a Plateau border is half that of a dry film, since a dry film
is really a double layer. A physical film on a cubical frame that starts wet (figure
1, right) rapidly drains by gravity to a nearly dry film and jumps to the stable
dry film, figure 1 middle. But recent laboratory experiments by Hutzler [3],
shown in figure 2, seem to show that keeping the Plateau borders from drying
out by constantly feeding liquid in from the top stabilizes the wet cone. It is
consistent with all these facts that a wet cone is stable for any liquid fraction,



Figure 1: Left: Unstable dry cube cone film. Middle: Stable dry film. Right:
Wet cone film with Plateau borders.

Figure 2: Experiment showing dry cube film (left) and with continuous flow
through the Plateau borders (right). (Photos by Stefan Hutzler [3])

but that the barrier to jumping to the stable dry film is low enough that real
films rapidly cross it when draining, due to asymmetries or fluctuations. Weaire
et al. [4] use a simple model of films and Plateau borders to argue that the wet
cone film is stable to arbitrarily low liquid fraction.

The question considered in this paper is whether the wet cube cone film
(figure 1, right) is stable to arbitrarily low liquid fractions. The model used is
an idealization to the extent that all the liquid is in the Plateau borders, the
“dry” part of the film has zero thickness, the wires of the cubical frame have
zero diameter, and there are no dynamical effects due to flowing liquid. Also,
gravity is neglected.

There are two meaningful alternative conditions to impose on the Plateau
borders: constant volume or constant pressure. Constant volume is natural
when considering a film on an isolated cubical frame. However, if the film is
seen as part of a larger system, a foam for example, then the large volume
of liquid in the Plateau borders outside the cube acts as a constant pressure
reservoir. It turns out that for the liquid fractions involved in this paper, there



is no significant difference in stability between constant volume and constant
pressure.

Drier wet cone films will be more unstable than wetter cones. This is because
the Plateau borders are of nearly uniform width for most of their length, so the
drier cone essentially contains a shrunken copy of the wetter cone. Hence any
unstable perturbation of the wetter cone may be scaled down to an unstable
perturbation of the drier cone. Hence there is a critical liquid fraction (possibly
0) above which the wet cone is stable and below which it is unstable. This is
not a rigorous argument, but it is compelling enough for the purposes of this
paper.

This paper uses the Surface Evolver software (Brakke [5]) to provide two
lines of evidence that the wet cube cone is unstable at low liquid volumes. The
first line consists of modelling the wet cube cone and finding a deformation that
decreases energy. This would seem to be straightforward, but turned out to have
considerable difficulties due to the low critical liquid fraction. The second line
shows that the central portion of the wet cone in isolation is definitely unstable,
and argues that the whole wet cone is still unstable for some low enough liquid
fraction. The second line is provided as a backup to the first line, and because
it historically preceded the first line by a year and provided the motivation to
persevere to find the first line.

Section 2 discusses related results in other dimensions. Section 3 does the
deformations of the wet cube cone. Section 4 has the central section argument.
Section 5 sketches out the general stability diagram for the wet cube film. Sec-
tion 6 discusses wetting other cones.

2 Known results in other dimensions

For a 1D film spanning the corners of a square (figure 3), it is known (Bolton
et al. [6], Brakke et al. [7]) that if the liquid area is greater than about 0.1
of the area of the square, then the wet cone (figure 3C) is stable. For smaller
liquid area, the wet cone is unstable toward jumping to an asymmetric wet cone
(figure 3D) or a film with two triangular Plateau borders (figure 3E).

In space dimension 4 and higher, it was shown in Brakke [8], using a tech-
nique called paired calibration, that the dry conical film over a hypercube frame
is stable, in fact absolutely area minimizing. The moral of Brakke [8] is that
higher dimension stabilizes cones, since it becomes cheaper for films to meet
by going towards the center rather than by going sideways. Thus the wet cube
cone should be more stable than the 2D wet cone, possibly even stable down to
arbitrarily low liquid fraction.

3 Surface Evolver model of the wet cube cone

The Surface Evolver (Brakke [5]) is a computer program for modelling liquid
surfaces shaped by various energies and constraints. A surface has a finite
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Figure 3: The lower dimensional analog. A. Unstable dry cone in the plane.
B. Stable dry film. C. Wet cone at the critical liquid fraction for stability. D.
Stable mode for liquid fraction slightly below critical. E. Stable mode for small
liquid fractions. B, D and E may also be rotated 90 degrees.



element representation as a set of triangles, with any number of triangles meeting
along an edge, so there are no restrictions on surface topology. Either linear
or quadratic triangle elements may be used. A surface begins as a crude finite
element representation, and is then evolved by refining the triangulation and
minimizing energy by gradient descent (augmented with conjugate gradient).
The Evolver can also calculate the Hessian matrix of the energy, viewing the
energy as a function of all the vertex coordinates. The Hessian can be used to
converge quickly to an equilibrium by Newton’s Method, and can be used to test
the stability of an equilibrium by testing the Hessian’s positive definiteness. The
Evolver can also calculate the lowest few eigenvalues of the Hessian, which is
useful for seeking the critical point of transition between stability and instability.
In order to be able to directly compare eigenvalues for different triangulations
of a surface, the eigenvalues are defined with respect to an inner product which
approximates the Ly inner product of functions on the surface.

The Evolver works in dimensionless units, so the numerical values reported
in this paper can be interpreted in any consistent system of units. Also, since
the surface tension is the only energy present in the system, the absolute value
of the surface tension is immaterial.

The wet cube cone shares the 48-fold symmetry of the cube, but the pre-
sumed perturbation towards a wet version of the stable dry cube film still has
16-fold symmetry. Thus it suffices to make a Surface Evolver model of a fun-
damental region for the perturbation, shown in figure 4, left. The perturbation
involves warping the Plateau border and the dry film on the x = 2z plane and
flattening the volume around the origin while the dry film on the x = y plane re-
mains flat. Figure 4, right, shows a perturbation towards opposite films touching
at the center.

The obvious way to test the stability of the 16-fold fundamental region is to
let the Evolver calculate the lowest eigenvalue of its energy Hessian. However,
calculating Hessian eigenvalues is not perfectly straightforward, as tangential
motions of the vertices give many near-zero eigenvalues, even negative eigenval-
ues in a seemingly well-evolved surface. It is extraordinarily difficult to evolve a
highly refined surface to the point of having a positive definite Hessian. There-
fore the Evolver has a mode in which only perturbations of the vertices normal
to the surface are permitted; these are the perturbations that count in a smooth
surface in any case. Unfortunately, the normal-mode Hessian did not show in-
stability, even for liquid fractions down to 0.000008 and highly refined surfaces.
As table 1 shows, the lowest eigenvalues look to be heading toward zero with
increasing refinement, but never get there, and lower liquid fraction (more neg-
ative pressure) hurts instead of helps.

The difficulty turned out to be that a would-be energy-decreasing pertur-
bation really has enough tangential component that forcing it to follow normal
vectors causes enough distortion to eliminate the instability. The problem is
illustrated in figure 5, which shows a very coarsely refined wet triple junction
with free boundaries on a fixed triangular frame. Without normal mode, the
film in figure 5A is in neutral equilibrium, since it may be translated within the
triangle with exactly equal energy (figure 5B). But with normal mode, trying



Figure 4: Fundamental region of the wet cube cone for 16-fold symmetry. The
front plane of the bounding prism is the y = 0 symmetry plane, the back is
z = y, the bottom is z = 0, the top is z = 1, and the right is x = 1. The
outer end of the Plateau border is fixed on an ideal cross-section perpendicular
to the border axis, to provide a well-behaved termination of the border. The
liquid fraction shown is 0.023. Left, the symmetric equilibrium. Right, the
perturbation towards the flat central film.

to translate using only normal motions distorts the Plateau border, raising the
energy (figure 5C). A little dimensional analysis shows that eigenvalue grows
inversely with the diameter of the Plateau border, so the problem gets worse
and worse with smaller liquid fraction.

The cure turned out to be to define a direction of motion in the direction the
perturbation wanted to go, rather than the normal direction. I added a special
Hessian mode to the Evolver that allows motion only in a prescribed direction
at each vertex. Using a direction field of the form (x,y, —az) suppressed all
the unwanted tangential motion, but allowed the desired perturbation. This
mode finally revealed negative eigenvalues. Some experimentation showed that

A B c

Figure 5: Distortion of Plateau border by normal motion. A: Undistorted ver-
sion. B: Undistorted after motion. C: Distorted after normal motion; note the
uneven breaks in two of the Plateau border sides.



Pressure | Linear 1 | Linear 2 | Linear 3 | Quad 1 | Quad 2 | Quad 3
-5 2.2796 2.0822 1.9371 | 2.1804 | 1.9265 | 1.8026
-10 3.1058 2.5252 2.0527 | 2.5305 | 1.8821 | 1.5736
-20 5.3673 3.9835 2.8712 | 3.8642 | 2.2978 | 1.5148
-30 7.1128 5.3430 3.8983 | 5.1192 | 2.8688 | 1.6063
-40 7.9647 6.6114 4.7987 | 6.4680 | 3.8075 | 2.0919
-50 9.2277 7.3067 5.5445 | 7.1024 | 4.1854 | 2.0186
-60 9.7954 8.2182 6.2913 | 7.8381 | 4.7170 | 2.1838
-70 10.234 8.9036 6.8698 | 8.5718 | 5.4999 | 2.6150

Table 1: Lowest eigenvalues for various Plateau border pressures and various
levels of refinement for linear and quadratic facets, using the standard normal
motion restriction for the Hessian. On one hand, the eigenvalues go up with
more negative pressure, but they are dropping drastically with increasing re-
finement. So the conclusion is not at all clear.

Pressure | Linear 1 | Linear 2 | Linear 3 | Quad 1 | Quad 2 | Quad 3
-5 1.1395 1.0612 1.0338 | 1.0424 | 1.0146 | 1.0080
-10 0.9921 0.8785 0.8468 | 0.8432 | 0.8211 | 0.8155
-20 0.7860 0.5798 0.5233 | 0.5403 | 0.4740 | 0.4634
-30 0.4211 0.2851 0.2348 | 0.2680 | 0.1193 | 0.0955
-40 0.1529 | -0.0451 | -0.1066 | -0.1309 | -0.2729 | -0.2977
-50 -0.2786 | -0.4418 | -0.4257 | -0.3410 | -0.6835 | -0.7311
-60 -0.4986 | -0.7026 | -0.6828 | -0.8248 | -1.1737 | -1.2297
-70 -0.8693 | -1.1772 | -1.1445 | -1.3767 | -1.7027 | -1.7637

Table 2: Lowest eigenvalues for various Plateau border pressures and various
levels of refinement for linear and quadratic facets for special Hessian direction
field (x,y,-4z). Eigenvalues for constant volume are practically identical.

a ~ 4 gave the lowest eigenvalues. Table 2 shows the lowest eigenvalues for
various fixed pressures. Trials near the critical liquid fraction showed the critical
pressure to be about -32.4, with critical liquid fraction about 0.000278.

4 Central region with free boundary

Since modelling a full wet cube cone (or even a fundamental region of it) is so
difficult, I originally decided to try to isolate the inner part of the wet cone
from the outer part. The inner part should be pretty much the same for all
liquid fractions if scaled correctly, and the outer part should be just small per-
turbations of flat planes and Plateau borders with cylindrical surfaces. To that
end, I truncated the inner portion with an octahedron (figure 6), with the film
boundary free to move on the octahedron. I reasoned this would be the least



Figure 6: Central region with free boundaries on an octahedron, in symmetric
equilibrium.

disruptive way to isolate the central region, in that for the dry film the central
point can translate arbitrarily within the octahedron without area change, since
the films remain orthogonal to the octahedron. The constraint on the Plateau
borders is constant pressure, since even if the whole wet cone is at constant
volume, the outer Plateau borders (being much larger than the central region)
serve as a constant pressure reservoir.

Surface Evolver calculations show that this central region by itself is unsta-
ble, even without the special Hessian direction field. In fact, the eigenspace for
the one negative eigenvalue has dimension 2. This might seem strange, since
there are three ways for the cone to change to the stable dry film, but they turn
out to be linearly dependent. The infinitesimal generators of the three ways are
essentially like

10 0 1 0 0 —2 0 0
01 0 0 -2 0 0 10 (1)
00 -2 0 0 1 0 0 1

To get more precise control over the boundary on the octahedron, in order
to match it to perturbations of the outer regions, I made a version of the central
region with a fixed boundary trace on the octahedron. This trace consists of
straight segments and circular arcs of radius 1/p around the Plateau border,
where p is the difference of external pressure over internal pressure. This trace
has an adjustable parameter in it that moves it in the direction of the unstable
perturbation. This enables making a known perturbation of the form (h, h, —2h)



Pressure | Facets | Coefficient | Critical volume
2 21 -0.8211
84 -0.8605
336 -0.8821
1219 -0.8905 0.000055
4 37 -0.9504
148 -1.0729
592 -1.1100
2323 -1.1383 0.000065
8 57 -1.1653
228 -1.3477
819 -1.4338
3268 -1.5205 0.000066

Table 3: Coefficients of quadratic term in energy as function of perturbation
of fixed boundary. Higher pressures correspond to a larger octahedron relative
to the cube, hence thinner Plateau borders in the octahedron. Critical volume
values are from equation 12; these are lower bound estimates on the critical
liquid fraction for the cube.

uniformly over the entire surface, re-minimize the surface using the Hessian and
Newton’s Method, and thus numerically measure the coefficient of the quadratic
term in the energy as a function of h. The value of h actually used was 0.00001,
small enough not to distort the triangulation. The results are presented in table
3.

So the question is now: Is the area loss of the unstable deformations of the
inner region compensated for by the area increase of the deformation of the outer
regions connecting the inner region to the cube frame? I present the following
argument (not a proof yet) that it isn’t, for low enough volume.

The deformation of the inner region bends the large flat outer films away from
flatness. For small deformations, this outer perturbation is nearly a harmonic
function, since a nearly flat minimal surface is nearly the graph of a harmonic
function. The dominant term in this harmonic function ought to be log(r), since
the deformation is largest toward the center of the cube. If the cube frame is
at distance D from the center, then the area excess of the deformation turns
out to be proportional to 1/log(D). Hence for large enough D, the central area
decrease will win.

More precisely, consider the following specific deformation to connect the
perturbed boundary to the outer frame. Let the inner octahedron face be x +
y + z = a and let the cube corner be at (D, D, D). Then the octahedron face
T+ y+ 2z = 2D is still within the cube, at least the part containing the film.
Consider deformations that on the octahedron face x +y+ 2z = t slide the section
by

h(t)(1,1,-2),  h(2D) =0, (2)



with the accompanying stretching and shrinking of the dry film on the face edges,
as in figure 5B. The perturbation is taken to be zero between = 4+ y + z = 2D
and the cube frame. Note this perturbation preserves Plateau border volume
exactly, and on each slice the net change in cross-section length is zero. So the
only area increase comes from the bending of the surface. The bending of the
Plateau border contributes less excess than would the bending of the dry film
(easy calculation), so we just compute the area excess of the dry film.

To flatten out the domain, make the change of variables to an orthonormal
system of coordinate (u,v,w) defined by

u=(@+y+2)/V3  v=(w-2+2)/V6, w=(-2)/VZ ()
The dry film subject to our perturbation is then defined by
a/\/§§u§2D/\/§, 0§v§u/\/§, w = 0. (4)

The magnitude of the perturbation is

3
w(u,v) = ﬁh(u) (5)

The area is (since film is double density here)

2D/V3
/ / V1+widvdu, (6)

so the excess area is

2D/V3
Excess = / / V14 w2 —1dvdu

2D/\f
/ / 7w2 dv du

-/ 2D/Iigh’<u>2du )
a/\/§ \/52 )

The calculus of variations shows that the optimal form of h(u) here is

log(2D//3) —logu
“log(2D/v/3) — log(a/v/3)’

where hg = h(a/+/3) is the perturbation at the inner octahedron. Plugging this
back in gives

Q

(8)

2D/V/3
Excess = Q\f/ uho 2 (log(2D/V/3) — log(a/V/3))2du

_ 2
= vsiaanya’ ®)

10



So if D is large enough, the excess in outer area is less than the area loss in
the inner region. In particular, if we let C be the coefficient from table 3, with
a = 2, then the critical value of D occurs when

9 1
> D = exp(—9/2v20C). (11)

To get the corresponding liquid fraction, multiply the length of the Plateau
border, /3D, by its cross section for a given radius 7, (v/3 —7/2)r2, and divide
by the cube octant volume:

V3D(V3 — 7/2)r? _ 3

Verit = s 3(\/3 — 7r/2)7“2 exp(9/\/§C). (12)

These numbers are in the last column of table 3. Given the restricted nature of
the perturbations considered, these values only give a lower bound on the true
critical volume. But they are only a factor of four lower than the best estimate
of Ve = 0.000278, so this approach does seem to provide a good picture of
what is happening and why the critical volume fraction is so low. Whenever
logs and exponentials appear, numbers can get extreme very easily.

5 Wet cube film stability diagram

A stability diagram is a handy way to describe the behavior of a system. For
simplicity, we first consider the system consisting of 1/16 of a wet cube film.
The control parameter will be the liquid liquid fraction, and the response will be
the asymmetry of the film, measured as the difference in the volumes of the two
exterior regions of the film. This stability diagram will be rather qualitative, so
exact definitions are not needed. The stability diagram is sketched in figure 7.

Solid lines represent stable films, and dashed or dotted lines represent un-
stable films. Point D is the unstable dry cube cone. Point C is the critical
volume symmetric wet cube cone. The dashed straight line DC represents the
unstable symmetric wet cube cones. The solid line CE represents the stable wet
cones. Point A is the stable dry cube film. The curve AB represents progressive
wetting of the the dry cube film, until it reaches the critical point B, where the
central film disappears. The dotted line DBG is the transition to a central film,
where opposite sides of the central region first touch. These are not equilib-
ria, except at point B. Evolver simulations put the liquid fraction for point B
at 0.0103. The dashed curve CBF represents unstable equilibrium asymmetric
wet films, combinatorially the same as the wet cube cone. On segment BF,
opposite films pass through each other in the central region, so this segment
is not physical. The lower dashed curve DC represents equilibria reached by
going downhill in energy from the symmetric unstable wet cone in the opposite
direction from the central film. These films have the central region stretched
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Figure 7: Qualitative stability diagram of wet cube film for fixed volume. Not
to any kind of scale whatsoever.

vertically into a pillar rather than flattened into a slab. They are stable when
16-fold symmetry is imposed, but otherwise are unstable to jumping to vertical
central films. This curve terminates at point D, the dry cone, because there is
no equilibrium dry film with a fourfold junction curve as pictured in figure 8.
This nonexistence follows from a calibration argument that the dry cube cone
is the unique absolute minimum in a certain wedge, and that any equilibrium
film in the wedge that is the graph of a function can be calibrated, and is hence
an absolute minimum.

The details of the diagram around point B deserve a more detailed discussion.
The central film configuration can be viewed as a perturbed wet cone, as in figure
4, right, with the perturbation big enough for the central films to overlap, and
then the overlaps pushed back to the midplane. If an overlap is pushed back
distance z, the work done may be approximated as follows: At internal pressure
—P, the overlap is approximately spherical of radius R = 2/P. The plane of
contact at pushback z will be approximately the area of a spherical slice, which
is A = 2nRz. The pushing force is FF = PA = 4wz. The total work done
pushing is W = 2722, Since there are top and bottom films to push back, the
total work done is really W = 4722, Now suppose the wet cone has its unstable
equilibrium at z = zg, and its energy is E(z) = Ey—c(z — 20)?. Because nothing
unusual happens at point B if one lets the films interpenetrate, zg is a smooth
function of liquid fraction. Evolver computations show that ¢ =~ 0.075. The
total energy of the central film configuration formed by taking some wet cone
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Figure 8: Dry film version of the wet films on the “other side” of the wet cone
saddle point from the central square, i.e. the lower curve DC of figure 6. No
dry film of this shape actually exists, however.

and pushing back will be
Enet(2) = Eg — c(z — 29)? + 4722 (13)

This has its minimum at
—2czg

T sr 2
This shows that curve AB does in fact meet DG where CF crosses, because
z = 0 where 2y = 0. Since z( is a nearly linear function of liquid fraction near
point B, the central film line AB is nearly linear at B, and it does not go vertical.
Furthermore, the eigenvalue for the central film does not approachs zero at B.
This seems to be confirmed by the few Evolver tests I've done on it, although
given all the perils of eigenvalue computing mentioned in this paper, I make the
claim cautiously.

The diagram for constant pressure is very similar. The equilibria are the
same, and the only difference is that the lines of constant pressure deviate
slightly from the lines of constant volume (which are vertical in figure 7). For the
same Plateau volume, the central film configuration has a slightly less negative
internal pressure than the wet cone. At the dry extreme, this follows from the
fact that the total length of the Plateau border in the dry cone is 8v/3 ~ 13.856,
while the length in the stable dry film is about 13.746, according to the Evolver.
At liquid fraction 0.098 (near point B), the Evolver gives the pressure in the
wet cone as -5.976, but with the central film -5.64.

The stability diagram for the full wet cube cone can best be visualized by
taking the response space to be the two-dimensional eigenspace for the lowest
eigenvalues found in section 4. The diagram contains three copies of figure 7
spread at 120° around a common axis DCE.

(14)
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6 Other wet cones

By the results of Lamarle [1], Heppes [9], and Taylor [2], there are eight possible
dry cone singularities (not counting the triple junction of planes). The cone over
the tetrahedron is stable when dry, and therefore when wet. We have seen the
wet cube cone can be unstable. Of the other six cones, it turns out from Evolver
experiments that only the cone over the dodecahedron even has an equilibrium
wet cone. For the five others, trying to form a wet cone results in a surface that
has an energy gradient in the direction of the wet version of the minimal dry
film. This does not happen with the cube and dodecahedron because their high
symmetry rules out nonzero gradients.

By Evolver experiments of the same type as in section 4, the wet dodec-
ahedral cone inner region turns out to be unstable, with negative eigenvalue
eigenspaces of dimension 2 and 3, for a total of 5 unstable degrees of freedom.
No doubt the full dodecahedral wet cone is unstable below some critical liquid
fraction.
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